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ABSTRACT 

The advent of advanced deep learning techniques has revolutionized various fields, including healthcare, where 

accurate and efficient diagnostic tools are of paramount importance. In the context of the COVID-19 pandemic, 

the need for rapid and precise diagnosis is critical to managing and mitigating the spread of the virus. In this 

study, we propose a decision support system for the diagnosis of COVID-19 using CT images, employing deep 

learning algorithms. To evaluate the performance of our models, we create a unique dataset that is meticulously 

curated and tailored to the task at hand. This dataset consists of a large number of CT images categorized into 

COVID-19 positive and negative classes, allowing for a robust evaluation of our models' capabilities. Our 

approach involves the development of novel CNN models as well as the exploration of pre-trained architectures, 

such as ResNet50v2 and VGG16, in a comprehensive modelling study. Additionally, we introduce a hybrid 

model by combining CNN models with the SVM algorithm. Hyperparameter optimization is performed using the 

grid search method, and the modelling process utilizes an original dataset with two classes (COVID-19 and 

Normal). Performance evaluation involves dividing the dataset into training and test sets (85%-15% ratio) and 

employing 5-fold cross-validation. Proposed novel CNN models achieve an accuracy rate of 99.93% and 

99.86%, while the hybrid CNN+SVM model achieves an accuracy rate of 100% and 99.77%, respectively. 

Successful application of these proposed deep learning models in healthcare demonstrates their potential to 

improve diagnostic accuracy and patient outcomes. 
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BT Görüntülerinden Hassas Covid-19 Tespiti için Yenilikçi Hibrit 

CNN+SVM Modeli 
 

ÖZ 
Gelişmiş derin öğrenme tekniklerinin ortaya çıkışı, doğru ve etkili teşhis araçlarının büyük önem taşıdığı sağlık 

hizmetleri de dahil olmak üzere çeşitli alanlarda devrim yaratmıştır. COVID-19 salgını bağlamında, hızlı ve 

kesin teşhis ihtiyacı, virüsün yayılmasını yönetmek ve azaltmak için kritik öneme sahiptir. Bu çalışmada, BT 

görüntülerini kullanarak COVID-19 teşhisi için derin öğrenme algoritmaları kullanan bir karar destek sistemi 

öneriyoruz. Modellerimizin performansını değerlendirmek için, titizlikle düzenlenmiş ve eldeki göreve göre 

uyarlanmış benzersiz bir veri kümesi oluşturuyoruz. Bu veri kümesi, modellerimizin yeteneklerinin sağlam bir 

şekilde değerlendirilmesine olanak tanıyan COVID-19 pozitif ve negatif sınıflarına ayrılmış çok sayıda BT 
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görüntüsünden oluşmaktadır. Yaklaşımımız, kapsamlı bir modelleme çalışmasında ResNet50v2 ve VGG16 gibi  

önceden eğitilmiş mimarilerin keşfedilmesinin yanı sıra yeni CNN modellerinin geliştirilmesini de içermektedir.  

Ayrıca, CNN modellerini SVM algoritması ile birleştirerek hibrit bir model sunuyoruz. Hiperparametre 

optimizasyonu ızgara arama yöntemi kullanılarak gerçekleştirilir ve modelleme sürecinde iki sınıflı (COVID-19 

ve Normal) orijinal bir veri kümesi kullanılır. Performans değerlendirmesi, veri kümesinin eğitim ve test 

kümelerine bölünmesini (%85-%15 oranı) ve 5 kat çapraz doğrulama kullanılmasını içerir. Önerilen yeni CNN 

modelleri %99,93 ve %99,86 doğruluk oranına ulaşırken, hibrit CNN+SVM modeli sırasıyla %100 ve %99,77 

doğruluk oranına ulaşmaktadır. Önerilen bu derin öğrenme modellerinin sağlık hizmetlerinde başarılı bir şekilde 

uygulanması, teşhis doğruluğunu ve hasta sonuçlarını iyileştirme potansiyellerini göstermektedir. 

 

Anahtar Kelimeler: CNN, derin öğrenme, hibrit model, ızgara arama, BT görüntüleri 

 

 

I. INTRODUCTION 
 

The coronavirus disease (COVID-19), which emerged in December 2019 in Wuhan, China, as 

pneumonia of unknown aetiology, spread rapidly in two months and was designated an international 

public health problem on January 30, 2020 [1]. As of December 7, 2022, the SARS-CoV-2 virus had 

infected more than 600 million people worldwide, resulting in the deaths of more than six million [2]. 

