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Graphical/Tabular Abstract (Grafik Özet) 

This study shows that a simple CNN outperforms more complex models in classifying stage sounds 

using mel-spectrograms, achieving 59% accuracy on the TAU Acoustic Scene 2023 dataset, 

emphasizing the efficiency and effectiveness of lightweight models in ambient sound analysis. / Bu 

çalışma, mel-spektrogramlar kullanarak sahne seslerini sınıflandırmada basit bir CNN’in daha 

karmaşık modellerden üstün olduğunu göstermektedir. TAU Acoustic Scene 2023 veri setinde %59 

doğruluk elde etmiş olup, hafif modellerin çevresel ses analizinde hem verimli hem de etkili 

olduğunu vurgulamaktadır. 

 

 

 

 

 

 

 

 

 

Figure A: Template of the Study /Şekil A: Çalışmanın Şablonu 

Highlights (Önemli noktalar)  

 Ambient sound analysis provides environmental context through surrounding audio. / 

Ortam sesi analizi, çevreleyen ses aracılığıyla çevresel bağlam sağlar. 

 Deep learning methods are increasingly applied to this field, surpassing traditional 

techniques. / Derin öğrenme yöntemleri bu alanda giderek daha fazla uygulanmakta ve 

geleneksel tekniklerin önüne geçmektedir.  

 Mel-spectrograms from the TAU Acoustic Scene 2023 dataset were used for 

classification. / Sınıflandırma için TAU Akustik Sahne 2023 veri setinden elde edilen Mel-

spektrogramları kullanıldı. 

Aim (Amaç): To evaluate and compare the performance of various deep learning models for 

acoustic scene classification. / Akustik sahne sınıflandırması için çeşitli derin öğrenme modellerinin 

performansını değerlendirmek ve karşılaştırmak. 

Originality (Özgünlük): The study focuses on using mel-spectrogram representations of stage 

sounds. A comparison of simple and complex deep learning models is presented in terms of 

classification performance and efficiency. / Çalışma, sahne seslerinin mel-spektrogram 

gösterimlerinin kullanılmasına odaklanmaktadır. Basit ve karmaşık derin öğrenme modellerinin 

sınıflandırma performansı ve verimliliği açısından bir karşılaştırması sunulmaktadır. 

Results (Bulgular): A simple CNN model outperformed more complex models with a 59% accuracy 

rate. The CNN achieved the highest performance despite having the fewest parameters. / Basit bir 

CNN modeli, %59'luk bir doğruluk oranıyla daha karmaşık modellerden daha iyi performans 

gösterdi. CNN, en az parametreye sahip olmasına rağmen en yüksek performansı elde etti. 

Conclusion (Sonuç): Simpler deep learning models, like CNNs can be both effective and 

computationally efficient for acoustic scene classification tasks. / CNN'ler gibi daha basit derin 

öğrenme modelleri, akustik sahne sınıflandırma görevleri için hem etkili hem de hesaplama 

açısından verimli olabilir. 
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Abstract 

Ambient sound analysis has become more prominent with the rise of portable and wearable 

devices. It provides valuable insights into a person's environment by analyzing surrounding 

sounds. Recently, deep learning methods, frequently used in image and text processing, have been 

applied to this field and are proving more effective than traditional machine learning techniques. 

In this study, we evaluated the performance of different deep learning models using mel-

spectrograms of 3 classes of stage sounds based on TAU Acoustic Scene 2023 dataset. Our results 

indicate that a simple Convolutional Neural Network (CNN) model gives better classification 

results compared to other more complex models in classification tasks. Despite having the fewest 

parameters, the CNN model achieved the highest success with 59% accuracy. This suggests that 

simpler models can be highly effective for acoustic scene classification, highlighting the value of 

more efficient and computationally feasible approaches in this domain. 
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Öz 

Taşınabilir ve giyilebilir cihazların yükselişiyle ortam sesi analizi daha da belirgin hale geldi. 

