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ABSTRACT. This article makes contributions to the field of integral inequal-
ities. Under certain assumptions, such as monotonicity and convexity, four
theorems show how the Levinson or Hardy integral inequality can be gener-
alized, improved or modified. Multiple functions are involved, and new lower
and upper bounds are obtained. Applications are given, with an emphasis on
inequalities using the Laplace transform of certain functions.

1. INTRODUCTION

Integrals are a fundamental concept in mathematics. They were originally de-
veloped to calculate areas under curves and volumes of solids. Their modern use
extends far beyond geometry. In particular, they solve complex problems in physics,
engineering, finance, economics and environmental science. For more details, see
the reference books [5l, 14l 16l 12]. A well-known limitation is that most inte-
grals cannot be evaluated in closed form. As a result, some techniques have been
developed to analyze them, such as the integral inequality technique. It aims to
estimate complex integrals by bounding them with simpler ones. This is also use-
ful for studying convergence and error bounds. Famous inequalities include the
Cauchy-Schwarz, Holder, Minkowski, Young, Hilbert and Hardy integral inequali-
ties. All of these form the theoretical basis for many advanced results in analysis.
For more details, see the reference books [7, Bl 1’7, [10, (2, 19].

In this article, we place particular emphasis on the Hardy integral inequality.
Historically, it was first established in [6] and has since attracted much attention.
A representative formulation of this inequality is given below. Let p > 1 and
f:(0,400) — (0,+00) be a (positive) function. For any ¢ € (0, +00), we consider

F(t) = / f(2)dz,
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which corresponds to the natural primitive of f. Then the Hardy integral inequality
compares an integral depending on FP with that depending on f?, as follows:

/O+°O EF(t)rdt < H/OJroo[f(t)]”dt, (1.1)

i)

provided that the integrals in question exist; it is therefore sufficient to assume
that f0+oo[f(t)]pdt < +o00. It is worth noting that the constant x is the best in this
context. A generalization of this inequality to a more flexible interval of integration
is known as the Levinson integral inequality. It was originally proposed in [8]. A
formal statement of this inequality is given below. Let (a,b) € (0, +00), including
the case b — 400, with a < b and f : (a,b) — (0,400) be a function. For any
t € (a,b), we consider

where

F(t) = /at f(z)dz.

Then the Levinson integral inequality states that

/ab EF(t)]pdt < n/ab[f(t)]pdt, (1.3)

where k is given in Equation 7 provided that the integrals in question exist.
The constant x is still the best in this context. The Hardy and Levinson integral
inequalities have been extended by various mathematical approaches using inter-
mediate functions or parameters. This has led to some variants that have further
enriched the theory. We refer to the contributions in [I5] 13} 9] 18] 4, [1].

A key result from [I5] serves as the main inspiration for this article. Specifically,
it is stated as [I5, Theorem 2.1]. For clarity and consistency, we present a slightly
modified version of the theorem below.

Theorem 1.1. [I5 Theorem 2.1] Let b € (0,+00), including the case b — 400,
f:(0,b) = (0,400), and ® : (0,400) — (0,400) be two functions. For any
t € (0,b), we consider

Ft) = /0 F)da.

Then, assuming that f and ® are non-decreasing, we have

/Obcp EF(t)} it < /Ob<1>[f(t)]dt,

provided that the integrals in question exist.
Considering ®(z) = «P, x € (0,b), with p > 1, we obtain

/0 b [1F(t)rdt < /0 o, (1.4)

still provided that the integrals in question exist.

This theorem, and especially the result presented in Equation (1.4]), holds sig-
nificant importance for the reasons outlined below.
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e For any p > 1, the constant s in Equation satisfies k > 1. Therefore,
when b is finite, the result in Equation shows that the Levinson integral
inequality can be significantly improved under an additional assumption on
f, i.e., that f is non-decreasing. Thus, the constant x is indeed the best
in the general context, but it can be improved by making some additional
assumptions on f.

e The corresponding proof is quite elementary, using only monotonicity ar-
guments, unlike the proof of the Levinson integral inequality.

Some new notes on Theorem [1.1] are given below.

Note 1.: The interval (0,b), with b > 0, is taken as the domain of definition
for f. We can see how it can be adapted to a more general interval, such
as (a,b), with a < b and possible negative values for a and b.

Note 2.: To make sense of fP with p > 1, it is assumed that f is positive.
We can think about how to adapt this result for functions f that may be
negative, especially if we consider a composition function of the form ®(f).

Note 3.: The monotonicity assumption on f and & is the non-decreasing
assumption. A natural question is what happens if f or ® has a different
monotonicity assumption, such that f or ® is non-decreasing, or if f or ®
is not monotonic at all.

Note 4.: The L, norm is implicitly used to define the main integral terms.
We may consider extending this result to the weighted L, norm, say L,(g),
with a weight function g that has the least restrictive possible assumptions.

