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ABSTRACT: In robotic capsule endoscopy, highly accurate localization of the capsule device inside the 

human body is a critical problem for disease diagnosis and treatment. Quantitative analysis of lower 

bounds, such as the Cramer-Rao Lower Bound, is practically important for localization systems, as they 

inform system designers of the best achievable performance under a given set of conditions. This paper 

presents a comprehensive, systematic analysis of the Cramer-Rao Lower Bound for the scenario of 

magnetic localization of a robotic wireless capsule endoscope inside the human body. The specific 

contributions of the study are threefold. First, we undertake a systematic analysis of the bound in the 

presence of a realistic 3D body model. Second, we present a detailed analysis of the effects of capsule 

motion as well as other system parameters (such as magnet type and magnet dimensions) inside the body 

on the bound values. Finally, we interpret the findings to come up with recommendations on system 

parameters to guarantee optimal performance.  

 

Keywords: Cramer-Rao Lower Bound, Magnetic Localization, Robotic Capsule Endoscopy 

1. INTRODUCTION 

Wireless capsule endoscopy (WCE) technology is rapidly becoming a very popular medical imaging 

technique, especially for the diseases of the gastrointestinal (GI) tract[1-3]. This is because WCE technology 

is minimally invasive (the patient only has to swallow a capsule) and painless for the patient in contrast 

to conventional endoscopy, where the patient typically has to be sedated. As a result, clinical use of WCE 

has been extended to imaging other parts of the GI tract, such as the stomach, esophagus, duodenum and 

the colonic mucosa[4, 5]. Current generation of WCE systems used in clinical settings are commonly 

classified as passive devices, in the sense that external control of the capsule inside the GI tract is not 

possible; the capsule moves through the GI tract via standard muscle contractions and is naturally excreted 

out of the body.  

In recent years, WCE technology started to evolve towards active, or robotic capsule 

endoscopy (RCE) [6-8]. In contrast to WCE systems, an RCE capsule now becomes a small-size 

robot, whose motion can be externally controlled. This expands the functionality of the 

endoscopy capsule, in that the medical specialist can now maneuver the expanse of the GI tract 

at will, bypassing regions that are not of interest, and focusing more on areas deemed worthy of 

detailed examination (such as a suspicious tumor, or a lesion, for example). Furthermore, an RCE 

capsule fitted with adequate sensors and actuators can even carry out other tasks (such as 

collection of biopsy samples from a tumor, or even ablation of the tumor in a minimally invasive 

manner). The specific focus of this paper is on RCE systems. 
Ever since WCE systems first appeared in clinical settings, the problem of localizing the capsule inside 

the GI tract has been of interest, since WCE images without corresponding location data are clinically 

meaningless for diagnosis and treatment purposes. This localization problem has previously been studied 

in considerable detail [9-11]. Much of this research has focused on passive WCE systems. Accurate solution 

to the localization problem becomes even more critical in an RCE setting, where the user (i.e. the medical 
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specialist) has to know precisely where the capsule is, on a real-time basis, in order to guide the capsule 

inside the GI tract for an efficient and thorough medical examination.  

There are several methods proposed in the literature for localizing a capsule endoscope device inside 

the GI tract. These methods include RF localization (i.e. using the RF signal emitted by the capsule to relay 

images for localization purposes) [12], MR and ultrasound [13], X-ray and Gamma-ray imaging [14], 

hybrid methods (such as those that leverage RF localization with image processing)[15, 16], and magnetic 

localization [17].  RF localization, while a very attractive option in principle, has serious accuracy issues 

when used on its own. This is due to the severe way the RF signal is distorted by the human body tissues 

(as body tissues have different electrical characteristics, which are also frequency-dependent) [3]. The use 

of MR and ultrasound techniques may require additional components inside the capsule itself, which is 

already constrained in terms of size[18, 19]. The use of X-rays and Gamma-rays, while technically an 

option, are not advisable, as they expose the patient to potentially dangerous amounts of ionizing 

radiation[20]. Hybrid methods, such as those that use RF localization in conjunction with the processing 

of received capsule images, are another option; however, this may result in increased computational load, 

which goes against the real-time localization requirements for RCE systems. This leaves magnetic 

localization as the most promising alternative option for accurate, real-time localization [21]. As such, this 

paper focuses on magnetic localization of an RCE capsule inside the GI tract.  

In a magnetic localization system, the location-dependent magnetic field from a magnet is 

sensed by magnetic field sensors and used to come up with a location estimate. Thus, a small 

permanent magnet located on the capsule can be used to localize the capsule inside the GI tract. 

