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This study shows that a simple CNN outperforms more complex models in classifying stage sounds
using mel-spectrograms, achieving 59% accuracy on the TAU Acoustic Scene 2023 dataset,
emphasizing the efficiency and effectiveness of lightweight models in ambient sound analysis. / Bu
calisma, mel-spektrogramlar kullanarak sahne seslerini siniflandirmada basit bir CNN'in daha
karmasik modellerden iistiin oldugunu gostermektedir. TAU Acoustic Scene 2023 veri setinde %59
dogruluk elde etmis olup, hafif modellerin ¢evresel ses analizinde hem verimli hem de etkili
oldugunu vurgulamaktadur.
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Figure A: Template of the Study /Sekil A: Calismanin Sablonu

Highlights (Onemli noktalar)

» Ambient sound analysis provides environmental context through surrounding audio. /
Ortam sesi analizi, ¢evreleyen ses araciligiyla cevresel baglam saglar.

> Deep learning methods are increasingly applied to this field, surpassing traditional
techniques. / Derin 6grenme yontemleri bu alanda giderek daha fazla uygulanmakta ve
geleneksel tekniklerin oniine gegmektedir.

»  Mel-spectrograms from the TAU Acoustic Scene 2023 dataset were used for
classification. / Siniflandirma igin TAU Akustik Sahne 2023 veri setinden elde edilen Mel-
spektrogramlart kullanildi.

Aim (Amag): To evaluate and compare the performance of various deep learning models for
acoustic scene classification. / Akustik sahne siniflandirmasi igin ¢egitli derin 6grenme modellerinin
performansini degerlendirmek ve karsilastirmak.

Originality (Ozgiinliik): The study focuses on using mel-spectrogram representations of stage
sounds. A comparison of simple and complex deep learning models is presented in terms of
classification performance and efficiency. / Calisma, sahne seslerinin  mel-spektrogram
gosterimlerinin kullanilmasina odaklanmaktadwr. Basit ve karmasik derin 6grenme modellerinin
smiflandirma performanst ve verimliligi agisindan bir karsilastirmast sunulmaktadur.

Results (Bulgular): A simple CNN model outperformed more complex models with a 59% accuracy
rate. The CNN achieved the highest performance despite having the fewest parameters. / Basit bir
CNN modeli, %59'luk bir dogruluk oramiyla daha karmasik modellerden daha iyi performans
gosterdi. CNN, en az parametreye sahip olmasina ragmen en yiiksek performansi elde etti.

Conclusion (Sonug): Simpler deep learning models, like CNNs can be both effective and
computationally efficient for acoustic scene classification tasks. / CNN'ler gibi daha basit derin
ogrenme modelleri, akustik sahne simiflandirma gorevieri igin hem etkili hem de hesaplama
agisindan verimli olabilir.
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Ambient sound analysis has become more prominent with the rise of portable and wearable
devices. It provides valuable insights into a person's environment by analyzing surrounding
sounds. Recently, deep learning methods, frequently used in image and text processing, have been
applied to this field and are proving more effective than traditional machine learning techniques.

In this study, we evaluated the performance of different deep learning models using mel-
spectrograms of 3 classes of stage sounds based on TAU Acoustic Scene 2023 dataset. Our results
indicate that a simple Convolutional Neural Network (CNN) model gives better classification
results compared to other more complex models in classification tasks. Despite having the fewest
parameters, the CNN model achieved the highest success with 59% accuracy. This suggests that
simpler models can be highly effective for acoustic scene classification, highlighting the value of
more efficient and computationally feasible approaches in this domain.
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Model performansi

Tasmabilir ve giyilebilir cihazlarin yiikselisiyle ortam sesi analizi daha da belirgin hale geldi.
Cevresel sesleri analiz ederek bir kiginin ortamina dair degerli i¢gdriiler saglar. Son zamanlarda,
goriintii ve metin islemede siklikla kullanilan derin 6grenme yontemleri bu alana uygulandi ve
geleneksel makine 6grenme tekniklerinden daha etkili oldugu kanitlandi.