Note 5.: We can also think of finding a lower bound for the main integral
term depending on F', under similar assumptions.

Note 6.: The function ®(z) = 2P, z € (0,+00), is indeed increasing for
p > 0, relaxing the condition p > 1 associated with the Hardy integral
inequality. The consideration of p > 0 can open up some new applications
in theory and practice. The case p < 0 also deserves special attention,
modulo modifications of the assumptions.

Note 7.: The function ® is assumed to be positive, but this is not really used
in the proof; the Jensen integral inequality, which is the main tool of the
proof, does not have this requirement. We can relax this assumption.

In this article, we explore in depth the mathematical details raised in these notes.
Four theorems are established, each of which proposes new variants of the Levinson
or Hardy integral inequality. These variants are very general; they involve multiple
functions and rely on broad assumptions of monotonicity and convexity. Thanks
to these assumptions, we derive inequalities that generalize, improve or modify the
Levinson or Hardy integral inequality, as well as Theorem We also complete, in
a sense, the article [15], in which several results on integral inequalities have in com-
mon the combination of the assumptions of monotonicity and convexity, but with
a different perspective than ours; we focus only on the constant factor 1 instead of
K, or on original general bounds which, to the best of our knowledge, have not been
presented in the literature. Some proofs use well-known integral inequalities, such
as the Hermite-Hadamard and Jensen integral inequalities (see [10] [I1]). Concrete
examples are given to illustrate some applications of the framework. Emphasis is
placed on inequalities involving the Laplace transform of the main functions.
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The rest of the article is basically divided into three sections: Section [2] presents
the main theorems and illustrative examples. The corresponding proofs are given
in detail in Section Bl A conclusion is formulated in Section 4l

2. GENERAL THEOREMS

As motivated earlier, several variants of the Levinson or Hardy integral inequality
are presented in the theorem below. They have the advantages of dealing with a
general integration interval, multiple functions including a weight function in the
context of the L, norm, simple monotonicity assumptions, and the determination
of new upper and lower bounds.

Theorem 2.1. Let (a,b) € R? with a < b, including the case b — +oo, f : (a,b) —
R, g: (a,b) — (0,4+00) and ® : R — R be three functions. For any t € (a,b), we
consider

t
Ft) = / F)da.
Then the four results below hold.
(1) If we assume that f and ® are non-decreasing, then we have

ot [ o< [(o [ L oro]swa< [ oo

provided that the integrals in question exist.
(2) If we assume that f is non-decreasing and ® is non-increasing, then we
have

/ab@[f(t)]g(t)dt < /ab@ [t i aF(t)] g(t)dt < ®[f(a)] /abg(t)dt,

provided that the integrals in question exist.
(3) If we assume that f and ® are non-increasing, then we have

#lf(a) | ottt < / o o r ] stna< [ oo

provided that the integrals in question exist.
(4) If we assume that f is non-increasing and ® is non-decreasing, then we
have
b

/ab [f(t)]g(t)dt < /ab P L _1 aF(t)] g(t)dt < ®[f(a)] /a g(t)dt,

provided that the integrals in question exist.

This statement assumes that ®[f(a)] is finite, with ®[f(a)] = P[lim;—,, f(t)].
The proof of this theorem, and all the theorems that follow it, is postponed to
Section [Bl

Some examples of applications of Theorem [2.1] are given below, assuming that all
the mathematical quantities involved exist (integrals, functions taken at a point,. . . ).

Examples of the item 1.: if we take a = 0, b — +o0, ®(x) = P, © €
(0, +00), with p > 0, which is non-decreasing, and g(t) = e~ t € (0, +00),
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with A > 0, and consider f : (0,+00) — (0, +00) non-decreasing, the item
1 of Theorem [2.1] gives

%[f(o)]ps /O - EF(t)re‘“dts /O ipea,

where we have used

+oo +oo 1
/ g(t)dt = / e Mdt = —
0 0 A

for the left-hand side term.

An interesting feature of this result is that it can be reformulated in
terms of the Laplace transform of the functions involved. More precisely,
we have

i[ FIOP < L") (V) < L(F2) (N,

where x denotes the ratio function defined by

X(H) = TF(1), (21)

and the Laplace transform of a given function, say £ : (0,+00) — R, is
classically defined by

LK) = /0 " dtye N,

with A > 0.

As another simple example of this item, if we take a =0, b= 1, &(x) =
z/(1 —x), z € (0,1), which is non-decreasing, and g(¢t) = 1, ¢t € (0,1), and
consider f: (0,1) — (0,1) non-decreasing, we get

)t R N0
-0 =), t—F(t)dtS/o ™

Examples of the item 2.: If we take a = 0, b — +o0, ®(x) = 7P, x €
(0, +00), with p > 0, which is non-increasing, and g(t) = e=**, t € (0, +00),
with A > 0, and consider f : (0,+00) — (0, +00) non-decreasing, the item
2 of Theorem [2.1] gives

/O+Oo[f(t)]_1’e—/\tdt < /OJFOo [1F(t)] P Mt < %[f(o)]_p.

t

Using the Laplace Transform, this can be written as follows:
LTIV SLKT) ) <O

where y is given in Equation .