Magnetic localization is the most accurate for WCE and future RCE systems, due to the fact that 

human body tissues have the same magnetic characteristics as free space; therefore, the magnetic 

field emitted by the permanent magnet is not affected by the body tissues, thus reducing the 

localization problem to that of localizing a magnetic field source in free space.  

For any localization system, the main performance indicator is the localization accuracy, defined as 

the error between the actual location of the capsule and the location determined by a localization 

algorithm. This brings up another important question: for a given system scenario and system parameter 

set, what is the best achievable localization accuracy? Answering this question is of paramount importance 

for design and performance optimization of localization algorithms. Statistical lower bounds, such as the 

Cramer-Rao Lower Bound (CRLB), can be used to address this question. In this paper, we present a 

systematic analysis of the CRLB for magnetic localization of an endoscopy capsule in an RCE scenario.  

Although an initial analysis of the CRLB for magnetic localization of an endoscopy capsule was 

presented in [22], we believe that the analysis needed to be considerably extended, in order to be valid for 

our RCE scenario. This forms the main motivation of the current paper. The results reported in [22] 

focused, for the most part, on a planar arrangement of sensors. In a practical scenario, where the sensors 

are typically on the body surface, this is not realistic. In addition, for magnetic localization, there are other 

system-related parameters which affect performance, such as magnet size, and magnetic materials. The 

dependence of the CRLB on such system-related parameters is missing in [22], and could be extremely 

useful to system designers. 

The specific contributions of this paper can be summarized as follows. First, we undertake the CRLB 

analysis using a realistic 3-D human body model. Second, we present a detailed analysis of the effects of 

capsule motion inside this body model on the CRLB. Third, we explore the dependence of the CRLB on 

system-related parameters, such as magnet size and magnetic materials.  Finally, we interpret the findings 

to come up with fundamental recommendations on system parameters to guarantee optimal performance. 

The rest of this paper is organized into three sections. Section 2 (“Material and Methods”) gives a 

general overview of magnetic localization techniques, the Cramer-Rao Lower Bound and presents the 

theoretical framework for the performance evaluation in subsequent sections. Section 3, titled “Results 

and Discussion”, presents the results of the CRLB analysis, based on different practical system scenarios 

of interest. The paper ends with concluding remarks in Section 4.    
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2. MATERIAL AND METHODS 

2.1 Magnetic Localization Techniques 

The magnetic localization technique is based on a small magnet placed on the capsule, which does not 

require a power supply and connection cable. The magnet attached to the capsule creates a static magnetic 

field around the human body as it moves with the capsule. This magnetic field can be measured by N 

magnetic sensors placed on the surface of the patient’s body, where N is the number of sensors. Since the 

magnetic field measured by the sensors depends on the 3-dimensional coordinates and orientation angles 

in the magnetic field distribution, the capsule position and orientation can be determined by solving an 

inverse problem.  

In order to determine the mathematical expression of the magnetic field distribution in free space, 

various models can be used[23]. One such model is the magnetic dipole model, preferred in many studies 

due to its simplicity[24]. The dipole model is based on the equations of magnetic field strength and 

magnetic flux density emitted by the magnet. The dipole model created for the capsule is based on a 

cylindrical permanent magnet, as shown in Fig. 1. The capsule diameter is expressed as R1, while the 

diameter of the magnet surrounding the capsule is expressed as R2  

 

 

Figure 1. Magnetic field produced by a cylindrical magnet 

 

In this study, a cylindrical magnet geometry, hollow in the inside, is assumed (see Fig. 2), such that 

the magnet is wrapped over the actual capsule. This ensures that the overall physical size of the capsule 

does not increase noticeably, thereby allowing the capsule to move more easily through the body and 

preserving the usability of the device.  

 

Figure 2. Structure of the capsule including the cylindrical permanent magnet 
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The dipole model to characterize the magnetic flux density is given by 
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T
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x y zK =  is a spatial point in the Cartesian coordinate 

system of the magnet, where the magnetic field strength is observed. In addition, R shows the distance 
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74 10  −=   (H/m) is the magnetic permeability of free space.  

 

The magnetic flux density measured by the i-th sensor is given by 
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Axial magnetic flux density expressions can be written as  
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where ( ), ,
i i i
x y z  are the known coordinates of the i-th sensor and i i i i

R 2 2 2= (x - a) +(y - b) +(z - c) . 