Bu calismada, TAU Akustik Sahne 2023 veri setine dayali 3 smif sahne sesinin mel-
spektrogramlarini kullanarak farkli derin 6grenme modellerinin performansini degerlendirdik.
Sonuglarimiz, basit bir Evrigimli Sinir Ag1 (ESA) modelinin siniflandirma gorevlerinde diger
daha karmagik modellere kiyasla daha iyi siniflandirma sonuglar1 verdigini gostermektedir. En az
parametreye sahip olmasina ragmen, ESA modeli %59 dogrulukla en yiiksek basarty: elde etti.
Bu, daha basit modellerin akustik sahne siniflandirmasi i¢in oldukga etkili olabilecegini ve bu
alanda daha verimli ve hesaplama agisindan uygulanabilir yaklagimlarin degerini
vurgulamaktadir.

1. INTRODUCTION (GIRiS)

Voice analysis covers a variety of voice-related
problems such as automatic speech recognition [1],
speech-to-text translation [2], automatic audio
captioning [3], speech emotion recognition [4] [5],
voice-based question-and-answer generation [6],
vocal sound classification, and music score analysis
[7,8].

With the advancing technology and the increase in
the amount of data accessed, the interest in voice
analysis has increased day by day. Table 1 presents
the total number of publications in voice analysis by
years [9], illustrating the distribution across
different periods. The data suggests a projected
increase in research activity in this field in the
coming years.

Acoustic scene classification (ASC) is one of the
problems in the field of audio analysis. ASC aims to
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classify digital audio signals into mutually
exclusive scene categories, which can be, for
example, an indoor environment (such as a house)
or an outdoor environment (such as a park) [10]. In
everyday life, people often use the ability to
perceive and react to the scene they are in by
listening to the sounds around them. Technological
devices utilize ASC processing in various fields and
applications. For instance, wearable smartwatches
can classify the user's environment and adjust
notifications accordingly. Similarly, smartphones
and other devices equipped with digital sensors
detect and classify environmental sounds. By
definition, ASC seeks to identify the type of scene
in which a given audio signal is recorded.

To utilize an acoustic audio signal for deep learning,
the signal typically needs to be transformed into an
appropriate  format. Common methods for
transforming audio signals include spectrograms,
mel-frequency  cepstral  coefficients, linear
prediction coding, and wavelet decomposition [11-
14]. The resulting feature matrices or images are
then used as input data for deep learning algorithms.
In audio signal processing studies, the choice of
transformation methods and the applied deep
learning models significantly impact processing
performance [14-16].

Table 1. Total number of audio analyzed pUb“C&tiOﬂS by year (Yillara gore ses analizli yayinlarin toplam sayisi)

2015 2016 2017

2018

2019 2020 2021 2022 2023

Publications 23,287 26,105 30,883

(total)

37,592

37,155 48,972 55,151 58,498 65,618

In previous ASC studies, traditional machine
learning techniques such as Support Vector
Machines (SVM), K-Nearest Neighbors (KNN),
Acrtificial Neural Networks (ANN), Random Forest
(RF), Decision Tree (DT) and Hidden Markov
Models (HMM) have been widely used. In these
traditional approaches, classification usually
consists of two stages: first, the features of the audio
signal are extracted and then these features are
classified by traditional machine learning methods
[17-19]. Recently, deep learning methods have
been successfully applied to ASC, yielding
excellent results with models such as Time Delay
Neural Networks, Bidirectional Long Short-Term
Memory, Feed Forward Neural Networks,
EfficientNet-based architectures (e.g.,, VGG,
ResNet, Inception, Xception, and MobileNetV2),
Fully Convolutional Neural Networks (FCNN), and
Convolutional Recurrent Neural Networks (CRNN)
[20-23].

CNNs reveal complex spatial and temporal
dependencies more successfully than traditional
methods. Acoustic Scene Classification (ASC) is
the problem of characterizing the complex patterns
and contextual information of sound. One of the
methods to address this problem is to obtain and
process spectrograms of signals. The Mel-
spectrogram feature visually represents how the
frequency content of sounds changes over time. For
example, when an audio signal contains audible
sound events such as "dog barking," "speech," or

"applause,” these events can be identified in the
corresponding Mel-spectrogram feature due to their
unique visual patterns. From this perspective, the
Mel-spectrogram feature can be considered as an
image [24].

For the last 20 years, CNNs have been the most
widely used and highest-performing method in
image processing fields such as classification,
object detection, and segmentation [25-27]. The
highest success rates are achieved with CNNs in
studies conducted on Mel-spectrogram images [28—
30]. However, it is still not fully understood what
features CNNs learn, whether they generalize well
across different datasets or overfit to a specific
dataset, and how they encode information [31] [32].