With its contagiousness and severe symptoms, the COVID-19 epidemic, one of the largest health 

crises of the 21st century, has caused millions of cases and deaths worldwide. In the pandemic that has 

been ongoing for more than two years, there have been both positive and negative developments, such 

as the availability of the COVID-19 vaccine and the advancement of vaccination efforts, as well as the 

advent and rapid spread of new SARS-CoV-2 variants. The real-time reverse transcription polymerase 

chain reaction (RT-PCR) test, which analyses the sample from the upper respiratory tract, is widely 

used for the diagnosis of COVID-19. Nonetheless, the sensitivities of RTPCR tests can vary 

considerably between "60% and 90%" and frequently produce false-negative results, particularly in 

initial positive cases [3], [4]. Although microbiological methods such as RT-PCR are commonly used 

in the diagnosis of COVID-19, medical imaging methods are crucial for supporting the diagnosis, 

assessing the severity of the disease, detecting potential complications, and monitoring the treatment 

response [5]. Computerised tomography (CT) and chest x-ray (chest x-ray) are examples of 

information-providing medical imaging techniques used to detect infected individuals [6]. The cost of 

data and the availability of devices at the relevant healthcare institution or laboratory are the primary 

factors in selecting these imaging techniques. Prior to the onset of clinical symptoms, COVID-19 can 

be detected on CT scans of patients, according to published research [7],[8]. Despite the fact that it has 

been demonstrated in the literature that CT scanning tests are more sensitive than conventional RT-

PCR tests [9][10], numerous obstacles persist. These obstacles include the dearth of well-trained 

radiologists and the increased labour caused by the pandemic influx of patients [4]. In addition, 

because COVID-19 is a new disease, radiologists must obtain new interpretation skills and update 

their knowledge. In areas with limited access to educational resources, diagnosis becomes more 

challenging. Therefore, it is crucial to develop Artificial Intelligence (AI) systems that will aid in the 

diagnosis of COVID-19.  

 

Automated analysis technologies based on artificial intelligence (AI) can provide valuable assistance 

to radiologists in the analysis of COVID-19 from CT scans. Deep learning signifies a major 

breakthrough in the realm of artificial intelligence [11], with Convolutional Neural Networks (CNN) 

being one of the most commonly utilized designs [12]. CNNs have gained prominence in the 

healthcare sector due to their powerful capabilities [13]. Many studies have been submitted to 

literature by using artificial intelligence methods on the medical systems [14]–[20]. By combining 

CNN approaches with radiological imaging, it becomes possible to achieve accurate detection and 

classification of COVID-19 [21]. Kuldeep et al. presented an automated approach to detect covid-19 

patients using a convolutional neural network model [22]. The dataset consists of covid-19 and non-

covid-19 pneumonia x-ray images. As a result of the study, the proposed model reached an average of 

97.92% accuracy, 99.69% sensitivity and 98.48% specificity. Pedro et al. [23] proposed a 
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classification model called Wavelet Convolutional Neural Network (WCNN) based on wavelet 

transform, which aims to improve the differentiation of images of patients with Covid-19 from images 

of patients with other lung infections. The model proposes a new input layer called Wave layer added 

to the neural network. WCNN was applied to chest CT images from two internal and one external 

storage. The average accuracy obtained is 98.19%. Mahmud et al. [24] proposed a new approach to 

diagnose covid-19 from x-ray images using capsule neural networks. The data set consists of covid-19, 

pneumonia and normal classes. As a result of testing the model, they reached an accuracy rate of over 

95%. Nadiah et al. [25] proposed the Sparrow search algorithm (SSA) on pre-trained model and CT 

lung images to perform automatic and accurate Covid-19 classification using Convolutional Neural 

Network. SSA has been used to find the best configuration for the models and optimize different CNN 

and transfer learning hyperparameters to improve performance. Two data sets were used in the 

experiments. There are two classes in the first dataset and three in the second. they achieved the best 

accuracy results of 99.74% with MobileNetV3Large in the two-class dataset of the proposed 

framework and 98% with SeNet154 in the three-class dataset. Avinandan et al.  [26] used CNN 

models in conjunction with ensemble methodology to detect Covid-19 from chest X-rays. The 