As another simple example of this item, if we take a =0, b =1, ®(x) =
1/(1 + ), z € (0,400), which is non-increasing, and g(¢t) = 1, ¢t € (0,1),
and consider f : (0,1) — (0, +00) non-decreasing, we get

1
Y

Lo Loy 1
/0 1+f(t)dt§/0 T EFOY S 150y
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Many other examples can be given in the same way. The configuration to be
adopted therefore depends on the mathematical context being considered.

The result below presents variants of the Levinson or Hardy integral inequal-
ity with a general integration interval, the use of multiple functions and under
monotonicity and convexity assumptions.

Theorem 2.2. Let (a,b) € R? with a < b, including the case b — +oo, f : (a,b) —
R, g : (a,b) = (0,4+0) and ® : R — R be three functions. For anyt € (a,b), we
consider .
F(t)= / f(x)dx.
Then the four results below hold.
(1) If we assume that f is convex and ® is non-decreasing, then we have

2/a(a+b)/2<1>[f(t)]g(2t—a)dt< /abcp L ! F(t)] g(t)dt

—a

< [(o{3is@ + 501} sttt

provided that the integrals in question exist.
(2) If we assume that f is convex and ® is non-increasing, then we have

[ ol s s < [ o[ Lorw] s

(a+b)/2
<2 / @ [f()] g2t — a)dt,

provided that the integrals in question exist.
(3) If we assume that f is concave and ® is non-decreasing, then we have

[ e lyu s s < [ o[ Lorw] swa

(a+b)/2
<2 / B [f() g2t — a)dt,

provided that the integrals in question exist.
(4) If we assume that f is concave and ® is non-increasing, then we have

(a+b)/2 b
2/ cp[f(t)]g@t—a)dtg/ ® L ! F(t)] g(t)dt

—a

b (1
< [(o{5ir@ + o} st
provided that the integrals in question exist.

This statement assumes that, when f(a) is used, ®[f(a)] is finite. In addition,
when b — 400, we have

(a+b)/2 +oo
2 [ elflg-adi=z2 [ @lft)g(2t - )i

which simplifies the situation.
Some examples of applications of Theorem [2.2] are given below, assuming that
all the mathematical quantities involved exist.
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Examples of the item 1.: If we take a = 0, b — 400, ®(z) = aP, © €
(0, +00), with p > 0, which is non-decreasing, and g(t) = e~ t € (0, +00),
with A > 0, and consider f : (0,400) — (0,400) convex, the item 1 of

Theorem [2.2] gives
+oo +oo p +o0
2e*“/0 [f)P e*”tdtgfo [1F(t)} e Mdt < 2—113/0 [£(0) + f(t)]PeMat.

We can rewrite this inequality in terms of the Laplace transform of the
functions involved, as follows:

2L (f7) (23) < £() () < o LAIF(0) + £17} (),

where y is given in Equation .

As another simple example of this item, if we take a =0, b =1, ®(z) =
/(1 —x), z € (0,1), which is non-decreasing, and g(t) = 1, ¢t € (0,1), and
consider f: (0,1) — (0,1) convex, we get

1
V2 f(n) a0 L) + (1)
2/0 1—f<t>dt§/oth<t>dt§/o “ro+ fo "

Examples of the item 2.: If we take a = 0, b — +o00, <I>( )=a"P x €

(0, +00), with p > 0, which is non-increasing, and g(t) = e, ¢ € (0, +00),
with A > 0, and consider f : (0,400) +— (0,+00) convex, the item 2 of
Theorem gives

P /O+Oo[f(0) + f(H)]Pe Mdt < /;oo [1F(t)] pe*Atdt

< 9¢M / O e P ar,
0

Using the Laplace transform of the functions involved, this can be expressed
as follows:

L)+ 177 () < LX) (V) < 2ML (F77) (2,

where y is given in Equation .
As another simple example of the item 2, if we take a = 0, b =
®(x) = 1/(1 + x), x € (0,400), which is non-increasing, and g(t) =
€ (0,1), and consider f : (0,1) — (0, +00) convex, we get

1 9 1 " 1/2 1
/o 2+f(0)+f(t)dt§/o t+F<t>dt§2/0 IOk

Many other examples can be given in the same way, including for the items 3 and
4. The configuration depends on the mathematical context being considered.

Other variants of the Levinson or Hardy integral inequality are presented in the
theorem below. They are innovative in combining the monotonicity and convexity
assumptions for some of the functions involved.