Çevresel sesleri analiz ederek bir kişinin ortamına dair değerli içgörüler sağlar. Son zamanlarda, 

görüntü ve metin işlemede sıklıkla kullanılan derin öğrenme yöntemleri bu alana uygulandı ve 

geleneksel makine öğrenme tekniklerinden daha etkili olduğu kanıtlandı. 

Bu çalışmada, TAU Akustik Sahne 2023 veri setine dayalı 3 sınıf sahne sesinin mel-

spektrogramlarını kullanarak farklı derin öğrenme modellerinin performansını değerlendirdik. 

Sonuçlarımız, basit bir Evrişimli Sinir Ağı (ESA) modelinin sınıflandırma görevlerinde diğer 

daha karmaşık modellere kıyasla daha iyi sınıflandırma sonuçları verdiğini göstermektedir. En az 

parametreye sahip olmasına rağmen, ESA modeli %59 doğrulukla en yüksek başarıyı elde etti. 

Bu, daha basit modellerin akustik sahne sınıflandırması için oldukça etkili olabileceğini ve bu 

alanda daha verimli ve hesaplama açısından uygulanabilir yaklaşımların değerini 

vurgulamaktadır. 

 

1. INTRODUCTION (GİRİŞ) 

Voice analysis covers a variety of voice-related 

problems such as automatic speech recognition [1], 

speech-to-text translation [2], automatic audio 

captioning [3], speech emotion recognition [4] [5], 

voice-based question-and-answer generation [6], 

vocal sound classification, and music score analysis 

[7,8]. 

With the advancing technology and the increase in 

the amount of data accessed, the interest in voice 

analysis has increased day by day. Table 1 presents 

the total number of publications in voice analysis by 

years [9], illustrating the distribution across 

different periods. The data suggests a projected 

increase in research activity in this field in the 

coming years. 

Acoustic scene classification (ASC) is one of the 

problems in the field of audio analysis. ASC aims to 

https://orcid.org/0000-0002-1119-5275
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classify digital audio signals into mutually 

exclusive scene categories, which can be, for 

example, an indoor environment (such as a house) 

or an outdoor environment (such as a park) [10].  In 

everyday life, people often use the ability to 

perceive and react to the scene they are in by 

listening to the sounds around them. Technological 

devices utilize ASC processing in various fields and 

applications. For instance, wearable smartwatches 

can classify the user's environment and adjust 

notifications accordingly. Similarly, smartphones 

and other devices equipped with digital sensors 

detect and classify environmental sounds. By 

definition, ASC seeks to identify the type of scene 

in which a given audio signal is recorded. 

To utilize an acoustic audio signal for deep learning, 

the signal typically needs to be transformed into an 

appropriate format. Common methods for 

transforming audio signals include spectrograms, 

mel-frequency cepstral coefficients, linear 

prediction coding, and wavelet decomposition [11–

14]. The resulting feature matrices or images are 

then used as input data for deep learning algorithms. 

In audio signal processing studies, the choice of 

transformation methods and the applied deep 

learning models significantly impact processing 

performance [14–16]. 

 

 

Table 1. Total number of audio analyzed publications by year (Yıllara göre ses analizli yayınların toplam sayısı) 

 2015 2016 2017 2018 2019 2020 2021 2022 2023 

Publications 

(total) 
23,287 26,105 30,883 37,592 37,155 48,972 55,151 58,498 65,618 

 

In previous ASC studies, traditional machine 

learning techniques such as Support Vector 

Machines (SVM), K-Nearest Neighbors (KNN), 

Artificial Neural Networks (ANN), Random Forest 

(RF), Decision Tree (DT) and Hidden Markov 

Models (HMM) have been widely used. In these 

traditional approaches, classification usually 

consists of two stages: first, the features of the audio 

signal are extracted and then these features are 

classified by traditional machine learning methods 

[17–19]. Recently, deep learning methods have 

been successfully applied to ASC, yielding 

excellent results with models such as Time Delay 

Neural Networks, Bidirectional Long Short-Term 

Memory, Feed Forward Neural Networks, 

EfficientNet-based architectures (e.g., VGG, 

ResNet, Inception, Xception, and MobileNetV2), 

Fully Convolutional Neural Networks (FCNN), and 

Convolutional Recurrent Neural Networks (CRNN) 

[20–23]. 