DenseNet-201 model was trained and then combined with the Random Forest classifier model. They 

used two separate data sets, one large and one small. The proposed approach achieved an accuracy rate 

of 94.55% with the large dataset and 98.13% with the small dataset. Sujithra et al. [27] designed a 

real-time interactive system for the diagnosis of Covid-19. Recommended system, UI, analytics, 

cloud, etc. The system consists of multiple components, including a preliminary evaluation of medical 

data, such as pulse oxygen rate and RT-PCR results, to identify potential COVID-19 cases. If a 

positive indication is detected, the system prompts the user to upload X-ray or CT images for further 

disease severity evaluation. These images are then transmitted to a custom-built artificial intelligence 

module. The proposed AI system can classify patients according to whether they have COVID-19, 

pneumonia, or other viral infections. For medical image analysis, the classification task employs CNN 

architectures including ResNet-50, ResNet-100, ResNet-101, VGG 16, and VGG 19. From the 

experiment, it was observed that VGG 19 with an accuracy of 97% for CT images and ResNet101 

with an accuracy of 98% for X-ray images outperformed. Muhammed et al. [28] used three pre-trained 

alternative CNN architectures for COVID-19 diagnosis and the grid search method to improve 

network performance. They used two different datasets of X-ray and CT images for model training. 

Resnet achieved the highest classification accuracy, reaching 98.98% for X-ray images and 98.78% 

for CT images. Afamefuna et al. [29] proposed a two-stage transformative model for COVID-19 

diagnosis. This model is implemented using transfer learning, which allows efficient use of pre-trained 

models to speed up the training of the proposed model. The experimental results of the study provided 

an accuracy in the range of 0.76–0.92 for CNN-based deep learning networks, and the proposed model 

with transfer learning provided a significantly higher accuracy of 97.35%. Abul et al. [30] applied 

learning approaches to classify x-ray images consisting of COVID-19, normal, lung opacity, and viral 

pneumonia classes. Local binary patterns (LBP) and pre-trained convolutional neural networks are 

used for feature extraction. Extracted features were classified by support vector machine (SVM), 

decision tree (DT), random forest (RF), and k-nearest neighbours (KNN) classifiers. As a result of the 

classification of features obtained by a set of CNN models from four-class x-ray images by the SVM 

classifier, the metric values for the best performing ensemble (CNN +SVM) are 97.41% accuracy, 

94.9% precision, 94.81% recall, and F1 achieved a score of 94.86%. Aleka et al. [31] used a hybrid 

model to classify x-ray images as normal or COVID-19. SVM was used for classification using 

information from the learning model, CNN, to classify images according to a predefined class (Covid-

19 or Normal). The findings of the study show a training accuracy of 99.8% and a test accuracy of 

99.1%. Hareem et al. [32] used two ResNet architectures, ResNet18 and ResNet50, for feature 

extraction from the x-ray dataset consisting of COVID-19 and normal classes. A multi-core SVM 

classifier, including Quadratic, Linear, Gaussian, and Cubic, is used to classify the extracted features. 

The experimental results demonstrate that the proposed framework successfully identifies COVID-19 

from x-ray images and achieves a remarkable 97.3% accuracy through the use of ResNet50. CNN 

structures incorporate a variety of design decisions, such as the selection of the loss function, which, 

when optimally optimised, can have a substantial effect on the network's performance [33], [34] and 

different network hyperparameters such as the number of convolution layers, number of filters, filter 

size, batch size, number of training periods, learning rate, and momentum. As a result, the 
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performance of a CNN in a particular task is heavily influenced by the values of its hyperparameters. 

This study centers around the optimization of CNN hyperparameters with the aim of achieving the 

highest possible diagnostic accuracy for COVID-19. The CNN hyperparameters will be optimised 

using a grid search method in order to increase the obtained accuracy. An overview of study is given 

in Figure 1. The following is a summary of this article's primary contributions: 

 

➢ Within the scope of the study, an original dataset is created and presented to the literature. In 

particular, our study is important in this respect, among the limited number of studies in the 

literature. 

➢ New CNN models are designed and presented for the classification process. In addition to the 

proposed models, pre-trained (ResNet50v2 and VGG16) models in the literature are also used 

in the study. 

➢ Using a grid search method, CNN hyperparameters are optimized to reduce model losses and 

achieve the highest COVID-19 diagnostic precision. 