Equations (3)-(5) form the basis for the calculation of the CRLB, as discussed in the next section. 

2.2. Analysis Of The Magnetic Localization Technique Using The CRLB 

The Cramer-Rao Lower Bound (CRLB) represents a lower bound on the error covariance of an 

unbiased estimator, of some unknown parameter vector 𝜀 = [𝜀1, 𝜀2, ⋯ 𝜀𝑘]𝑇 based on a set of 

observations[25-30]  . The bound is based on the probability density function, p(x/ε), of the observation 

vector x , conditioned on the deterministic, unknown parameter vector, ɛ.  Let the vector �̃� represent the 

vector of estimated parameters. The CRLB can then be expressed as  

𝑐𝑜𝑣𝜀(�̃�) ≥ 𝑱𝜺
−1                                                                           (6) 

where 𝑐𝑜𝑣𝜀(�̃�) = 𝐸{(�̃� − 𝜺)(�̃� − 𝜺)𝑇} is the K K  covariance matrix of the estimation error and ε
J is the 

K K Fisher information matrix. For the purposes of the capsule localization problem, ( )ˆ=x B ε  , where 

B̂  is the vector of observed magnetic flux density values, that is a function of the unknown location and 

orientation parameters, [ , , , , , ]Ta b c m n p= , and thus K = 6. The ( ),j k element of the Fisher information 

matrix is defined as  
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ε ε
J B ε B ε                                                      (7)  

The starting point for the calculation of the CRLB is an observation model, which expresses the noisy 

measurements of the components of the magnetic flux density from the capsule. This model is given by 
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where ( ), , ,
ˆ ˆ ˆ, ,
x i y i z i
B B B is the set of magnetic flux density values measured by sensor i (𝑖 = 1, … , 𝑁),  

( ), , ,
, ,

x i y i z i
B B B is the set of real magnetic flux density values (as expressed by (3)-(5) above) and 

( ), , ,
, ,

x i y i z i
n n n are the set of independent, identically distributed (i.i.d) zero-mean Gaussian random 

variables with standard deviation  , which model the measurement noise associated with sensor i.  The 

i.i.d. assumption is one that is usually used in order to come up with results that are analytically tractable. 

It is certainly possible that in the case of wearable sensors, the sensor noise could be correlated Gaussian 

(a scenario briefly considered in Appendix B), or even non-Gaussian. For the case of non-Gaussian noise, 

other distributions, such as Gaussian Mixture Models (GMMs), could be used[31].  

Equation (8) can be succinctly written in vector notation as 

( ) ( )ˆ = +B ε B ε n                                                                                   (9)  

Therefore, the conditional distribution of the observation vector, B̂ , conditioned on the unknown 

parameter set can be written as  
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n
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p x is the multivariate normal distribution, with mean μ  and covariance Σ  given by  
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With the above framework in place, the ( ),j k element of the Fisher information matrix can be 

expressed as (see Appendix A for the derivation)   
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The Fisher matrix is symmetric and can be expressed as a 2 2 block matrix of the form 
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where
L
J  and 

O
J  are 3 3 matrices consisting only of the terms pertaining to the location parameters, 

( , , )a b c , and the orientation parameters, ( , , )m n p , respectively, as given by 
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and 
LO

C  is another 3 3 matrix that contains cross-terms between the location and orientation 

parameters: 

am an ap
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=  
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Since
ε
J can be written as a block matrix in the form of (11), its inverse will also be a symmetric matrix 

of the form (for details, see, for example[32]) 
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and since 1− =
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J J I  , it can be shown that  
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Thus, the CRLB is defined only under the assumption that the associated inverses in (19) - (22) are 

defined.  

A close examination of (18) - (22) offers several points of insight. First, the 
11

M block on the right-hand 

side of (18) gives the lower bound on error covariance associated with estimation of the location parameters 

only. However, a closer examination of the right-hand side of (19) reveals that this block is affected by the 

unknown orientation parameters, as evidenced by the presence of terms involving 
O
J and LO

C . If the 

orientation parameters, ( , , )m n p , were somehow known, and the only unknown parameters being 
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estimated were the location parameters ( , , )a b c , then we would have 1

11 L

−=M J . Thus, the term 1 T

LO O LO

−C J C

in (19) can be viewed as an objective measure of the “penalty” we have to pay for estimating the location 

and orientation parameters at the same time. A similar argument can be made regarding the 
22

M block in 

(18), which concerns the lower bound associated with estimation of orientation parameters only; thus the 

term 1T

LO L LO

−C J C in (22) can be viewed as a measure of the penalty in this case.     