—_

—_

Theorem 2.3. Let (a,b) € R? with a < b, including the case b — +oo, f : (a,b)
R, g: (a,b) — (0,400) and ® : R — R be three functions. For any t € (a,b), we

consider ,
t) :/ flx)dx
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and

Then the four results below hold.

(1) If we assume that ® is convex and, for anyt € (a,b),

bt
[ [ = lelr@)lgsa: (22

exists, then we have

[/abg(t)dt /abg(t)dt] _1/; tiaF(t)g(t)dt < /ab<1> L_lap(t)} o(t)dt

b
< / @ [F(D)] Glt)dt,

)

provided that the integrals in question exist.

(2) If we assume that ® is concave and that the double integral in Equation
(2.2)) exists, then we have

[ eirwica s o[ Loro] s

a

b b R
/ g(t)dt]<1> [ / g(t)dt] [ rwgar .

provided that the integrals in question exist.

(3) If we assume that f is convex and ® is non-decreasing and convezx, then we
have

/ab¢> L_laF(t)} g(t)dt < % {@[f(a)} /abg(t)dt—l—/bfb[f(t)}g(t)dt}’

a

<

provided that the integrals in question exist.

(4) If we assume that f is conver and ® is non-increasing and concave, then
we have

b b b
;{éman [ atwae [ <I>[f(t)]g(t)dt}§ [ 2| 2oro] s,

provided that the integrals in question exist.

This statement assumes that ® [f(a)] is finite when used.
Some examples of applications of Theorem are given below, assuming that
all the mathematical quantities involved exist.
Examples of the item 1.: If we take a = 0, b — 400, ®(z) = aP, z €
(0, +00), with p > 1 or p < 0, which is convex, and g(t) = e~ t € (0, +00),
with A > 0, and consider f : (0,+00) — (0,+00), the item 1 of Theorem
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[2:3] gives
“+o0 1 p “+o0 1 p
APL / —F(t)e Mdt| < / —F(t)| e Mat
o ¢ 0 t

+o00o
< —/ [f(t)]? Ei(—A\t)dt,
0
where Ei(x) denotes the (referenced) exponential integral defined by Ei(z) =
- fjxoo(e_t/t)dt, x € R, and we have used

x x

“+oo +oo
Glt) = /t L o(2)dz = /t Leregy = _mi(-a)

for the right-hand side term. We would like to point out the fact that p can
be negative, which is not so common for this kind of integral inequality.

We can rewrite the first inequality in terms of the Laplace transform of
the functions involved, as follows:

NTHL ) (VI < L) (),

where x is given in Equation .

As another simple example of this item, if we take a =0, b =1, &(x) =
x/(1—=x), z € (0,1), which is convex, and g(t) = 1, ¢t € (0,1), and consider
f:(0,1) = (0,1), we get

Jo [F(t)/1] dt LOF(t) W
1-]01[F(t)/t]dtS 0 t—F(t)dtS /0 1—f(t)

where we have used

1 1
G(t) :/t %g(m)dm :/t édx: —log(t).

Examples of the item 3.: If we take a = 0, b = 1, ®(z) = z/(1 — z),
z € (0,1), which is non-decreasing and convex, and g(¢t) = 1, t € (0,1), and
consider f: (0,1) — (0,1) convex, the item 3 of Theorem gives

R 1f 0 L [t f)
/o t—F(t)dtSQ{l—f(0)+/o l—f(t)dt}'

As another of this item, if we take a =0, b =1, ®(z) = *, z € R, which
is non-decreasing and convex, and ¢(t) = t*, ¢t € (0,1), with a > 0, and
consider f : (0,1) — R convex (note that f can be possibly negative), the
item 3 of Theorem [2:3] gives

1 1
/ eF(t)/ttadt < 1 |:€f(0) 1 + / ef(t)tadt:| ,
0 2 a—+1 0

log(t)dt,

where we have used

1 1 1
t)dt = tYdt = ———.
/Og<> /0 -

These are just a few examples. The items 2 and 4 can be illustrated in the same
way.

Complementary and original integral inequalities are given in the theorem below,
under general assumptions on the functions involved.
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Theorem 2.4. Let (a,b) € R? with a < b, including the case b — +oo, f : (a,b) —
R, g: (a,b) — (0,400) and @ : R — (0, +00) be three functions. For anyt € (a,b),
we consider

F(t)= /at f(x)dx.

Then the two results below hold.
(1) We have

[ /ab g(t)dtr [ /ab {o 2,70 }lg(t)dtl . /abq) e

provided that the integrals in question erist.
(2) We have

{/abq) [t_laF(t)] dt}z {/abq) [t i aF(t)} g(lt)dt}l
: /ab ® [t i aF(t)] g(t)dt,

provided that the integrals in question exist.

Some examples of applications of Theorem [2.4] are given below, assuming that
all the mathematical quantities involved exist.

