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SOME ESTIMATES FOR THE GENERALIZED FOURIER-DUNKL

TRANSFORM IN THE SPACE L2
α,n

R. DAHER AND S. EL OUADIH

Abstract. Some estimates are proved for the generalized Fourier-Dunkl trans-

form in the space L2
α,n on certain classes of functions characterized by the

generalized continuity modulus.

1. Introduction

In [5], Abilov et al. proved two useful estimates for the Fourier transform in the
space of square integrable functions on certain classes of functions characterized by
the generalized continuity modulus, using a translation operator.
In this paper, we consider a first-order singular differential-difference operator Λ
on R which generalizes the Dunkl operator Λα, we prove some estimates in cer-
tain classes of functions characterized by a generalized continuity modulus and
connected with the generalized Fourier-Dunkl transform associated to Λ in L2

α,n

analogs of the statements proved in [5]. For this purpose, we use a generalized
translation operator.
In section 2, we give some definitions and preliminaries concerning the generalized
Fourier-Dunkl transform. The some estimates are proved in section 3.

2. Preliminaries

In this section, we develop some results from harmonic analysis related to the
differential-difference operator Λ. Further details can be found in [1] and [6]. In all
what follows assume where α > −1/2 and n a non-negative integer.
Consider the first-order singular differential-difference operator on R defined by

Λf(x) = f ′(x) +

(
α+

1

2

)
f(x)− f(−x)

x
− 2n

f(−x)

x
.
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For n = 0, we regain the differential-difference operator

Λαf(x) = f ′(x) +

(
α+

1

2

)
f(x)− f(−x)

x
,

which is referred to as the Dunkl operator of index α+ 1/2 associated with the re-
flection group Z2 on R. Such operators have been introduced by Dunkl (see [3], [4])
in connection with a generalization of the classical theory of spherical harmonics.
Let M be the map defined by

Mf(x) = x2nf(x), n = 0, 1, ...

Let Lpα,n, 1 ≤ p <∞, be the class of measurable functions f on R for which

‖f‖p,α,n = ‖M−1f‖p,α+2n <∞,
where

‖f‖p,α =

(∫
R
|f(x)|p|x|2α+1dx

)1/p

.

If p = 2, then we have L2
α,n = L2(R, |x|2α+1).

The one-dimensional Dunkl kernel is defined by

eα(z) = jα(iz) +
z

2(α+ 1)
jα+1(iz), z ∈ C,(2.1)

where

jα(z) = Γ(α+ 1)

∞∑
m=0

(−1)m(z/2)2m

m!Γ(m+ α+ 1)
, z ∈ C,(2.2)

is the normalized spherical Bessel function of index α. It is well-known that the
functions eα(λ.), λ ∈ C, are solutions of the differential-difference equation

Λαu = λu, u(0) = 1.

In the terms of jα(x), we have (see [2])

1− jα(x) = O(1), x ≥ 1,(2.3)

1− jα(x) = O(x2), 0 ≤ x ≤ 1,(2.4)
√
hxJα(hx) = O(1), hx ≥ 0,(2.5)

where Jα(x) is Bessel function of the first kind, which is related to jα(x) by the
formula

jα(x) =
2αΓ(α+ 1)

xα
Jα(x), x ∈ R+.(2.6)

For λ ∈ C, and x ∈ R, put

ϕλ(x) = x2neα+2n(iλx),

where eα+2n is the Dunkl kernel of index α+ 2n given by (1).

Proposition 2.1. (i) ϕλ satisfies the differential equation

Λϕλ = iλϕλ.

(ii) For all λ ∈ C, and x ∈ R

|ϕλ(x)| ≤ |x|2ne|Imλ||x|.
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The generalized Fourier-Dunkl transform we call the integral transform

FΛf(λ) =

∫
R
f(x)ϕ−λ(x)|x|2α+1dx, λ ∈ R, f ∈ L1

α,n.