➢ The optimized CNN architectures are also hybridized with the SVM algorithm to classify CT 

images of COVID-19. The extracted features of CNN architectures are categorized using the 

SVM classifier. This hybrid method speeds up classification without degrading the 

performance of CNN architectures. 

➢ Cross-validation is used to obtain maximum precision by keeping the models away from the 

overfitting curve in the study. 

➢ The accuracy values of the results obtained are 99.93% and 99.86% CNN models, 100%  and 

99.77% CNN+SVM models, and it is seen that the proposed models can classify the CT 

images of COVID-19 patients and make the diagnosis of COVID-19 with high accuracy. 

➢ A comparison of our work is presented by presenting a comparison table with the studies 

carried out in the literature. 

 

 
 

Figure 1. An overview of study 
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The paper is structured to provide a comprehensive overview of deep learning methods and their 

implementation, along with a summary of the employed algorithms. Section 2 offers a detailed 

background on the proposed CNN models. Additionally, this section covers essential aspects such as 

the dataset used, data preprocessing techniques applied, and the evaluation parameters utilized for 

assessing the performance of deep learning models. These evaluation parameters include accuracy, 

recall, precision, F1-scores, and ROC analysis. Moving forward, Section 3 presents the study's results, 

encompassing the outcomes of the deep learning models and the corresponding evaluation findings. It 

delves into the results obtained from cross-validation, emphasizing the contrasting performance 

between the proposed CNN and hybrid CNN+SVM models. Section 4 concludes the study by 

summarizing the findings and discussing their significance within the field. Lastly, Section 5 

emphasizes the study's contributions, which encompass the development of novel CNN models and 

the creation of ensemble structures that offer swift training times and superior classification 

performance. 

 

 

II. MATERIAL AND METHODS 
 

A. DEEP LEARNING  

 
Deep learning is a sophisticated subset of machine learning that leverages multiple layers of nonlinear 

computing to extract and transform intricate features from data. Unlike traditional machine learning 

models that rely on handcrafted feature engineering, deep learning algorithms autonomously learn 

hierarchical representations of data through an iterative process. Each successive layer in a deep 

learning architecture takes the output of the previous layer as input, allowing the model to 

progressively capture higher-level abstractions and gain a deeper understanding of complex patterns 

and relationships within the data [35]. 

 

A. 1. Convolutional Neural Networks (CNN) 

 
Convolutional Neural Networks (CNNs) represent the most commonly used architecture in deep 

learning, particularly in the domain of image and video processing. CNNs consist of two main 

components and have gained widespread adoption due to their remarkable capabilities. In a CNN, the 

neurons in the initial layer are responsible for extracting features from the input data, while the 

subsequent layers combine these extracted features to form higher-level representations [36]. The 

success of CNNs can be attributed to their hierarchical feature extraction capability, enabling them to 

effectively capture intricate patterns and structures in the data at various levels of abstraction. 

 

A. 2. Proposed CNN Models 
 

In this study, Figures 2 and 3 depict, respectively, the CNN models utilised to address the research 

objectives. These figures depict the architectural designs of the proposed CNN models for this 

research. The visual representations aid in comprehending the structural components and information 

flow of CNN models. Architecture details of these models is provided in Table 1. During the design 

phase, notable differences are introduced between the two models. Specifically, in CNN1, a batch 

normalization layer is added to enhance the model's performance. The inclusion of this layer plays a 

crucial role in normalizing the distribution of activations across different layers in the neural network. 

The batch normalization layer offers several advantages for model training. By normalizing the 

activations, it helps to mitigate the issue of internal covariate shift, which refers to the change in the 

distribution of layer inputs during training. This stabilization facilitates more efficient and consistent 

model optimization. Moreover, the batch normalization layer can accelerate the training process by 

reducing the dependence on careful weight initialization or learning rate tuning. By enabling faster 

convergence, it aids in achieving better results overall. The addition of a batch normalization layer to 

CNN1 signifies our deliberate effort to improve the model's performance and address potential 

challenges during the training process. This enhancement aligns with best practices in deep learning 
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model design and contributes to the robustness and effectiveness of the proposed CNN models in the 

context of COVID-19 diagnosis using CT images. 