CNNs reveal complex spatial and temporal 

dependencies more successfully than traditional 

methods. Acoustic Scene Classification (ASC) is 

the problem of characterizing the complex patterns 

and contextual information of sound. One of the 

methods to address this problem is to obtain and 

process spectrograms of signals. The Mel-

spectrogram feature visually represents how the 

frequency content of sounds changes over time. For 

example, when an audio signal contains audible 

sound events such as "dog barking," "speech," or 

"applause," these events can be identified in the 

corresponding Mel-spectrogram feature due to their 

unique visual patterns. From this perspective, the 

Mel-spectrogram feature can be considered as an 

image [24]. 

For the last 20 years, CNNs have been the most 

widely used and highest-performing method in 

image processing fields such as classification, 

object detection, and segmentation [25–27]. The 

highest success rates are achieved with CNNs in 

studies conducted on Mel-spectrogram images [28–

30]. However, it is still not fully understood what 

features CNNs learn, whether they generalize well 

across different datasets or overfit to a specific 

dataset, and how they encode information [31] [32]. 

Deep learning methods automatically extract the 

features required for classification from the given 

input by convolution operations. To successfully 

utilize these models, large datasets and server 

computers equipped with powerful graphics 

processing units (GPUs) are typically required. 

Advancements in technological devices and 

increasingly powerful computing systems have 

enabled the wider application of deep learning 

models. Research findings indicate that deep 

learning methods are being used more frequently in 

voice anawlysis, yielding more successful results 

[33]. These models are capable of learning complex 

patterns and recognizing subtle differences in audio 

data. Additionally, they learn faster and more 
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accurately than traditional models, making them 

particularly suitable for real-time audio 

classification and analysis. 

In our study, we utilized the dataset released for the 

1st task of the DCASE Challenge 2023. Mel-

spectrograms were generated from the audio signals 

to be used in image classification models, which 

were then analyzed using contemporary models and 

a simple Convolutional Neural Network (CNN) 

architecture. 

The contributions of our work to literature are as 

follows: 

• We analyzed the performance of 

contemporary deep learning models on the dataset, 

with MobileNetV3-Small outperforming the other 

models in the benchmark. 

• The simple CNN model, despite having 

fewer parameters, achieved the highest accuracy in 

the benchmark. 

The remainder of this paper is organized as follows: 

Section 2 provides details about the dataset used in 

the study, while Section 3 outlines the experiments 

conducted using the dataset. Section 4 describes the 

methods applied, Section 5 presents the evaluation 

results, and finally, Section 6 offers the conclusions 

and suggestions. 

2. DATASET (VERİ SETİ) 

The DCASE Challenge is an annual competition for 

researchers focused on the computational analysis 

of audio events and acoustic scene analysis, 

providing a platform for presenting and discussing 

their results [34]. Each year, different tasks are 

defined, and datasets are released for the analysis of 

audio in order to accomplish these tasks. In this 

study, we utilized the dataset published for the first 

task of the competition, which involves voice 

classification. The general schematic of the voice 

classification process is presented in Figure 1. 

The dataset consists of recordings from 12 

European cities, captured in 10 distinct acoustic 

scenes (Airport, Indoor shopping mall, Metro 

station, Pedestrian street, Public square, Street with 

medium level of traffic, Traveling by a tram, 

Traveling by a bus, Traveling by an underground 

metro and Urban park) using 4 different devices. 