Let f ∈ L1
α,n such that FΛ(f) ∈ L1

α+2n = L1(R, |x|2α+4n+1dx). Then the inverse
generalized Fourier-Dunkl transform is given by the formula

f(x) =

∫
R
FΛf(λ)ϕλ(x)dµα+2n(λ),

where

dµα+2n(λ) = aα+2n|λ|2α+4n+1dλ, aα =
1

22α+2(Γ(α+ 1))2
.

Proposition 2.2. (i) For every f ∈ L2
α,n,

FΛ(Λf)(λ) = iλFΛ(f)(λ).

(ii) For every f ∈ L1
α,n ∩ L2

α,n we have the Plancherel formula∫
R
|f(x)|2|x|2α+1dx =

∫
R
|FΛf(λ)|2dµα+2n(λ).

(iii) The generalized Fourier-Dunkl transform FΛ extends uniquely to an isometric
isomorphism from L2

α,n onto L2(R, µα+2n).

The generalized translation operators τx, x ∈ R, tied to Λ are defined by

τxf(y) =
(xy)2n

2

∫ 1

−1

f(
√
x2 + y2 − 2xyt)

(x2 + y2 − 2xyt)n

(
1 +

x− y√
x2 + y2 − 2xyt

)
A(t)dt

+
(xy)2n

2

∫ 1

−1

f(−
√
x2 + y2 − 2xyt)

(x2 + y2 − 2xyt)n

(
1− x− y√

x2 + y2 − 2xyt

)
A(t)dt,

where

A(t) =
Γ(α+ 2n+ 1)√
πΓ(α+ 2n+ 1/2)

(1 + t)(1− t2)α+2n−1/2.

Proposition 2.3. Let x ∈ R and f ∈ L2
α,n. Then τxf ∈ L2

α,n and

‖τxf‖2,α,n ≤ 2x2n‖f‖2,α,n.

Furthermore,

FΛ(τxf)(λ) = x2neα+2n(iλx)FΛ(f)(λ).(2.7)

The generalized modulus of continuity of function f ∈ L2
α,n is defined as

w(f, δ)2,α,n = sup
0<h≤δ

‖τhf(x) + τ−hf(x)− 2h2nf(x)‖2,α,n, δ > 0.
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3. Main Results

The goal of this work is to prove some estimates for the integral

J2
N (f) =

∫
|λ|≥N

|FΛf(λ)|2dµα+2n(λ),

in certain classes of functions in L2
α,n.

Lemma 3.1. For f ∈ L2
α,n, we have,

‖τhf(x) + τ−hf(x)− 2h2nf(x)‖22,α,n = 4h4n

∫
R
|jα+2n(λh)− 1|2|FΛf(λ)|2dµα+2n(λ),

where r = 0, 1, 2, ...

Proof. By using the formulas (2.1), (2.2) and (2.7), we conclude that

FΛ(τhf + τ−hf − 2h2nf)(λ) = 2h2n(jα+2n(λh)− 1)FΛf(λ).(3.1)

Now by formula (3.1) and Plancherel equality, we have the result. �

Theorem 3.1. Given f ∈ L2
α,n. Then there exist a constant C > 0 such that, for

all N > 0,

JN (f) = O(N2nω(f, CN−1)2,α,n).

Proof. Firstly, we have

J2
N (f) ≤

∫
|λ|≥N

|j|dµ+

∫
|λ|≥N

|1− j|dµ,(3.2)

with j = jp(λh), p = α+ 2n and dµ = |FΛf(λ)|2dµα+2n(λ). The parameter h > 0
will be chosen in an instant.
In view of formulas (2.5) and (2.6), there exist a constant C1 > 0 such that

|j| ≤ C1(|λ|h)−p−
1
2 .

Then ∫
|λ|≥N

|j|dµ ≤ C1(hN)−p−
1
2 J2

N (f).

Choose a constant C2 such that the number C3 = 1− C1C
−p− 1

2
2 is positif.