 
 

Figure 2. CNN1 network model structure 

 

 
 

Figure 3. CNN2 network model structure 
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Table 1. Architecture details of CNNs 

 
CNN1 

Layer (type) Output Shape Parameter 

Conv2D 223 x 223 x 16 208 

batch_normalization 223 x 223 x 16 64 

MaxPooling2D 223 x 223 x 16 0 

Conv2D 222 x 222 x 32 2080 

batch_normalization 222 x 222 x 32 128 

MaxPooling2D 222 x 222 x 32 0 

Conv2D 221 x 221 x 64 8256 

batch_normalization 221 x 221 x 64 256 

MaxPooling2D 221 x 221 x 64 0 

Flatten 3125824 0 

Dropout 3125824 0 

Dense 64 200052800 

batch_normalization 64 256 

Dropout 64 0 

Dense 2 130 

Total Params: 200,064,178 

Trainable Params: 200,063,826 

Non-trainable Params: 352 
 

CNN2 

Layer (type) Output Shape Parameter 

Rescaling 224 x 224 x 3 0 

Conv2D 224 x 224 x 16 208 

AveragePooling2D 224 x 224 x 16 0 

Conv2D 224 x 224 x 32 2080 

AveragePooling2D 224 x 224 x 32 0 

Dropout 224 x 224 x 32 0 

Conv2D 224 x 224 x 64 8256 

AveragePooling2D 224 x 224 x 64 0 

Conv2D 224 x 224 x 64 16448 

AveragePooling2D 224 x 224 x 64 0 

Dropout 224 x 224 x 64 0 

Flatten 3211264 0 

Dense 64 205520960 

Dense 2 130 

Total Params: 205,548,082 

Trainable Params: 205,548,082 

Non-trainable Params: 0 
 

 

B. DATASET  
 

Various datasets have been developed by data scientists and machine learning practitioners for the 

purpose of diagnosing COVID-19 disease. In this study, a unique data set was created using CT 

images obtained retrospectively from the data of COVID-19 patients taken from Yozgat Bozok 

University Faculty of Medicine. It's worth noting that the dataset used in this study was ethically 

approved, ensuring adherence to ethical guidelines and regulations regarding patient data privacy and 

usage. To ensure the integrity and reliability of the dataset, all image labeling was performed by a 

radiologist who was blinded to the clinical condition of the patients. By conducting the labeling 

process in this manner, it guarantees that the dataset is labeled in an objective and unbiased manner. 

This approach minimizes any potential bias or subjective interpretations that could influence the 

accuracy and generalizability of the machine learning models developed using the dataset. The use of 

an ethically approved dataset and the involvement of an expert radiologist in the labeling process 

enhance the quality and credibility of the dataset, making it a valuable resource for training and 

evaluating machine learning models for COVID-19 diagnosis. The objective and unbiased nature of 

the dataset labeling provides a solid foundation for developing reliable and accurate diagnostic models 

in the context of COVID-19 detection and classification. Cases and image number of the dataset are 

given in Table 2 and an example of dataset is shown in Figure 4. 

 
Table 2. Cases and image number of the dataset 

 

No Case Name Total Cases  Used Images 

1 COVID-19 104  3000 

2 NORMAL 115  3000 
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Figure 4. Examples of dataset 

 

C. DATA PRE-PROCESSING 
 

Image pre-processing plays a crucial role in deep learning as it involves preparing the input images for 

effective analysis by the model. This step encompasses a range of techniques, including but not 

limited to resizing, normalization, data augmentation, and more. The primary objective of image pre-

processing is to enhance the quality of the input data and facilitate improved learning by the model. By 

applying appropriate pre-processing techniques, the input images are optimized to reduce noise, 

standardize features, and enhance relevant details, thereby enabling the model to learn more 

effectively from the data. At this stage, the raw data obtained from the hospital underwent pre-

processing steps to prepare it for model training. The data, initially acquired in the 'DICOM' format, 

were visualized and inspected using the Weasis (DICOM viewer) program, an open-source and 

versatile medical imaging software. Weasis facilitated the display, analysis, and processing of various 

medical images, such as MR, CT, PET, mammography, among others. 

 

To facilitate further processing and compatibility with machine learning algorithms, the data was 

converted from the 'DICOM' format to the more commonly used 'png' format. This conversion ensured 

that the data could be easily accessed and manipulated for subsequent analysis. Additionally, during 

the conversion process, the data was resized to a standardized dimension of 224 x 224 pixels, 

maintaining the aspect ratio and preserving the essential details present in the images. Subsequently, 

the data was divided into training and testing sets using an 85%-15% split. The training set comprised 

85% of the data, while the remaining 15% was set aside as the test set for evaluating the performance 

of the trained model. By following these preprocessing steps, including image format conversion, 

resizing, and appropriate dataset splitting, the data was prepared and organized for subsequent model 

training and evaluation. This systematic approach ensured the availability of a well-prepared dataset 

and facilitated reliable and comprehensive analysis for the development of accurate COVID-19 

detection models. 