Examples of the item 1.: If we take a = 0, b — 400, ®(z) = aP, © €
(0,+00), with p € R and g(t) = e ™, t € (0,400), with A > 0, and
consider f : (0,+00) — (0, +00), the item 1 of Theorem [2.4] gives

% {/Om EF(t)] N e_’\tdt}_l < /O+OO EF(t)re_’\tdt.

We can rewrite this inequality in terms of the Laplace transform of the
functions involved, as follows:

=)o)

where x is given in Equation (2.1)).
As another simple example of this item, if we take a =0, b =1, &(x) =
z/(1—2x), x € (0,1), and g(t) = t*, t € (0,1), with & € R\{—1}, and

consider f:(0,1) — (0,1), we get
1
F
< / ®) o,
o t—F()

1 Lt F(t
{ ( )tadt]
(a+1)% L)y F(t)
Examples of the item 2.: If we take a = 0, b — 400, ®(z) = 2P, z €
(0,4+00), with p € R and g(t) = e ™, t € (0,+00), with A > 0, and
consider f : (0,+00) — (0, 400), the item 2 of Theorem [2.4] gives

2 -1

{/;OO EF(t)]pdt} {/;OO EF(t)]pe“dt} §/0+OO EF(t)re_Mdt_

< L(XP) (N,

—1
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As another simple example of this item, if we take a =0, b= 1, &(x) =
z/(1—z), z € (0,1), and g(t) = t*, ¢t € (0,1), with o € R, and consider

f:(0,1) — (0,1), we get
1 2. 4 )
[ 20 [ 0 o] < [0

The proofs of the four theorems, with all the details, are given in the next section.

-1

3. PROOFS OF THE THEOREMS

Theorems and are demonstrated in turn.

Proof of Theorem[2.1 Let us look at the items 1, 2, 3 and 4 in turn.

(1) Let us assume that f and ® are non-decreasing. Since f is non-decreasing,
for any « € [a,t], we have f(a) < f(z) < f( ), which implies that

fw= 1@t < o [ gwar= or0 <1010 = 10,

t—a  t—a
Since ® is also non-decreasing, for any t € (a7 b), we have
2[f(a)) < @ [tlam)} < a(f(1).
Now, using the assumption that g is positive, we get
#{7(ala() < @ | =0 9(0) < 2Ol

Integrating both sides with respect to t € (a, b), we obtain

o] [ o< o[ Lorw] st < oo

which is the desired result.

(2) Let us assume that f is non-decreasing and & is non-increasing. Since f
is non-decreasing, for any = € [a,t], we have f(a) < f(z) < f(¢), which
implies that

f(a) = fla)t =2 < /f S F() < f(0) 2 = f0)

t—a_t—a t—a

t—a

Since ® is non-increasing, for any ¢ € (a, b), we have

Dlf(1)] < @ [ F(t)} < ®[f(a)).

Now, using the positivity of g, we get

HIOl9(0) < @ | F 0] o) < 170l

—a
Integrating both sides with respect to ¢t € (a,b), we establish that
b

/ab O[f (t))g(t)dt < /ab q) L ! aF(t)] g(t)dt < B[f(a)] /a o(b)dt,

which is the desired result.

t—a
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(3) Let us assume that f and ® are non-increasing. Since f is non-increasing,
for any x € [a,t], we have f(t) < f(x) < f(a), which implies that

10 =102 < [ = or0 < @8 = o),

t—a t—a
Since ® is also non-increasing, for any t € (a,b), we have

@U@MSQ[ F@}s@ﬁ@y

Now, using the assumption that g is positive, we find that
P[f(a)lg(t) < @ [ F(t)] g(t) < @[f(t)lg(t)-

Integrating both sides with respect to t € (a,b), we obtain

o) [ o< [o [ L oro]swa< [ oo

which is the desired result.

(4) Let us assume that f is non-increasing and ® is non-decreasing. Since f
is non-increasing, for any z € [a,t], we have f(t) < f(z) < f(a), which
implies that

) = (=2 < ./f F(t) < fla)—2 = f(a).

t—a  t—a t—a t—a

tfa

t—a

t—a

Since @ is also non-decreasing, for any t € (a,b), we have
olf(0] < @ | 2o F ()] < 00
Now, using the fact that g is positive, we get
HFOlo(0) < @ | F o) o) < o170l
Integrating both sides with respect to t € (a,b), we obtain

/:cb[f(t)]g(t)dt < /abcb L_laF(t)] g(t)dt < ®[f(a)] /abg(t)dL

which is the desired result.
The items 1, 2, 3 and 4 are demonstrated. (I

t—a

Proof of Theorem[2.3. Let us look at the items 1, 2, 3 and 4 in turn.