Deep learning methods automatically extract the
features required for classification from the given
input by convolution operations. To successfully
utilize these models, large datasets and server
computers equipped with powerful graphics
processing units (GPUs) are typically required.
Advancements in technological devices and
increasingly powerful computing systems have
enabled the wider application of deep learning
models. Research findings indicate that deep
learning methods are being used more frequently in
voice anawlysis, yielding more successful results
[33]. These models are capable of learning complex
patterns and recognizing subtle differences in audio
data. Additionally, they learn faster and more
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accurately than traditional models, making them
particularly  suitable  for real-time audio
classification and analysis.

In our study, we utilized the dataset released for the
1st task of the DCASE Challenge 2023. Mel-
spectrograms were generated from the audio signals
to be used in image classification models, which
were then analyzed using contemporary models and
a simple Convolutional Neural Network (CNN)
architecture.

The contributions of our work to literature are as
follows:

. We analyzed the performance of
contemporary deep learning models on the dataset,
with MobileNetV3-Small outperforming the other
models in the benchmark.

. The simple CNN model, despite having
fewer parameters, achieved the highest accuracy in
the benchmark.

The remainder of this paper is organized as follows:
Section 2 provides details about the dataset used in
the study, while Section 3 outlines the experiments
conducted using the dataset. Section 4 describes the
methods applied, Section 5 presents the evaluation
results, and finally, Section 6 offers the conclusions
and suggestions.

2. DATASET (VERI SETI)

The DCASE Challenge is an annual competition for
researchers focused on the computational analysis
of audio events and acoustic scene analysis,
providing a platform for presenting and discussing
their results [34]. Each year, different tasks are
defined, and datasets are released for the analysis of
audio in order to accomplish these tasks. In this
study, we utilized the dataset published for the first
task of the competition, which involves voice
classification. The general schematic of the voice
classification process is presented in Figure 1.

The dataset consists of recordings from 12
European cities, captured in 10 distinct acoustic
scenes (Airport, Indoor shopping mall, Metro
station, Pedestrian street, Public square, Street with
medium level of traffic, Traveling by a tram,
Traveling by a bus, Traveling by an underground
metro and Urban park) using 4 different devices.
Additionally, it includes synthetic data from 11
mobile devices derived from the original
recordings. The dataset is identical to the TAU
Urban Acoustic Scene 2022 Mobile development
dataset, with each audio file having a duration of 1

second. In our study, we utilized sound recordings
from three classes: airport (0), street pedestrian (1),
and metro (2). Table 2 provides the distribution of
audio recordings across these classes [35].

The sound characteristics of ASC can be
significantly affected by local infrastructure,
population density, recording interval, cultural
factors and changes in the recording device
resolution [36,37]. These effects can cause the
performance of the sound classification system to
degrade. Adapting a model trained on specific cities
and devices to other cities or devices creates a
domain adaptation problem [38]. As a solution to
this problem, collecting data from various data
domains is an important method among the
solutions to the domain adaptation problem. The
dataset used in our study includes sound data from
a total of 12 European cities: Amsterdam,
Barcelona, Helsinki, Lisbon, London, Lyon,
Madrid, Milan, Prague, Paris, Stockholm and
Vienna. Also, different device types were used for
sound recordings.

Mel-spectrograms of audio signals are frequently
utilized for audio classification tasks [39-42]. In
fact, the finalists of the DCASE Challenge
employed mel-spectrogram features in their models
[43]. To generate mel-spectrogram images from the
audio files, a Hamming window with a sample
length of 2048, an overlap of 1024, and 128 mel bins
was used. Sample mel-spectrograms for the
different classes are shown in Figure 2.

INPUT

0 @
%k— ‘W‘ .H-HFH-‘

! ! !
( ACOUSTIC SCENE CLASS]FICATION)
L |

Urban park
Metro station

|
| [ Public square
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Figure 1. General schematic of the acoustic scene

classification system (Akustik sahne siniflandirma
sisteminin genel semast).
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Table 2. Dataset information (Veri seti bilgisi)

Classes Training Test Total
Data Data
airport (0) 8000 2000 8000
pedestrian 8000 2000 8000
street (1)
metro (2) 8000 2000 8000
Total 24000 6000 30000

street pedestrian metro

airport

Figure 2. Examples of mel-spectrograms of sound
classes (Ses smiflarmin mel-spektrogramlarina 6rnekler).

