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GRONWALL TYPE INEQUALITIES FOR CONFORMABLE
FRACTIONAL INTEGRALS

MEHMET ZEKI SARIKAYA

ABSTRACT. In this paper, some new generalized Gronwall-type inequalities are
investigated for conformable differential equations. The established results are
extensions of some existing Gronwall-type inequalities in the literature.

1. INTRODUCTION

Fractional Calculus is a generalization of ordinary differentiation and integration
to arbitrary (non-integer) order. The subject is as old as the calculus of differenti-
ation and goes back to times when Leibniz, Gauss, and Newton invented this kind
of calculation. During three centuries, the theory of fractional calculus developed
as a pure theoretical field, useful only for mathematicians, we refer to [10], see also
[11]. Recently a new local, limit-based definition of a conformable derivative has
been formulated [1], [4], [8], with several follow-up papers [2], [3], [5]-[9]. In this
paper, we use the Katugampola derivative formulation of conformable derivative of
order for a € (0,1]and ¢ € [0, 00) given by

NIGR R0 |
L) D)) = m L DR () (0) = EmD® (1) ().
provided the limits exist (for detail see, [8]). If f is fully differentiable at ¢, then
d
(1.2 D (1) () =B ).

A function f is a—differentiable at a point ¢ > 0 if the limit in (1.1) exists and is
finite. This definition yields the following results;

Theorem 1.1. Let a € (0,1] and f,g be a—differentiable at a point t > 0. Then
i. D* (af +bg) = aD* (f) +bD*(g), for all a,b € R,
ii. D* (X) =0, for all constant functions f (t) = A,
iii. D* (fg) = D (g) + gD* (f),
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iv. D% (;) _ fDa (g)g_nga (f)
v. D* (") = nt""* for alln € R

vi. D*(fog)(t)=f"(g(t)) D*(g) (t) for [ is differentiable at g(t).

Definition 1.1 (Conformable fractional integral). Let o € (0,1] and 0 < a < b. A
function f : [a,b] — R is a-fractional integrable on [a, b] if the integral

/abf (x) dox := /abf (z) z° da

exists and is finite. All a-fractional integrable on [a, ] is indicated by L. ([a,b])

Remark 1.1.
f@)y,
€T —

t
EO=1"= [
where the integral is the usual Riemann improper integral, and a € (0, 1].

We will also use the following important results, which can be derived from the
results above.

Lemma 1.1. Let the conformable differential operator D be given as in (1.1),
where « € (0,1] and t > 0, and assume the functions f and g are a-differentiable
as needed. Then

i. D*(Int) =t fort >0

ii. D [f;f(t,s) das] — () + [L DYf (¢, 5)] dus
iii. [*f(x) D% (g) () doz = fgl° — [7 g () D* (f) (x) daz.

In this paper, some new generalized Gronwall-type inequalities are investigated
for conformable differential equations. The established results are extensions of
some existing Gronwall-type inequalities in the literature.

2. MAIN RESULTS

Troughout this paper, all the functions which appear in the inequalities are
assumed to be real-valued and all the integrals involved exist on the respective
domains of their definitions, and C' (M, S) and C* (M, S)denote the class of all
continuous functions and the first order conformable derivative, respectively, defined
on set M with range in the set S.

Firstly, we start with the following definition, which is a generalization of the
limit definition of the derivative for the case of a function with many variables.

Definition 2.1. Let f be a function with n variables t1, ..., ¢, and the conformable
partial derivative of f of order a € (0,1] in z; is defined as follows
o~ o tiog, tie® " tn) = f (1 s )

The first result is the generalization of Theorem 2.10 of [3].

Theorem 2.1. Assume that f(t,s) is function for which 9 [05 f(t,s)] and 85 [0¢ f(t, s)]
exist and are continuos over the domain D C R2, then

(2.2) op [00 f(t,s)] = 02 (07 (¢, 9)].
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Proof. By using the (1.1), it follows that
es™ P
f (t,se ) —f(ts)

o [085(t,s)] = oF [Im :
_ e -lim f (t,s +est =P 4 0(82)) — f(t,s)] '
e—0 £

Making the change of variable k = es'=7 (1 + O(¢)) , we get

o [55]”(15,3)] =0 [lim ft,s+k)— f(t,s)‘| .

k—0 ksf—1
1+0(e)

Since f is diffentiable in s-direction, we obtain

(2 0f 105 (0.5 = 5708 | 109

Again by definition (1.1), it follows that

0% (02 f(t,8)] = s"° lim Fif (1" s) - £t

e—0 g

Similarly, after making the change of variable, we have

O f(t+h,s)— 2f(t
0p (00 (1, )] = P10ty 259 LH09) = (E5)
h—0 3

Since f is diffentiable in ¢-direction, we obtain
2

0
a [aa — 1Bl
(24) 05 (05 (t,5)] = 51 f(1,5).
Since f is continuous, by using the Clairaut’s theorem for partial derivatives, it
follows that
02 0?
asatf(t7s) - atasf(t) S)'