A well-known and commonly used metric for evaluating the performance of localization systems is 

the Root Mean Square Error (RMSE) which is defined as the square-root of the mean-square error between 

the estimated and actual location (or orientation) parameters. Thus, a lower-bound on this metric would 

be of practical interest.  Upon examination of (18) – (22), it is clear that the diagonal elements of the 
11

M

block in (18) are the lower-bounds on the error covariance associated with the estimation of location 

parameters, ( , , )a b c . Thus a lower-bound on the RMSE for location estimation, denoted by LRMSE , can 

be calculated based on the sum of the diagonal elements of  
11

M : 

 

( )( )11
 

L
RMSE sum diag= M                                                            (23)  

 

Similarly, a lower bound on the RMSE for estimation of orientation parameters, denoted by ORMSE , 

can be determined based on the sum of the diagonal elements of  
22

M : 

( )( )22O
RMSE sum diag= M                                                           (24)  

3. RESULTS AND DISCUSSION 

In this section, we present and analyze the CRLB results for the magnetic localization technique with 

real position and orientation values based on a 3-D human body model. We begin with a discussion of the 

general assumptions underlying the results in the following subsections. 

The magnetic localization technique consists of a magnetic source and the sensor plane in which the 

magnetic sensors are placed. It is assumed that the magnetic source is hollow cylindrical in such a way 

that it wraps around the outside of the capsule, as shown in Fig. 2. The magnet material is assumed to be 

NdFeB (Neodymium-Iron-Boron), since this is the material combination with the highest amount of 

magnetic flux per unit volume.  For the purposes of the current study, the geometrical parameters of the 

magnet are: outer diameter R2=15 mm, inner diameter R1= 11mm, and length L=20 mm with a uniform 

magnetization value of  
3

0 750 10M x= (Amp/meter). The magnetic sensor model is based on Honeywell's 

(HMC1043) tri-axial magnetic field sensors. For the purposes of this analysis, the sensor array on the body 

surface was created by taking into the account 3-dimensional human body dimensioning the model. Fig. 

3 (a), (b) and (c) show the body model where the sensors are placed, the tissue state of the intestine in this 

body, the shape of the intestine transformed into a digital solid model to obtain the capsule positions, 

respectively. Solidworks™ CAD software was used to obtain the digital 3-D model of the intestinal region 

and an interpolation relationship was defined between known real intestinal positions. The goal here is to 

create a framework for performance evaluation which would allow for numerical evaluation of the CRLB 

at an arbitrary number of positions in the large as well as the small intestine.  
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Figure 3. (a) Human torso model, (b) Intestine tissue model, (c) Numerical intestine model 

 

A total of 256 magnetic sensors in contact with the skin are used on the body model. In addition, 

simulation data were obtained for 375 locations in which the magnetic capsule was positioned in the 

intestine model. The entire 3D working space, where the sensor and capsule positions can be seen together, 

is given in Fig. 4. 

 

 

Figure 4.  Sensor and capsule locations 

 

3.1 CRLB for Capsule Position and Orientation Parameters 

CRLB values are shown in Fig. 5 and Fig. 6 according to the increase in the number of sensors for each 

position in the capsule movement. The results reported here   are based on 375 positions of the capsule 

covering the small intestine and large intestine. These results are a function of the number of sensors, 

which was increased to a maximum of 256. Fig. 5 shows the CRLB values for the capsule's position 

parameters, while Fig. 6 shows CRLB values for the capsule's orientation parameters. CRLB values above 

average are observed in capsule positions in the large intestine (318-375) and in the small intestine (1-317). 

When examining Fig. 5 and Fig.6 for each position during the capsule's movement, it is observed that the 

maximum CRLB values occur in the 4-sensor configuration, while the CRLB values progressively decrease 
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in the 8 and 16 sensor configurations. Although the CRLB values between these three sensor configurations 

are noticeable, the difference decreases and CRLB values are minimized when the effects of 32 and 64 

sensor configurations are analyzed. In the subsequent 128 and 256 sensor configurations, no substantial 

change in CRLB values is observed.  