3. STUDIES ON THE DCASE DATASET
(DCASE VERI SETI UZERINDEKI CALISMALAR)

The high performance achieved through the use of
deep learning in image classification problems has
led to its widespread use in other problems as well
[44]. In recent studies, it has been observed that
deep learning techniques are predominantly applied
to the ASC problem. When we examine the studies
conducted over the years according to the first task
description published by DCASE Challenge, deep
learning models have been commonly used.

In 2017, Duppada and Hiray enhanced ASC
performance by employing ensemble methods with
various deep neural network models (LeNet,
SqueezeNet, 1D CNN) using mel-spectrogram
features [45]. In 2018, Eghbal-zadeh et al.
incorporated an intraclass covariance analysis layer
into the VGG model to improve performance [46].
A review of the DCASE competition by Gharib et
al. in 2018 highlighted that data augmentation
techniques, such as data replication, were widely
used to enhance ASC performance [47]. In 2019,
Wu and Lee's work on improving voice texture
significantly boosted voice classification accuracy
using CNN-based approaches [24]. In 2020, Zhang
et al. explored the reuse of pre-trained models for
different tasks [48]. Additionally, Tonami et al.
demonstrated that multi-task learning, which
combines the analysis of audio events and acoustic

scenes, improves classification success[49]. In
2021, studies focusing on audio event detection
with a curriculum learning approach achieved
notable success by adopting training strategies
based on the complexity of event learning [50].
Utilizing the DCASE 2017 dataset, in 2022,
methods were developed that combined both scene
and instantaneous sounds for event detection, while
the Qwen-Audio application, introduced in 2023,
provided more comprehensive solutions for
universal audio understanding with its large-scale
audio-language model [51,52].

The classification results for 15 classes, as
announced on the official DCASE 2023 Challenge
web page, ranked Schmid and his team in the top
two positions, with accuracies of 62.7% and 61.4%,
respectively [53]. The team developed a novel deep
learning architecture featuring a regularized
receptive field and residual inverted bottleneck
blocks. Jiaxin et al. secured 3rd place with an
accuracy of 60.8%, having designed a tutor model
based on blueprint separable convolution (BSConv)
[54].

These studies demonstrate that methodological
diversity and innovation in the field of ASC
contribute significantly  to performance
improvements, with variations in model designs and
data processing methods playing a critical role in
achieving success.

4. METHOD (METOT)

In our study, we utilized current image classification
algorithms with varying parameter counts and
technical architecture. ResNet, MobileNet, and
EfficientNet architectures, which are frequently
employed in the literature for image classification
tasks, were included. Additionally, a CNN model
with a simplified layer structure and a smaller
number of parameters was developed. Comparisons
of these models were conducted based on their
parameter counts and classification accuracy.

ResNet is an architecture based on a residual
network model, with variants such as ResNet101,
ResNet50, and ResNet18, distinguished by the
number of layers. In our study, we used the
ResNet18 model, which has a depth of 18 layers and
11.7 million parameters. This variant has the fewest
layers and parameters compared to the other ResNet
models [55].

In 2017, Google introduced MobileNet, specifically
designed for mobile and embedded applications to
minimize resource requirements [56]. In this
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network architecture, both the number of
parameters (disk space) and computational
complexity (power consumption and latency) are
significantly reduced. MobileNet decreases the
number of parameters by a factor of 7 compared to
traditional full convolutional models, while
sacrificing only 1% in accuracy. The MobileNet
model achieves this efficiency by utilizing depth
wise separable convolutions and pointwise
convolution techniques.

In 2018, MobileNet-v2 was introduced as an
evolution of its predecessor, maintaining accuracy
levels while significantly reducing memory usage.
This improvement is achieved through an inverted
residual structure and shortcut connections between
linear bottlenecks [57]. MobileNet-v2 processes
224x224x3 images, has a depth of 53 layers, and
contains 3.5 million parameters. In 2019, the third
generation of MobileNets, MobileNet-v3, was
developed using a combination of Network
Architecture Search (NAS) and the NetAdapt
algorithm. This led to the creation of two models,
MobileNet-v3 Large and MobileNet-v3 Small,
designed to accommodate different resource
constraints [58].