Additionally, it includes synthetic data from 11 

mobile devices derived from the original 

recordings. The dataset is identical to the TAU 

Urban Acoustic Scene 2022 Mobile development 

dataset, with each audio file having a duration of 1 

second. In our study, we utilized sound recordings 

from three classes: airport (0), street pedestrian (1), 

and metro (2). Table 2 provides the distribution of 

audio recordings across these classes [35]. 

The sound characteristics of ASC can be 

significantly affected by local infrastructure, 

population density, recording interval, cultural 

factors and changes in the recording device 

resolution [36,37]. These effects can cause the 

performance of the sound classification system to 

degrade. Adapting a model trained on specific cities 

and devices to other cities or devices creates a 

domain adaptation problem [38]. As a solution to 

this problem, collecting data from various data 

domains is an important method among the 

solutions to the domain adaptation problem. The 

dataset used in our study includes sound data from 

a total of 12 European cities: Amsterdam, 

Barcelona, Helsinki, Lisbon, London, Lyon, 

Madrid, Milan, Prague, Paris, Stockholm and 

Vienna. Also, different device types were used for 

sound recordings. 

Mel-spectrograms of audio signals are frequently 

utilized for audio classification tasks [39–42]. In 

fact, the finalists of the DCASE Challenge 

employed mel-spectrogram features in their models 

[43]. To generate mel-spectrogram images from the 

audio files, a Hamming window with a sample 

length of 2048, an overlap of 1024, and 128 mel bins 

was used. Sample mel-spectrograms for the 

different classes are shown in Figure 2. 

 

Figure 1. General schematic of the acoustic scene 

classification system (Akustik sahne sınıflandırma 

sisteminin genel şeması). 
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Table 2. Dataset information (Veri seti bilgisi) 

Classes Training 

Data  

Test 

Data  

Total 

airport (0) 8000 2000 8000 

pedestrian 

street (1) 

8000 2000 8000 

metro (2) 8000 2000 8000 

Total 24000 6000 30000 

 

 

Figure 2. Examples of mel-spectrograms of sound 

classes (Ses sınıflarının mel-spektrogramlarına örnekler). 

3. STUDIES ON THE DCASE DATASET 
(DCASE VERİ SETİ ÜZERİNDEKİ ÇALIŞMALAR) 

The high performance achieved through the use of 

deep learning in image classification problems has 

led to its widespread use in other problems as well 

[44]. In recent studies, it has been observed that 

deep learning techniques are predominantly applied 

to the ASC problem. When we examine the studies 

conducted over the years according to the first task 

description published by DCASE Challenge, deep 

learning models have been commonly used. 

In 2017, Duppada and Hiray enhanced ASC 

performance by employing ensemble methods with 

various deep neural network models (LeNet, 

SqueezeNet, 1D CNN) using mel-spectrogram 

features [45]. In 2018, Eghbal-zadeh et al. 

incorporated an intraclass covariance analysis layer 

into the VGG model to improve performance [46]. 

A review of the DCASE competition by Gharib et 

al. in 2018 highlighted that data augmentation 

techniques, such as data replication, were widely 

used to enhance ASC performance [47]. In 2019, 

Wu and Lee's work on improving voice texture 

significantly boosted voice classification accuracy 

using CNN-based approaches [24]. In 2020, Zhang 

et al. explored the reuse of pre-trained models for 

different tasks [48]. Additionally, Tonami et al. 

demonstrated that multi-task learning, which 

combines the analysis of audio events and acoustic 

scenes, improves classification success[49].  In 

2021, studies focusing on audio event detection 

with a curriculum learning approach achieved 

notable success by adopting training strategies 

based on the complexity of event learning [50]. 

Utilizing the DCASE 2017 dataset, in 2022, 

methods were developed that combined both scene 

and instantaneous sounds for event detection, while 

the Qwen-Audio application, introduced in 2023, 

provided more comprehensive solutions for 

universal audio understanding with its large-scale 

audio-language model [51,52].  