(1) Let us assume that f is convex and @ is non-decreasing. We think of using
the Hermite-Hadamard integral inequality (see [10]). Since f is convex, the
Hermite-Hadamard integral inequality applied to f and the interval [a, ]
gives

Since @ is non-decreasing, we get

o7 (“51)| <o Zor0] <o {5U@ s}

\V]
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Now, by the positivity of g, we have

o7 (“55) | <o [ Zorw| o0 <o {F 1@ + s oo,

Integrating both sides with respect to t € (a,b), we obtain

[ofr(“5)]owars [ o[ Lorw] s
< [(o 3@+ s0n} o

Applying the change of variables y = (a + t)/2 in the first term, we find
that

/ab o [f (a ;r t)] g(tydt =2 /G(HW2 ® [f(y)] 9(2y — a)dy. (3.1)

After some standardization of the notation, we get

2 | O ) g(2t - ayat < / "o [t ! aF(t)] gt
< [(o{3is@+ 501} ston

which is the desired result.

(2) Let us assume that f is convex and ® is non-increasing. Since f is convex,
the Hermite-Hadamard integral inequality applied to f and the interval
[a,t] gives

t
f(a;t) < t_la/ fx)de =

Since @ is non-increasing, we get

o {5+ s} <o o] <e|r(*5)].
Now, using the fact that g is positive, we establish that
o{3U@+ 101} o0 <o | Zorw| s <o |7 (25| g0,

Integrating both sides with respect to ¢t € (a, b), with an appropriate change
of variables (see Equation (3.1)), we obtain

[ e lyu s s < [ o[ Loro] s

<f "o (5|2 O e ) gt - ayar,

which is the desired result.
(3) Let us assume that f is concave and ® is non-decreasing. Since f is concave,
the Hermite-Hadamard integral inequality applied to f and the interval [a, ]

gives
L pay < (a—i—t)

[f(a) + f(8)]-

1 1
F(t) <=
—a()*2

1
51

fla) + £(t)
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Since @ is non-decreasing, we get
1 1 a+t
b t <O |—Ft)| <P .
(@ rarf <o Zorm] <o s ()]
Now, using the assumption that g is positive, we find that

o{3U@+ 101 o0 <o | Zorw| s <o |7 (25| g0,

Integrating both sides with respect to ¢t € (a, b), with an appropriate change
of variables (see Equation (3.1))), we obtain

[ o lhuw s s o[ Loro] s
</ "o [f (“jtﬂ sty =2 [ O ) g2t - ayat,

which is the desired result.
(4) Let us assume that f is concave and ® is non-increasing. Since f is concave,
the Hermite-Hadamard integral inequality applied to f and the interval [a, ]

gives
a+t
oo <7 ().
Since @ is non-increasing, we get

o7 (%3] <o toro] <o {S 1@+ s}

Now, by the positivity of g, we have

o1 (%55)| o0 <@ | Zor@| o < o {F 1@ + 501 o0

Integrating both sides with respect to ¢t € (a, b), with an appropriate change
of variables (see Equation (3.1))), we obtain

2 [ U ] g2t - ayat = / ‘o (45 atoar

< [of Lorw] s < o ffr@ oo

which is the desired result.
The items 1, 2, 3 and 4 are demonstrated. O

[f(a)+ f(t)

N =

Proof of Theorem[2.3. Let us look at the items 1, 2, 3 and 4 in turn.

(1) Let us assume that ® is convex. We think of using the Jensen integral
inequality (see [I1]). For any t € (a,b), we set

b -1
i) = l / g(t)dt] o(t).
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Then, since g is positive, j is also positive and we have f jt)ydt = 1. It
follows from the Jensen integral mequahty apphed with the convex function
® and the probability measure u(I) = [; j(t)dt, with I C (a,b), that

abt_lp() ()dt] </ab<1> L_laF(t)]j(t)dt.

Since g is positive (so that its integral is also positive), this inequality can
also be expressed as

[/abg(t)dtl@ Uabg(t)dt] _l/abtiap(t)g(t)dt S/abq)[t_laF(t)] g(t)dt,

which is the desired first inequality.
Let us now focus on the second inequality. For any x € (a,t), we set

o

Then k is positive and f; k(x)dx = 1. It follows from the Jensen integral
inequality applied with the convex function ® and the probability measure
= [, k(x)dx, with I C (a,t), that

‘P[l“]‘b[t- [ ] = [ [ s
< [eirwinwar =t [ elwiar

Now, by the positivity of g, we have

o[ or] o < {1 [ otwrarh oo

Integrating both sides with respect to ¢t € (a,b), we obtain

/abq) [;F(t)} g(t)dt < /ab{tia /atq)[f(x)] dx}g(t)dt
/ / o 2 @l gt)ddt.

Since the double integral in Equation (2.2)) exists, the change of the order

of integration can be done thanks to the Fubini double integral theorem.
We find that

/ab attl @ [f(x)] g(t)dxdt = //t—a x)] g(t)dtdx
- / <I>[f(w)]{ / Hg@)dt}dm: / @ [f (2)] Gla)da.