EfficientNets are a family of models developed by
Google Al researchers, designed to scale network
dimensions at a constant rate. EfficientNet employs
a novel approach that scales the network's depth,
width, and resolution uniformly with a fixed ratio.
The EfficientNet-BO model, for example, has a
depth of 82 layers, processes input images at a
resolution of 224x224x3, and contains 5.3 million
parameters [59]. Compared to earlier models such
as ResNet, DenseNet, and Inception, EfficientNet
models are significantly more computationally
efficient.

The simple CNN model consists of two blocks
followed by a final output layer. Each block
contains a Conv2d (3x3) layer, a ReLU activation
function, and a Dropout layer. The Conv2d (3x3)
layer is a 2D convolutional layer, ReLU introduces
non-linearity, and Dropout is used to prevent
overfitting by randomly omitting some neurons
during training. Table 3 outlines the architecture of
the developed simple CNN model. The MaxPool2d
function reduces the size of the feature maps, while
the Flatten and Linear layers prepare the feature
maps for output. The implementation of the model
was done using the PyTorch library in the Python
programming language.

PyTorch and torchaudio libraries were used to
process and classify audio signals. The audio

signals were downsampled from 16 kHz to 8 kHz
by applying a resampling process. After resampling,
spectrogram and mel spectrogram transformations
were performed. Data augmentation techniques
were also applied to improve the model's overall
accuracy. These techniques include TimeStretch,
Frequency Mask, and Time Mask.

The mel spectrograms obtained from the processed
audio data were resized to 224x224 pixels, and their
values were normalized between 0 and 1 using min-
max normalization. These processes enable the
audio data to be converted into a format that can be
effectively used in deep learning models.

All network models were trained for 10 epochs,
with 80% of the dataset allocated for training and
20% for testing. Cross-Entropy was employed as
the loss function, and the Adam optimizer was used
as the optimization algorithm [60]. Adam is a
variant of the stochastic gradient descent algorithm.
A learning rate of 0.001 and a weight decay of 0.01
were applied during the training process.

Table 3. Architecture of the simple CNN model
(Basit CNN modelinin mimarisi)

Model Layers

Block
Block
MaxPool2d
Block
Block
MaxPool2d
Flatten
Linear

Evaluation metrics (Degerlendirme &lgiitleri): The
accuracy calculation formula used to compare the
performance of the models is given in Equation (1).
TP represents the number of True Positives, TN
represents the number of True Negatives, FP
represents the number of False Positives, and FN
represents the number of False Negatives [61].

TP+TN

Accuracy = oprnvrprn @)
Precision = —— 2
TP+FP
Recall = —~ 3
TP+FN
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F1 — Score = 2 Prec.is'ion*Recall (4)
Precision+Recall
The formula for calculating Precision is provided in
Equation 2. Precision measures the proportion of
correct predictions made by the model out of all
positive predictions.

Recall, given in Equation 3, measures how many of
the actual positive instances the model correctly
identifies.

The F1-Score, calculated using Equation 4,
represents the harmonic mean of Precision and
Recall, providing a balanced measure of a model's
accuracy.

5. METHOD RESULTS (YONTEM SONUCLARTI)

In this study, we utilized several state-of-the-art
image classification network models with different
parameter counts and architectures (ResNetl18,
MobileNetV3-Small, EfficientNet-BO, and

MobileNetV2) to classify mel-spectrogram images
of audio files. Additionally, the developed simple
CNN model was employed for classification. Table
4 presents the Accuracy, Recall, Precision, and F1-
Score of the models on the test dataset. As shown in
the table, the simple CNN architecture achieves
higher accuracy compared to the other models.
Given that the audio files in the dataset are only 1
second in duration, they lack many of the
distinguishing features necessary for effective class
differentiation. As a result, the models generally
show lower accuracy rates. However, as seen in
Table 4, the simple CNN model demonstrates the
highest accuracy.

Table 5 presents the number of parameters and
accuracy values for the models. The simple CNN
model, which has the lowest number of parameters,
achieves the highest performance. Similarly, the
MobileNetV3-Small model, which also has a
relatively small number of parameters, ranks second
in terms of accuracy.