 
Figure 5. (a) RMSEL for capsule position parameters (b) zoomed region 

 
Figure 6. (a) RMSEO for capsule orientation parameters (b) zoomed region 

 

By averaging the values across each capsule position, Fig. 7 is generated. This figure illustrates how 

increasing the sensor count leads to a reduction in the average RMSE values. Specifically, when the sensor 

configuration is increased from 4 to 8 sensors, the average RMSE value decreases by 82.79%. This reduction 

further improves to 91.43% when the sensor count is raised to 16. Similarly, a 32-sensor array achieves a 

96.53% decrease in total error compared to a 4-sensor configuration, while a 64-sensor array shows a 

reduction of 98.98%. This ratio decreases to a minimum in arrays with 128 and 256 sensors. Fig. 7(b) 

presents data for sensor arrays ranging from 32 to 64 sensors. When evaluating the RMSE reduction for 

every 8-sensor increase, a 31.63% improvement is observed between 32 and 40 sensors, which further 

increases to 50.87% at 48 sensors. In contrast, further additions to 56 and 64 sensors yield only an 

approximate 10% reduction. Based on these results, it can be concluded that a 48-sensor array achieves an 

optimal balance between the sensor count and RMSE error reduction. 
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Figure 7. (a) Average RMSEL for capsule position parameters (b) between 32 and 64 sensors 

 

3.2 Effect of Magnet Size on CRLB 

In this section, we examine the effect of the size of the magnet wrapped outside the capsule on the 

CRLB. An attempt has been made to find out how the thickness and length of the magnet affect the CRLB. 

Fig. 8 shows CRLB values according to the increase in the number of sensors for different magnet sizes 

and thicknesses. The CRLB values presented here are average values, based on CRLB values obtained at 

all capsule locations (375 in total). The graph is based on an estimate of the capsule's position parameters. 

The number of sensors is again gradually increased up to a maximum of 256 sensors. In the results, it is 

seen that increasing the size of the magnet reduces CRLB values by the same rate. This, in turn, can be 

explained by the fact that the increase in the size of the magnet is directly proportional to the increase in 

the magnetic field.  

 

 
Figure 8. RMSE by magnet size 

 

Increasing the size of the magnet can create practical limitations, as it increases the overall dimensions 

of the capsule. Difficulty swallowing, limitations based on bowel size, and discomfort to the patient, are 
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all factors that should be considered when determining the size of the magnet. A review of the medical 

literature compares the dimensions of some of the most widely used capsule endoscope devices [33]. 

Based on this information, the average length of the device appears (end-to-end, including the dome-

shaped cameras, potentially at both ends) to be approximately 25.5 mm and the average diameter is 

approximately 11 mm. Considering the cylindrical structure of the magnet as shown in Fig. 2, it is obvious 

that the length of the magnet needs to be less than 25.5 mm (since the field-of-view of the camera should 

not be obstructed). Therefore, a length of L = 20 mm is reasonable. The CRLB values for two different 

values of L, and different thickness values (i.e. different values of R2) are shown in Fig. 8. Of particular 

interest from this perspective, is the case where L = 20 mm and R2 = 14 mm (see purple curve on Fig. 8). 

This particular scenario translates to a magnet thickness of only 1.5 mm and thus can be considered 

practically feasible. Thus, the results of Fig. 8 clearly show that highly accurate localization is possible at 

practically feasible magnet dimensions. 

3.3 Effect of the Magnetic Material on the CRLB 

The size of the magnet, as well as the type of magnetic material, affects the magnetic field of the 

magnet, and thus the CRLB. In this study, the effect of different types of magnets with different uniform 

magnetism values on CRLB was examined.   The goal here is to determine which type of magnet will give 

better localization performance. The magnet types considered are FeCoCr, Alnico, Ferrite, SmCo and 

NdFeB. These magnets are the main hard magnetic materials[34]. The graph in Fig. 9 is obtained when 

magnets are compared according to uniform magnetism values. The graph is based on estimate of the 

capsule's position parameters, and CRLB is an average of the capsule positions. As can be seen from the 

graph, the increase in uniform magnetism gives lower CRLB values. NdFeB and SmCo magnets appear to 

give the smallest CRLB values with the highest uniform magnetism values, indicating that these are the 

best magnetic materials for optimal positioning performance. The results of Fig. 9 also clearly illustrate 

that after a certain number of sensors (approximately 50), the graph becomes flat, indicating that it really 

does not matter which magnetic material is used. This observation can be explained by the notion that if 

the system employs a relatively large number of magnetic sensors, a certain subset will be able to provide 

measurements of high enough quality (enough to compensate for those sensors with lower-quality 

measurements) so that the overall localization performance will not be impacted noticeably.  