After some standardization of the notation, we get

/ab P L_laF(t)} g(t)dt < /ab ®[f(1)] G(t)dt,

which is the desired second inequality.

t—a
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Combining the obtained inequalities, we establish that

Vabg(t)dt /abg(t)dt]1/abt_1aF(t)g(t)dt < /abé L_laF(t)} g(t)dt

b
< [ epmicwa

)

which is the desired result.

(2) Let us assume that ® is concave, and adopt the framework of the previous
item. It follows from the Jensen integral inequality applied with the concave
function ® and the probability measure p(I) = [, j(t)dt, with I C (a,b),
that

t—a t—a

/abq’ [IF(t)] j(t)dt < @ _/ab ! F(t)j(t)dt] .

Since g is positive, this inequality can also be expressed as

[ o[ tro] g<t>dts[/abg<t>dt @ —/abgu)dt]l [ rwenay,

which is the desired first inequality.

Let us now focus on the second inequality. The Jensen integral inequality
applied with the concave function ® and the probability measure v(I) =
[; k(z)dz, with I C (a,t), gives

1

/ "o /()] dr = / @ [7(@)] ba)da

t—a @

1

K
<o Ut f(x)k:(x)d:c] - L ! - /at f(x)dat] - L ! aF(t)} .

Since g is positive, we get

{tla /atq’ /()] dw}g(t) <® L . aF(t)} g(t).

Integrating both sides with respect to t € (a, ), we obtain

bt q b ) .
[ [ e uensoaa= [ {2 [eiwia oo
b 1
< [(o] 2, rw)sar
Since the double integral in Equation exists, the change of the order

of integration can be done thanks to the Fubini double integral theorem.
We find that

/b/ @) g0 = | 8 /()] Glo)d

t—a @

which is the desired second inequality.
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After some standardization of the notation, we get

“siwlcod < [ o o)
a a t—a

Combining the obtained inequalities, we establish that

[ eirwica < o[ Lorw] s

b b -
/ g@)dt]@“ / g(t)dt] / tfaFa)g(t)dt},

which is the desired result.

(3) Let us assume that f is convex and ® is non-decreasing and convex. Using
only the fact that f is convex and ® is non-decreasing, it follows from the
second inequality in the item 1 of Theorem [2.2] that

/ab P [tlaF(t)] glt)dt < /ab ? {;[f(a) o } o(t)dt

Since @ is convex, by the basic definition of convexity with the weight
coefficient 1/2, we get

<

2 {5170+ 701} < 30U+ 52 170)] = 5 (@] + AN}

Now, using the positivity of g, we have
o {51 + 701} ol0) < 3 (@ 1f(@] + @ O] o0

Integrating both sides with respect to t € (a,b), we obtain

b b
/ q>{;[f<a>+ f(t)]}g(t)dté [ 5@l + o) g

:é{(b[f(a)]/a g(t)dt+/a ‘I’[f(t)}g(t)dt}.

We thus establish that

b b b
IR g(t)dts;{@[f(an [ awae+ [ @[f(t)}g(t)dt},

which is the desired result.

(4) Let us assume that f is convex and @ is non-increasing and concave. Using
only the fact that f is convex and ® is non-increasing, it follows from the
first inequality in the item 2 of Theorem [2.2] that

/ "o {3+ sn}avar < | ‘o L F 0] e

Since @ is concave, by the basic definition of concavity, we get

3 (@U@ + 2 1f0]) = 30 U@] + 5o 1] < 2 {170 + o] |
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Now, using the positivity of g, we find that
3 @U@+ o1l o) < @ {17 + £} a(0)

Integrating both sides with respect to t € (a,b), we obtain

b b
;{cbma)] [ st [ <I>[f(t)]g(t)dt}

b b
- [ et +elronsna < [ o {5+ s} s

We thus establish that

;{éman [ st Ab¢[f<t>]g(t>dt}< /ab@[ LF()] sty

t—a

which is the desired result.

The items 1, 2, 3 and 4 are demonstrated. O

Proof of Theorem[2.]} Let us look at the items 1 and 2 in turn.

(1) Since g and ® are positive, using a suitable decomposition of the integral
of g and the Cauchy-Schwarz integral inequality (or the Holder integral
inequality with parameter 2), we obtain

/abg(t)dt: /ab{q) [tiaF(t)]}l/Q (O] {(I) [tiaF(t)] }1/2 o
= Vab{‘p [tiaF(t)]}lg(t)dtr/z {/abé L_laF(t)} g(t)dt}l/Q_

This inequality can also be expressed as

Vabg(t)dt] 2 Vab {cp [t i aF(t)] }_1g(t)dt] B < /abcp [t i aF(t)] g(t)dt,

which is the desired inequality.
(2) Since g and ® are positive, using a suitable integral decomposition and the
Cauchy-Schwarz integral inequality, we obtain

b<I> ! F(t)| dt
[ o [Zara)
- /ab {‘I’ L i CLF(t)} }1/2 [g(t)] =1/ {@ L i aF(t)} }1/2 [g(6)]V/2dt

b ) 1/2 b 1/2
< V @L_aF(t)} g(lt)dt] {/ @{tiaF(t)} g(t)dt} .
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This inequality can also be expressed as

/abq, [tiaF(t)] dt i /abq, [t i aF(t)} ﬁdt

< | "o [1F<t>] g)dt,

t—a
which is the desired inequality.
The items 1 and 2 are demonstrated. ]

The next section ends the article.