The classification results for 15 classes, as 

announced on the official DCASE 2023 Challenge 

web page, ranked Schmid and his team in the top 

two positions, with accuracies of 62.7% and 61.4%, 

respectively [53]. The team developed a novel deep 

learning architecture featuring a regularized 

receptive field and residual inverted bottleneck 

blocks. Jiaxin et al. secured 3rd place with an 

accuracy of 60.8%, having designed a tutor model 

based on blueprint separable convolution (BSConv) 

[54]. 

These studies demonstrate that methodological 

diversity and innovation in the field of ASC 

contribute significantly to performance 

improvements, with variations in model designs and 

data processing methods playing a critical role in 

achieving success. 

4. METHOD (METOT) 

In our study, we utilized current image classification 

algorithms with varying parameter counts and 

technical architecture. ResNet, MobileNet, and 

EfficientNet architectures, which are frequently 

employed in the literature for image classification 

tasks, were included. Additionally, a CNN model 

with a simplified layer structure and a smaller 

number of parameters was developed. Comparisons 

of these models were conducted based on their 

parameter counts and classification accuracy. 

ResNet is an architecture based on a residual 

network model, with variants such as ResNet101, 

ResNet50, and ResNet18, distinguished by the 

number of layers. In our study, we used the 

ResNet18 model, which has a depth of 18 layers and 

11.7 million parameters. This variant has the fewest 

layers and parameters compared to the other ResNet 

models [55]. 

In 2017, Google introduced MobileNet, specifically 

designed for mobile and embedded applications to 

minimize resource requirements [56]. In this 
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network architecture, both the number of 

parameters (disk space) and computational 

complexity (power consumption and latency) are 

significantly reduced. MobileNet decreases the 

number of parameters by a factor of 7 compared to 

traditional full convolutional models, while 

sacrificing only 1% in accuracy. The MobileNet 

model achieves this efficiency by utilizing depth 

wise separable convolutions and pointwise 

convolution techniques. 

In 2018, MobileNet-v2 was introduced as an 

evolution of its predecessor, maintaining accuracy 

levels while significantly reducing memory usage. 

This improvement is achieved through an inverted 

residual structure and shortcut connections between 

linear bottlenecks [57]. MobileNet-v2 processes 

224x224x3 images, has a depth of 53 layers, and 

contains 3.5 million parameters. In 2019, the third 

generation of MobileNets, MobileNet-v3, was 

developed using a combination of Network 

Architecture Search (NAS) and the NetAdapt 

algorithm. This led to the creation of two models, 

MobileNet-v3 Large and MobileNet-v3 Small, 

designed to accommodate different resource 

constraints [58].  

EfficientNets are a family of models developed by 

Google AI researchers, designed to scale network 

dimensions at a constant rate. EfficientNet employs 

a novel approach that scales the network's depth, 

width, and resolution uniformly with a fixed ratio. 

The EfficientNet-B0 model, for example, has a 

depth of 82 layers, processes input images at a 

resolution of 224x224x3, and contains 5.3 million 

parameters [59]. Compared to earlier models such 

as ResNet, DenseNet, and Inception, EfficientNet 

models are significantly more computationally 

efficient. 

The simple CNN model consists of two blocks 

followed by a final output layer. Each block 

contains a Conv2d (3x3) layer, a ReLU activation 

function, and a Dropout layer. The Conv2d (3x3) 

layer is a 2D convolutional layer, ReLU introduces 

non-linearity, and Dropout is used to prevent 

overfitting by randomly omitting some neurons 

during training. Table 3 outlines the architecture of 

the developed simple CNN model. The MaxPool2d 

function reduces the size of the feature maps, while 

the Flatten and Linear layers prepare the feature 

maps for output. The implementation of the model 

was done using the PyTorch library in the Python 

programming language.  