 

D. HYPERPARAMETER OPTIMIZATION  
 

In classification problems, hyperparameters play a crucial role in determining optimal decision 

boundaries that effectively divide classes. In machine learning or deep learning algorithms, 

hyperparameters are tunable settings or configurations that influence the learning process and the 

efficacy of the resulting model. These parameters are set by the user prior to training the model and are 

not learned from the data. The selection of appropriate hyperparameters is crucial for attaining the 

utmost levels of precision and generalisation in classification tasks. Machine learning algorithms rely 

on an iterative process to determine the best hyperparameter values that yield the most accurate and 

reliable models. This process, known as hyperparameter tuning or optimization, involves 

a) COVID-19 b) NORMAL 
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systematically searching through different combinations of hyperparameters to find the optimal 

configuration. Various techniques, such as grid search, random search, and Bayesian optimization 

[17], [37], are commonly employed to explore the hyperparameter space and identify the settings that 

maximize the model's performance. When it comes to hyperparameter optimization, factors such as 

the magnitude and characteristics of the data play a significant role in determining the appropriate 

method to use. Among the popular optimization techniques, grid search stands out as one of the most 

commonly employed approaches. In grid search, a grid of hyperparameters is created, and the learning 

model is trained and evaluated on each combination within the grid. 

 

E. CROSS-VALIDATION   
 

Cross-validation methods are widely employed in machine learning to assess and validate the 

performance of models. The k-fold cross-validation is a frequently used technique that involves 

dividing the dataset into k subsets or folds of roughly equal size. The model is trained on k-1 folds and 

validated on the remaining fold. Each fold serves as the validation set only once. This process is 

repeated k times, each time using a different fold for validation. In this work, k is chosen as 5, which 

means the dataset is divided into five subsets. The model is trained and validated five times, each time 

leaving out a different subset for validation. The performance metrics obtained from each fold are 

averaged to provide an estimate of the model's overall performance, ensuring a robust evaluation of 

the model's ability to generalize to unseen data [38]. K-fold cross-validation helps to mitigate issues 

related to overfitting and provides a more robust evaluation of the model's 

 

F. EVALUATION METRICS   
 

Metrics for evaluation are used to assess the effectiveness and quality of machine learning algorithms. 

Effective evaluation metrics are essential for comprehending the performance of a trained deep 

learning model on test data, i.e., new, invisible data. The literature provides a variety of evaluation 

criteria for testing models. Using multiple assessment metrics to evaluate the performance of a trained 

deep learning model is advantageous in numerous ways, as a model may perform well with one 

benchmark metric but poorly with another. 

 

Classification estimates must have one of the following four base units, and they are as follows 

True Positive (TP): When the model correctly predicts the positive class. 

False Positive (FP): When the model incorrectly predicts the positive class. 

True Negative (TN): When the model correctly predicts the negative class. 

False Negative (FN): When the model incorrectly predicts the negative class. 

The evaluation metrics, denoted by Equations (1)-(4), provide quantitative measures to assess the 

model's performance [17]: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2𝑥
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 
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III. EXPERIMENTAL RESULTS 
 

In this section, to classify the COVID-19 original dataset in this study, two approaches are adopted. 

Firstly, novel CNN models and pre-trained models are proposed and utilized. These models are 

specifically designed to handle the task of COVID-19 classification. Secondly, a hybrid deep learning 

method is employed, which involved combining the proposed CNN models with the SVM algorithm. 

This hybrid approach aimed to enhance the classification performance by leveraging the strengths of 

both CNN and SVM. In various studies, datasets are obtained from public sources such as Kaggle or 

GitHub repositories, while in others, hospitals and universities provide private datasets. In this study, a 

hybrid deep learning approach is used to classify the COVID-19 dataset, which has been meticulously 

annotated by a clinical expert. Figure 5 displays the total number of images used in the study. 