Setting h = C2/N in the inequality (3.2), we have

C3J
2
N (f) ≤

∫
|λ|≥N

|1− j|dµ.(3.3)

By Hölder inequality the second term in (3.3) satisfies∫
|λ|≥N

|1− j|dµ =

∫
|λ|≥N

|1− j|.1.dµ

≤

(∫
|λ|≥N

|1− j|2dµ

)1/2(∫
|λ|≥N

dµ

)1/2

≤

(∫
|λ|≥N

|1− j|2dµ

)1/2

JN (f).
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From Lemma 3.1, we conclude that∫
|λ|≥N

|1− j|2dµ ≤ h−4n‖τhf(x) + τ−hf(x)− 2h2nf(x)‖22,α,n.

Therefore∫
|λ|≥N

|1− j|dµ ≤ h−2n‖τhf(x) + τ−hf(x)− 2h2nf(x)‖2,α,nJN (f).

For h = C2/N , we obtain

C3J
2
N (f) ≤ C−2n

2 N2nw(f, C2/N)2,α,nJN (f).

Consequently

C2n
2 C3JN (f) ≤ N2nw(f, C2/N)2,α,n.

for all N > 0. The theorem is proved with C = C2. �

Theorem 3.2. Let f ∈ L2
α,n. Then, for all N > 0,

ω(f,N−1)2,α,n = O

N−2(n+1)

(
N−1∑
l=0

(l + 1)3J2
l (f)

) 1
2

 .

Proof. From Lemma 3.1, we have

‖τhf(x)+τ−hf(x)−2h2nf(x)‖22,α,n = 4h4n

∫
R
|jα+2n(λh)−1|2|FΛf(λ)|2dµα+2n(λ).

This integral is divided into two∫
R

=

∫
|λ|≤N

+

∫
|λ|≥N

= I1 + I2,

where N = [h−1]. We estimate them separately.
From (2.3), we have the estimate

I2 ≤ C4

∫
|λ|≥N

|FΛf(λ)|2dµα+2n(λ) = C4J
2
N (f).

Now, we estimate I1. From formula (2.4), we have

I1 ≤ C5h
4

∫
|λ|≤N

λ4|FΛf(λ)|2dµα+2n(λ) = C5h
4
N−1∑
l=0

∫
l≤|λ|≤l+1

λ4|FΛf(λ)|2dµα+2n(λ)

= C5h
4
N−1∑
l=0

al
(
J2
l (f)− J2

l+1(f)
)
,

with al = (l + 1)4.
For all integers m ≥ 1, the Abel transformation shows

m∑
l=0

al
(
J2
l (f)− J2

l+1(f)
)

= a0J
2
0 (f) +

m∑
l=1

(al − al−1) J2
l (f)− amJ2

m+1(f)

≤ a0J
2
0 (f) +

m∑
l=1

(al − al−1) J2
l (f),



182 R. DAHER AND S. EL OUADIH

because amJ
2
m+1(f) ≥ 0.

Hence

I1 ≤ C5h
4

(
J2

0 (f) +
N−1∑
l=1

(
(l + 1)4 − l4

)
J2
l (f)−N4J2

N (f)

)
.

Moreover by the finite increments theorem, we have (l+ 1)4− l4 ≤ 4(l+ 1)3. Then

I1 ≤ C5N
−4

(
J2

0 (f) + 4
N−1∑
l=1

(l + 1)3J2
l (f)−N4J2

N (f)

)
,

since N ≤ 1
h . Combining the estimates for I1 and I2 gives

‖τhf(x) + τ−hf(x)− 2h2nf(x)‖22,α,n = O

(
N−4−4n

N−1∑
l=0

(l + 1)3J2
l (f)

)
,

which implies

ω(f,N−1)2,α,n = O

N−2(n+1)

(
N−1∑
l=0

(l + 1)3J2
l (f)

) 1
2

 ,

and this ends the proof. �
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