PyTorch and torchaudio libraries were used to 

process and classify audio signals. The audio 

signals were downsampled from 16 kHz to 8 kHz 

by applying a resampling process. After resampling, 

spectrogram and mel spectrogram transformations 

were performed. Data augmentation techniques 

were also applied to improve the model's overall 

accuracy. These techniques include TimeStretch, 

Frequency Mask, and Time Mask. 

The mel spectrograms obtained from the processed 

audio data were resized to 224x224 pixels, and their 

values were normalized between 0 and 1 using min-

max normalization. These processes enable the 

audio data to be converted into a format that can be 

effectively used in deep learning models. 

All network models were trained for 10 epochs, 

with 80% of the dataset allocated for training and 

20% for testing. Cross-Entropy was employed as 

the loss function, and the Adam optimizer was used 

as the optimization algorithm [60]. Adam is a 

variant of the stochastic gradient descent algorithm. 

A learning rate of 0.001 and a weight decay of 0.01 

were applied during the training process. 

Table 3. Architecture of the simple CNN model 
(Basit CNN modelinin mimarisi) 

Model Layers 

Block 

Block 

MaxPool2d 

Block 

Block 

MaxPool2d 

Flatten 

Linear 

 

Evaluation metrics (Değerlendirme ölçütleri): The 

accuracy calculation formula used to compare the 

performance of the models is given in Equation (1). 

TP represents the number of True Positives, TN 

represents the number of True Negatives, FP 

represents the number of False Positives, and FN 

represents the number of False Negatives [61]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                           (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                              (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                    (3) 
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𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                  (4) 

The formula for calculating Precision is provided in 

Equation 2. Precision measures the proportion of 

correct predictions made by the model out of all 

positive predictions.  

Recall, given in Equation 3, measures how many of 

the actual positive instances the model correctly 

identifies.  

The F1-Score, calculated using Equation 4, 

represents the harmonic mean of Precision and 

Recall, providing a balanced measure of a model's 

accuracy. 

5. METHOD RESULTS (YÖNTEM SONUÇLARI) 

In this study, we utilized several state-of-the-art 

image classification network models with different 

parameter counts and architectures (ResNet18, 

MobileNetV3-Small, EfficientNet-B0, and 

MobileNetV2) to classify mel-spectrogram images 

of audio files. Additionally, the developed simple 

CNN model was employed for classification. Table 

4 presents the Accuracy, Recall, Precision, and F1-

Score of the models on the test dataset. As shown in 

the table, the simple CNN architecture achieves 

higher accuracy compared to the other models. 

Given that the audio files in the dataset are only 1 

second in duration, they lack many of the 

distinguishing features necessary for effective class 

differentiation. As a result, the models generally 

show lower accuracy rates. However, as seen in 

Table 4, the simple CNN model demonstrates the 

highest accuracy. 

Table 5 presents the number of parameters and 

accuracy values for the models. The simple CNN 

model, which has the lowest number of parameters, 

achieves the highest performance. Similarly, the 

MobileNetV3-Small model, which also has a 

relatively small number of parameters, ranks second 

in terms of accuracy. 

 

Table 4. Evaluation results of the models (Modellerin değerlendirme sonuçları) 

Model Data 

Replication  
Pre-

trained 
Number of 

Epochs 
Accuracy F1-

Score 
Recall Precision 

Simple CNN √  10 0.5908 0.5490 0.6007 0.5587 

MobileNetV3-

Small 
√ √ 10 0.5633 0.5333 0.5633 0.5368 

MobileNetV2 √ √ 10 0.5068 0.4901 0.5021 0.5045 

EfficientNet-

B0 
√ √ 10 0.5407 0.5126 0.5431 0.5303 

ResNet-18 √ √ 10 0.4455 0.3813 0.4778 0.3805 

 

Table 5. Parameter numbers of the models (Modellerin parametre sayıları) 

 

Model Parameter Number Accuracy 

Simple CNN 157 939 0.5908 

MobileNetV3-Small 2 542 856 0.5633 

MobileNetV2 3 504 872 0.5068 

EfficientNet-B0 5 288 548 0.5413 

ResNet-18 11 689 512 0.4455 

 