4. CONCLUSION

In this article, we have proved new theorems on integral inequalities. Each of
these results extends, generalizes, improves or modifies the Levinson or Hardy in-
tegral inequalities. These contributions are of interest for several reasons. First,
they are very general, involving several intermediate functions. Second, they rely
on tractable assumptions, mainly monotonicity and convexity. Third, they extend
the current understanding of integral inequalities, which remain essential tools in
mathematics and many applied fields. This was demonstrated in the article through
applications to the Laplace transform. In particular, several inequalities were es-
tablished for the Laplace transforms of the functions involved.

Future directions include extending the results to the multivariate case. We also
aim to explore assumptions beyond monotonicity and convexity. Another is to ap-
ply these results to real problems in applied contexts.

Acknowledgments. The author thanks the two reviewers for their thorough com-
ments on the article.

REFERENCES

[1] B. Abed Sidahmed, B. Benaissa and A. Senouci, Some Hardy-type integral inequalities with
sharp constant involving monotone functions, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math.
Stat, 71, (2022) 759-768.

[2] D. Bainov and P. Simeonov, Integral Inequalities and Applications, Mathematics and Its
Applications, vol. 57, Kluwer Academic, Dordrecht, 1992.

[3] E.F. Beckenbach and R. Bellman, Inequalities, Springer, Berlin, 1961.

[4] B. Benaissa, M. Sarikaya and A. Senouci, On some new Hardy-type inequalities, Math.
Methods Appl. Sci., 43, (2020) 8488-8495.

[5] G.B. Folland, Real Analysis: Modern Techniques and Their Applications, 2nd Edition, John
Wiley & Sons, Inc., New-York, 1999.

[6] G.H. Hardy, Notes on some points in the integral calculus LX: An inequality between inte-
grals, Messenger Math., 54, (1925) 150-156.

[7] G.H. Hardy, J.E. Littlewood and G. Polya, Inequalities, Cambridge University Press, Cam-
bridge, 1934.

[8] N. Levinson, Generalizations of an inequality of Hardy, Duke Math. J., 31, (1964) 389-394.

[9] K. Mehrez, Some generalizations and refined Hardy type integral inequalities, Afr. Mat., 28,
3-4, (2016) 451-457.

[10] D.S. Mitrinovie, (in cooperation with) P.M. Vasié, Analytic Inequalities, Springer-Verlag,
New-York, Heidelberg, Berlin, 1970.

[11] J.E. Pécarié¢, F. Proschan and Y.L. Tong, Convex functions, partial orderings, and statistical
applications, Academic Press, Inc., London, 1992.

[12] F.W. Peren, Integral Calculus, In: Math for Business and Economics, Springer, Berlin, 2023.



46

13
[14]
[15]
[16]

(17]
(18]

(19]

CHRISTOPHE CHESNEAUR

B. Sroysang, More on some Hardy type integral inequalities, J. Math. Inequal., 8, (2014)
497-501.

J. Stoer and R. Bulirsch, Topics in Integration. In: Introduction to Numerical Analysis,
Texts in Applied Mathematics, vol 12, Springer, New-York, 2002.

W.T. Sulaiman, Some Hardy type integral inequalities, Appl. Math. Lett., 25, (2012) 520-
525.

C.I. Valean, Integrals. In: (Almost) Impossible Integrals, Sums, and Series, Problem Books
in Mathematics, Springer, Cham, 2019.

W. Walter, Differential and Integral Inequalities, Springer, Berlin, 1970.

S. Wu, B. Sroysang and S. Li, A further generalization of certain integral inequalities similar
to Hardy’s inequality, J. Nonlinear Sci., 9, (2016) 1093-1102.

B.C. Yang, Hilbert-Type Integral Inequalities, Bentham Science Publishers, The United
Arab Emirates, 2009.

CHRISTOPHE CHESNEAU,
DEPARTMENT OF MATHEMATICS, LMNO, UNIVERSITY OF CAEN-NORMANDIE, 14032 CAEN, FRANCE,
PHONE: +33 2 31 56 74 24

Email address: christophe.chesneau@gmail.com



	1. Introduction
	2. General theorems
	3. Proofs of the theorems
	4. Conclusion
	Acknowledgments

	References