 

 
Figure 9. RMSE by uniform magnetism value 
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3.4 Effect of Sensor Location on CRLB  

It is to be expected that the localization performance (and thus the CRLB) will be affected by the 

location of the sensors on the body surface. With this in mind, , localization performance is compared on 

the basis of the CRLB according to the body region where the sensors are employed. 48 sensors were 

selected for the four separate regions of the body surface (denoted as “left”, “right”, “front” and “back” 

in the results that follow), as shown in Figure 10.  

 
Figure 10. 48 sensor locations selected for each body part 

 

The question here is: which of these four regions of the body would give rise to better localization 

performance (i.e. lower localization and orientation error)?  show CRLB values for position and orientation 

parameters (based on the region where the sensors are employed) relative to actual capsule positions in 

the GI tract.  

 
Figure 11. (a) RMSEL for position parameters by body region, (b)  RMSEO for orientation parameters by 

body region 
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In order to give a more simplified view of the above results, Table I gives CRLB values averaged over 

all capsule positions for the four separate regions. Based on these results, it is seen that the smallest 

estimation error can be achieved with sensors placed on the front region of the body (covering the torso), 

indicating that that is the region of the body surface for optimal localization performance. This might well 

have to do with the fact that the intestinal region, in general, is closer to the front surface of the body (i.e. 

the torso) as opposed to the back of the body, thus allowing higher-quality magnetic sensor data. The right 

part of the body resulted in the second lowest prediction error, while the left and back part gave an equal 

prediction error.  To illustrate this point another way, a 3-D intestinal “heat map” of the CRLB values is 

shown for the four sensor regions in Fig. 12. 

 

Table 1 Average RMSE by Capsule Location 

RMSE Front Back Left Right 

Position (mm) 0.0098 0.0656 0.0593 0.0246 

Orientation (10-4) 1.4791 7.3919 6.3185 3.1047 

 

 
Figure 12. Intestinal heat map of RMSEL values according to sensor position on the body  

(a)Front Sensors (b) Right Sensors (c) Back Sensors (d)Left Sensors 

 

The results, as given in Fig. 12, show that localization performance with the front placement of sensors, 

while satisfactory in some parts of the intestine, is not quite as good in other parts. This raises yet another 

question: is it possible to enhance performance by providing spatial diversity among sensors? In other 

words, is it possible to enhance localization performance by augmenting the sensors placed on the front 

with sensors placed on the left and the right? The next set of results attempt to answer these questions. 

The sensor locations on the body surface for this study are shown in Fig. 13. In order to facilitate an 

effective comparison with the previous set of results, the total number of sensors is kept fixed at 48; 

however, 24 of these are located on the front of the torso, and the rest are located either on the right or the 

left. Note that the case of sensors on the back of the torso was not incorporated into this particular set of 

results, since the results of Fig. 14 clearly indicate poorer localization performance in this case.  
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Figure 13. (a) Front and Right sensors locations (b) Front and Left sensors locations 

 

 
Figure 14. The impact of spatial diversity among sensors: Intestinal heat map of localization RMSE 

values based on  the location of sensors: (a)  Front-Left (b) Front-Right 

 

Once again, in order to convey a more simplified perspective on the above results, the average RMSE 

over all the capsule locations considered in Fig. 14 has been computed and tabulated in Table II. These 

results show that, on average, both the positioning and orientation RMSE figures for the front-right case 

are approximately 26% better than the corresponding figures for the front-left case. To interpret these 

results in another way, we can compare the average RMSE figures for the front-right case to the results 

for the front case in Table I.  This comparison indicates that the average positioning RMSE for the front-

right case is approximately 31% better than the figure for the front case. A similar comparison for the 

average orientation RMSE indicates that the front-right case results in a performance improvement of 

approximately 30%.  These results indicate that spatial diversity among sensors can have a positive impact 

on performance.  
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Table 2 Average RMSE by Capsule Location (Spatial Diversity Case) 

RMSE Front-Left Front-Right 

Position (mm) 0,0092 0,0068 

Orientation (10-4) 1,3986 1,0405 

 

3.5 General Discussion 

Some general points pertaining to the above results are worthy of further discussion. The first such 

point involves the 3D body model used to derive the results.  

The results reported in this paper are based on one 3D body model, the details of which are publicly 

available. It is a fact that no two human bodies are exactly alike. There are differences in body mass index, 

patient size and body composition (e.g. the amount of muscle versus fat). In addition, there are dynamic 

factors, such as bowel movements, which can cause subtle changes in the position of the organs in the GI 

tract. All of these factors can affect the magnetic field distribution, and thus the CRLB, and cannot 

necessarily be accounted for in a static 3-D model. The ideal way to address this issue would be to compute 

the CRLB for a number of different body models of adequate resolution; unfortunately, at the time of 

writing, the authors only had access to a single body model which satisfied this criterion.  