 

Among the models selected for comparison, 

MobileNetV3-Small, which has the lowest number 

of parameters, is optimized for devices with lower 

computational requirements. It uses Squeeze-and-

Excitation (SE) blocks and the hardswish activation 

function. Similarly, MobileNetV2 provides 

efficient computation with Depthwise Separable 

Convolution and offers low latency on mobile 

devices using Inverted Residual Blocks. 
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EfficientNet-B0 is a balanced model in terms of 

both the number of parameters and accuracy, 

optimized through Neural Architecture Search 

(NAS). ResNet18 improves the trainability of 

deeper networks by using residual connections (skip 

connections). It is a convolutional neural network 

model that is not very deep but still powerful. 

The reason why the developed Simple CNN model 

achieves higher accuracy compared to advanced 

deep learning architectures can be attributed to 

several fundamental factors. These include dataset 

size and the compatibility of feature distribution. 

While highly optimized models (such as 

EfficientNet and ResNet) use techniques like 

parameter reduction, quantization, and narrow 

filters to minimize computational costs, these 

optimizations can sometimes lead to a loss of 

important visual information. Furthermore, pre-

trained models, which are usually trained on large 

and diverse datasets (such as ImageNet), may have 

limited generalization ability when applied to 

specific datasets. In contrast, the Simple CNN 

model generalized better without overfitting 

because it was trained on a smaller dataset that was 

more aligned with the target task than those used for 

pre-trained models. 

6. CONCLUSIONS AND SUGGESTIONS 
(SONUÇLAR VE ÖNERİLER) 

In our study, acoustic scene sounds from the TAU 

Urban Acoustic Scene 2023 Mobile development 

dataset were classified using state-of-the-art deep 

learning models and simple CNN architecture. The 

analysis reveals that among the deep networks 

tested, the MobileNetV3-Small model, despite 

having fewer parameters, outperforms other models 

with an accuracy rate of 56.33%. In contrast, the 

ResNet18 model, which has the most parameters, 

exhibited the lowest performance. Interestingly, the 

simple CNN model, designed with only 157,939 

parameters, achieved the highest accuracy of 

59.08%, surpassing deeper and more complex 

networks. 

These findings indicate that highly complex and 

deep architectures are not necessarily required for 

effective acoustic scene classification, and that 

compact models with fewer layers and parameters 

can perform competitively. 

Furthermore, it was observed that mel-spectrogram 

images tend to lose discriminative features as they 

pass through deeper convolutional layers in 

complex networks. This may explain the superior 

performance of simpler models, which better 

preserve these features throughout the learning 

process. 

Another factor influencing model performance is 

the nature of the dataset itself — since it contains 1-

second audio clips, many distinctive scene-specific 

features may not be fully captured. This inherent 

limitation makes classification more challenging 

and is reflected in the observed accuracy rates. 

The findings of this study have several real-world 

applications, especially in areas where efficient and 

accurate acoustic scene classification is important, 

such as wearable devices, smart home systems, and 

autonomous vehicles. Moreover, simpler models 

are well-suited for resource-constrained 

environments, such as low-power devices. These 

models can maintain competitive performance 

while reducing computational load and energy 

consumption, making them ideal for deployment in 

embedded systems and mobile platforms. For 

example, previous studies have shown that low-

complexity models can effectively perform acoustic 

scene classification in resource-constrained 

environments [62]. 

In the future, additional features can be incorporated 

into the audio analysis process to enhance model 

performance. For instance, alongside mel-

spectrograms, feature extraction methods 

commonly used in literature such as wavelet 

transforms and scalograms—could be explored. 

These methods can provide a more detailed analysis 

of the time-frequency characteristics of signals and 

help strengthen the discriminative features of the 

classes. By integrating such techniques, the 

accuracy of the models can be improved through the 

enhanced representation of the distinguishing 

characteristics of each class. 
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