Table 4. Evaluation results of the models (Modellerin degerlendirme sonuglarr)

Model Data Pre- Number of Accuracy F1- Recall Precision
Replication trained Epochs Score
Simple CNN N 10 0.5908 0.5490 0.6007 0.5587
MobileNetV3- v N 10 0.5633 0.5333 0.5633 0.5368
Small
MobileNetV2 v N 10 0.5068 0.4901 0.5021 0.5045
EfficientNet- N v 10 0.5407 0.5126 0.5431 0.5303
BO
ResNet-18 v N 10 0.4455 0.3813 0.4778 0.3805
Table 5. Parameter numbers of the models (Modellerin parametre sayilari)
Model Parameter Number | Accuracy
Simple CNN 157 939 0.5908
MobileNetV3-Small | 2 542 856 0.5633
MobileNetV2 3504 872 0.5068
EfficientNet-B0 5288 548 0.5413
ResNet-18 11 689 512 0.4455
Among the models selected for comparison, function. Similarly, MobileNetV2 provides

MobileNetVV3-Small, which has the lowest number
of parameters, is optimized for devices with lower
computational requirements. It uses Squeeze-and-
Excitation (SE) blocks and the hardswish activation

efficient computation with Depthwise Separable
Convolution and offers low latency on mobile
devices using Inverted Residual Blocks.
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EfficientNet-BO is a balanced model in terms of
both the number of parameters and accuracy,
optimized through Neural Architecture Search
(NAS). ResNetl8 improves the trainability of
deeper networks by using residual connections (skip
connections). It is a convolutional neural network
model that is not very deep but still powerful.

The reason why the developed Simple CNN model
achieves higher accuracy compared to advanced
deep learning architectures can be attributed to
several fundamental factors. These include dataset
size and the compatibility of feature distribution.
While highly optimized models (such as
EfficientNet and ResNet) use techniques like
parameter reduction, quantization, and nharrow
filters to minimize computational costs, these
optimizations can sometimes lead to a loss of
important visual information. Furthermore, pre-
trained models, which are usually trained on large
and diverse datasets (such as ImageNet), may have
limited generalization ability when applied to
specific datasets. In contrast, the Simple CNN
model generalized better without overfitting
because it was trained on a smaller dataset that was
more aligned with the target task than those used for
pre-trained models.

6. CONCLUSIONS AND SUGGESTIONS
(SONUCLAR VE ONERILER)

In our study, acoustic scene sounds from the TAU
Urban Acoustic Scene 2023 Mobile development
dataset were classified using state-of-the-art deep
learning models and simple CNN architecture. The
analysis reveals that among the deep networks
tested, the MobileNetV3-Small model, despite
having fewer parameters, outperforms other models
with an accuracy rate of 56.33%. In contrast, the
ResNet18 model, which has the most parameters,
exhibited the lowest performance. Interestingly, the
simple CNN model, designed with only 157,939
parameters, achieved the highest accuracy of
59.08%, surpassing deeper and more complex
networks.

These findings indicate that highly complex and
deep architectures are not necessarily required for
effective acoustic scene classification, and that
compact models with fewer layers and parameters
can perform competitively.

Furthermore, it was observed that mel-spectrogram
images tend to lose discriminative features as they
pass through deeper convolutional layers in
complex networks. This may explain the superior

performance of simpler models, which better
preserve these features throughout the learning
process.

Another factor influencing model performance is
the nature of the dataset itself — since it contains 1-
second audio clips, many distinctive scene-specific
features may not be fully captured. This inherent
limitation makes classification more challenging
and is reflected in the observed accuracy rates.

The findings of this study have several real-world
applications, especially in areas where efficient and
accurate acoustic scene classification is important,
such as wearable devices, smart home systems, and
autonomous vehicles. Moreover, simpler models
are  well-suited for resource-constrained
environments, such as low-power devices. These
models can maintain competitive performance
while reducing computational load and energy
consumption, making them ideal for deployment in
embedded systems and mobile platforms. For
example, previous studies have shown that low-
complexity models can effectively perform acoustic
scene classification in  resource-constrained
environments [62].

In the future, additional features can be incorporated
into the audio analysis process to enhance model
performance. For instance, alongside mel-
spectrograms,  feature  extraction  methods
commonly used in literature such as wavelet
transforms and scalograms—could be explored.
These methods can provide a more detailed analysis
of the time-frequency characteristics of signals and
help strengthen the discriminative features of the
classes. By integrating such techniques, the
accuracy of the models can be improved through the
enhanced representation of the distinguishing
characteristics of each class.
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