In lieu of computing the CRLB for a range of body models, a small-scale sensitivity analysis is 

attempted, and the results are depicted in Fig. 15. This analysis is based on the 48 sensors located on the 

torso region. In this analysis, we have attempted to assess how the CRLB changes as a function of patient 

size in the torso region (as might be the case, for example, for a patient with a greater or lesser amount of 

body fat in the torso, compared to the original body model). This was simulated by adding or subtracting 

an offset value (20 mm) from the y-coordinate of all the sensors, and the resulting change in the CRLB 

values are shown in Fig. 15. It is observed that when the offset value is added, meaning the sensors are 

positioned farther from the body, the RMSE values increase; whereas when the offset value is subtracted, 

meaning the sensors are positioned closer to the body, the RMSE values decrease. In part (b) of Figure 15, 

a zoomed-in view is presented, and the mentioned differences can be clearly observed. These results show, 

at least at a basic level, that increases in patient size in the torso region could increase CRLB values.  

 

 
Figure 15. (a) RMSE by sensor distance (b) zoomed region 

 

The second point worthy of discussion involves real-time localization of the capsule for RCE 

applications. Since CRLB represents a lower bound on the accuracy of a location estimator, it does not 

specify how real-time localization might be implemented. Nevertheless, the ability to accurately localize 

the capsule inside the body in a short timeframe is critical for RCE applications. The basic idea behind the 

localization algorithms is to leverage an analytical model for the magnetic field distribution (such as the 
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dipole model of equation (1)) to solve an inverse problem, i.e. to find the location coordinates (a,b,c) and 

the orientation parameters (m,n,p). Since the analytical models are inherently nonlinear functions of the 

location and orientation parameters, optimization methods are generally used to solve the problem. One 

very commonly used algorithm is the Levenberg-Marquardt (L-M) algorithm [35]. This algorithm, 

however, is generally very sensitive to the starting point for the calculations, and can take a long time to 

converge. To speed up the convergence, the L-M algorithm is generally used in conjunction with a 

metaheuristics algorithm, which can both provide a good starting point, thus speeding up convergence 

[16].  

4 CONCLUSION 

In this paper, we focused on the problem of magnetic localization for wireless capsule endoscopy, and 

specifically attempted to address the question of optimal performance through the use of the Cramer-Rao 

Lower Bound (CRLB). In order to obtain results of practical significance, a realistic 3-D human body model 

is used. Various scenarios have been considered with different sensor configurations and other system-

related parameters, such as magnet size and magnetic materials.  Based on the results obtained, we 

conclude that there is an optimal number of sensors (which appears to be 48), beyond which no 

appreciable improvement in the performance is obtained and that sensors should be positioned on the 

front of the body for optimal performance. The results also indicate that there are tradeoffs that need to be 

made in terms of magnetic materials and magnet size and their impact on performance. We believe the 

results should be of interest to all scientists and engineers interested in advancing wireless capsule 

endoscopy. Future work will focus on different cases for measurement noise and comparison of the results 

with other localization methods and practical testbed scenarios.  
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APPENDIX A – CALCULATION OF THE FISHER MATRIX 

The derivation proceeds from equation (10). Since the noise samples are assumed to be zero-mean, 

i.i.d. with the same variance 
2 , it is clear that 

2=Σ I ,where I is the identity matrix. Using the identities 

for inverse and determinant of a diagonal matrix, we can write 

( ) ( ) ( )1

/2
2

1 1ˆ ˆ ˆexp
22

T

K
p



− 
=  − − − 

   

B ε B B Σ B B                                       (A.1)  

Taking the logarithm of both sides of (A.1) yields 
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Taking the partial derivative of both sides of (A.2), the jk-element of the Fisher matrix can be succinctly 

written as shown in equation (9) above (see[36]). To come up with more succinct expressions below, we 

let 

i
x x a= −                                                                                          (A.3)  

i
y y b= −                                                                                          (A.4)  

i
z z c= −                                                                                          (A.5)  

q mx ny pz= + +                                                                                     (A.6)  

2 2 2( ) ( ) ( )
i i i i
R x a y b z c= − + − + −                                                                   (A.7)  

As such, the expressions for the specific elements of the matrix are based on ( )i

jkV and can be written as 
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APPENDIX B – CORRELATED GAUSSIAN NOISE SCENARIO 

The correlated Gaussian noise scenario corresponds to the case where the covariance matrix, Σ , is not 

necessarily diagonal, i.e.  2Σ I . Suppose that the N sensor measurements are spatially correlated, i.e. the 

magnetic flux density components for the i-th sensor measurement (i=1,…,N) are modeled as an AR(1) 

random process (first-order autoregressive process), as follows 
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where the dependence on the location and orientation parameters, ( ), , , , ,a b c m n p , is omitted for brevity.  