Therefore the equation (2.4) becomes

o? sif (s +k) = 5f(ts)
o4 Yo' _ JA-p4l—« — 1-841—a q: ot ’ ot ?

of [0 f(t,8)=s"Ft —atasf(t, s)=s""t ]11;% . .
Thus, taking k = es'™ (14 O(¢)) and laler h = et'=* (1 + O(g)) we arrive at

lim %f (t,S + k) B %f (tﬂ 5)
k—0 k

07 105 f (¢, 8)) = O

= 05107 f (¢, 9)]

which completes the proof. [

Theorem 2.2. Letk € C (RT,RT), y € C (Rt x RT,R"), r € C* (RT,RT) with
(t,5) = Ofy(t,s) € C(RT x RT,RT). Assume in additional that r is nondecreasing
and r(t) <t fort>0. Ifu e C(RY,R") satisfies

r(t)
(2.5) u(t) < k(t) —l—/o y (¢, s)u(s)dys, t>0,
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then
(2.6)

u(t) < k(t)+els ¥ v(e)das / B y(rs)das O (
B 0 67’"‘

Proof. If we set

()

A y (71, 8) k(s)dq s>da7'7 t>0.
(1)

z(t) :/0 y(t,s)u(s)dys

then our assumptions on y and r imply that z is nondecreasing on R*. Thus, for
t > 0, by using Lemma 1.1 (ii), we get

r(t) a
D) = yitr@) oD+ [ || udas

< y(tr@) [k(r(D)) + 2(1)] Dar(tH/O

or, equivalently

o r(t) ] r(t)
Dz(t) — z(t)(?a? (/0 y(z;s)das) < g? </o y (t,s) k(s)da5> .

y(t s)das

Multiplying the above inequality by e~ I , we obtain that

o r(t r(t o T(t)
88? (z(t)e*fo( ) y(t,5)da ) <e Io ®, gta (/ y(t,s)k(s)da5> .

Integrating this from 0 to t yields

r(t t r(r e 7’(7')
2(t) < el ()y(t’s)d“‘g/ e i )y(T’s)d“sia / y(7,8) k(s)das | da.
0 or 0

Combine the above inequality with u(t) < k(¢) + z(¢) this imply (2.4). The proof
is complete. O

Corollary 2.1. Assume y,r are as in Theorem 2.2 and k(t) = k > 0. If u €
C (R*,R") satisfies (2.5), then

u(t) < keds P vdas 4>

Proof. Applying Theorem 2.2 for k(t) = k and , we arrive at

r(t t (T o T(T)
u(t) < k+ k:efo( Vy(ts)das / e Jo ) y(r,s) < 90 (/ y (1, 8) da5> doT
0 67’“ 0

R e (E T

efr(t y(t,s)das’ t 2 0.
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Remark 2.1. If we take r(t) = t in Corollary 2.1, then the inequality given by
Corollary 2.1 reduces to Gronwall’s inequality for conformable integrals in [1].

Theorem 2.3. Let k,y,z € C (Rt RT), r € C*(RT,R") and assume that r is
nondecreasing with v(t) <t fort > 0. If u € C (RT,R™") satisfies

r(t)
2.7) w(t) < k(t) + y(t) / 2(s)u(s)dns, >0,
0
then
(2.8)  u(t) < k(1) +y(t) / L ) das (r(7)) k(r(7)) D¥r(7)dar, > 0.
0
Proof. If we set

(t)
2(t) = / x(s)u(s)das
0
then, by using conformable rules we see that

Dez(t) = z(r(t)u(r(t))Dr(t)

IN

z (r(t) [k(r(®) +y (r(t) 2(r(£)] Dr(t)

IN

z (r(t)) [k(r(t)) +y (r(t) 2(t)] Dr ().
Thus, we have
D2(t) —x (r(t) y (r(t)) 2() Dr(t) < x (r(t)) k(r(t)) Dr(t).

Multiplying the above inequality by e~ St #(s)y(s)das e obtain that
aa
ot

Integrating this from 0 to t yields

(z(t)e_ ) z(S)y(S)da5> <e [ w(s)y(s)das (r(t)) k(r(t)) Dr(t).

(¢ t r(r
Z(t) S ef[)T( ) I(S)y(s)das / e f()( ) z(s)y(s)dGSx (,,,.(7.)) k(T(T))DO‘T(T)daT
0

t (t
= [ RO (1) (o (7)) D7)
0

and hence the claim follows because of u(t) < k(t)+y(t)z(t). The proof is complete.
O

Corollary 2.2. Assumey,x,k are as in Theorem 2.3 andr(t) = t. Ifu € C (RT,RY)
satisfies (2.7), then

t
mwsuw+mw/eﬁﬂw®%%wﬂvmﬁ,tzo
0

Remark 2.2. If we take y(t) = t in Corollary 2.2, then the inequality given by
Corollary 2.2 reduces to Gronwall’s inequality for conformable integrals in [2].
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