The  parameter  denotes the degree of correlation between sensor measurements, and is generally 

selected as   1 in order to ensure weak-sense stationarity of the random process. ( ), , ,
, ,

x i y i z i
n n n  are 

assumed to be zero-mean Gaussian random variables with variance 
2 .     
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The inverse of the covariance matrix for this AR(1) process is a special case of the general scenario of 

an AR(p) process (i.e. an autoregressive process of order p) (see [37], equation (3)): 

( )1 2

2

1
N  



− = + −Σ I F G                                                                   (B.2)  

where 
NI is an 3 3N N identity matrix, F is an 3 3N N  identity matrix with the first and last ones set to 

zero, and G is an 3 3N N matrix with ones along the first minor diagonals and zero elsewhere. Note that 

for the case of spatially uncorrelated sensor measurements (i.e. 0 = ), equation (B.2) reduces to 

1

2

1
N



− =Σ I in line with the i.i.d. Gaussian scenario assumed earlier.  

With the above definitions in place, it can be shown that the inverse of the covariance matrix has a 

tridiagonal, or Toeplitz structure. For the sake of clarity, we give a small example of this matrix for N=4: 
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Substituting (B.2) into the right-hand side of equation (A.2), we can write 
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For convenience and clarity, we introduce the following shorthand notation 
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Assuming both B̂ and B to be 3 1N  vectors (3 spatial magnetic field components for each sensor 

measurement), and exploiting the special structures of matrices F and G , the right-hand side of (B.4) can 

be rewritten as  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

22 2

, , ,/2 2
2

1

2 1
2 2 22 2 2 2
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1 1ˆlog log
22

                   
2
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x i y i z iK
i
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y z x i y i z i x N y N

i

x i x i y i y i

p B B B

B B B B B B B

B B B B











=

−

=

+ +

 = −  +  + 
    

  −  +  +  +  +  +  +     

+   +   +





B ε

1 1 1

, , 1 ,1 , ,1 ,

1 1 1

N N N

z i z i y x N z y N

i i i

B B B B B B
− − −

+

= = =

 
  +   +   

 
  

    (B.6)  

To compute the jk-element of the Fisher matrix, we take the partial derivatives of both sides of (B.6) 

with respect to 
j and 

k and substitute into equation (7). In order to facilitate this, the following relations 

can be obtained by using the chain rule for partial derivatives: 



Cramer-Rao Lower Bound Analysis for Magnetic Localization  567 

  

 

( )

( )

( )

 

 

 


 = − 

 


 = − 

 


 = − 

 

2 ,

, ,

2 ,

, ,

2 ,

, ,

2

2

2

x i

x i x i

j j

y i

y i y i

j j

z i

z i z i

j j

B
B B

B
B B

B
B B

                                                               (B.7)  

where the partial derivatives 






,x i

j

B
, 







,y i

j

B
and 







,z i

j

B
can be readily obtained by differentiating both sides 

of (3), (4) and (5) with respect to 
j . 

The third term on the right-hand side of (B.6) includes some product terms. The partial derivatives of 

these terms can be computed using the product rule:     
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y x N y x N

j j j

z

j

B B
B B B B
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                                              (B.8)  

Taking the partial derivative of both sides of (B.6) and  substituting the relations from (B.7) and (B.8), 

the partial derivative of ( )ˆlog p B ε with respect to 
j  can be obtained. The same relations in (B.7) and (B.8) 

can be used to obtain the partial derivative ( )ˆlog p B ε with respect to 
k , by simply replacing 

j with 
k

. With these two partial derivatives in hand, the jk-element of the Fisher matrix, 
ε
J , can be readily obtained 

using equation (7). The exact form of the different elements of the Fisher matrix is complex (largely due to 

the more complicated nature of the covariance matrix and its inverse as given in equation (B.2)) and is 

therefore omitted in the interests of brevity.  
 