 

  
 

Figure 5. Number of used images 

 

A. CLASSIFICATION WITH CNN MODELS   
 

Results of proposed CNN models and pretrained models are analysed in this section. The hardware 

information utilized in the study is provided in Table 3. This table offers valuable insights into the 

computational resources employed during the experimentation process, shedding light on the hardware 

specifications used for training and evaluation. Size of the used models are 224x224x3. This 

information provides details on the architecture and structure of the CNN models, such as the number 

of layers and the size of each layer. Understanding the dimensions of these models aids in 

comprehending their complexity and the level of abstraction they can achieve. 

 
Table 3. Configuration of the hardware 

 

Name Parameter 

Memory 64 GB 

Processor Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz   2.19 GHz  (2 

processor) 

Server model Hp z6 g4 

Graphics NVIDIA GeForce RTX 3090 Ti 

OS Windows 10 Pro for Workstations 

Language Python 3 

Framework Jupyter Notebook 
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Table 4 displays the hyperparameter values employed in the study. Hyperparameters play a crucial 

role in shaping the behavior and performance of deep learning models. The table provides specific 

values for hyperparameters used in the proposed CNN models, enabling reproducibility and 

facilitating further experimentation. 

 
Table 4. Hyperparameters of models 

 

Model 
Learning 

rate 

Kernel 

size 
Activation 

Pool 

size 
Pool type Epoch Optimizer 

Batch 

size 

CNN1 0.0001 2 x 2 ReLu 1 x 1 maxPooling 14 Adagrad 8 

CNN2 0.001 2 x 2 ReLu 1 x 1 averagePooling 15 Adam 6 

ResNet50v2 0.0001 3 x 3 ReLu 3 x 3 maxPooling 10 Adam 6 

VGG16 0.0001 3 x 3 ReLu 3 x 3 maxPooling 9 Adam 8 

 

Moving on to Table 5, it presents a comprehensive analysis of the CNN models used, showcasing 

various performance metrics such as training, validation, and test accuracy, precision, recall, and F1-

score. Additionally, the table includes information on the number of parameters, training time, and the 

number of epochs utilized. This detailed summary allows researchers to evaluate the performance and 

efficiency of the CNN models under investigation. 

 
Table 5. Training, validation and test accuracy, precision, recall, and F1-score along with the number of 

parameters, training time, and epochs required to train deep learning architectures of CNN models 

 

Models Parameters Storage  

Epochs 

for 

Training  

Training 

Time 

(min) 

Training 

Accuracy 

Validation 

Accuracy 

Testing 

Accuracy 
Precision Recall 

F1-

score 

ResNet50

v2 
26,776,162 306 MB 10 18 99.94 99.19 99.17 99.2 99.2 99.2 

VGG16 15,517,602 177 MB 9 6 100 99.05 99.26 99 99 99 

CNN1 200,064,178 1.49 GB 14 23 99.27 99.84 99.93 100 100 100 

CNN2 205,548,082 2.29 GB 15 29 99.67 99.96 99.86 100 100 100 

 
Table 6. Classification reports and confusion matrix of models 
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 precision recall f1-score support 
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                    Covid-19 Normal 

    Predicted 
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A confusion matrix is a widely used tabular representation that provides valuable insights into the 

performance of classification models when evaluated against a set of known-true test data. It presents 

the results in a structured format, enabling a comprehensive analysis of the model's predictive 

capabilities. The classification reports and confusion matrices for each CNN model are generated 

using 5-fold cross-validation and the mean values of these reports are presented in Table 6. By 

studying the confusion matrices, researchers can gain insights into various performance metrics such 

as accuracy, precision, recall, and F1-score for each class. These metrics provide a comprehensive 

evaluation of the model's ability to correctly classify instances from different classes. Additionally, the 

classification reports offer a concise summary of these performance metrics, making it easier to assess 

the strengths and weaknesses of the CNN models under investigation. 
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(a) CNN1 (b) CNN2 

(c) VGG16 (d) ResNet50v2 
 

Figure 6. ROC curves of CNN1 with 5 fold cross validation 

 

Figure 6 showcases the Receiver Operating Characteristic (ROC) curves for each CNN model utilized 

in the study. ROC curves provide a visual representation of the performance of classification models 

across different discrimination thresholds. By analyzing the ROC curves, researchers can gain insights 

into the models' ability to accurately distinguish between positive and negative instances. The curves 

depict the trade-off between the true positive rate (sensitivity) and the false positive rate (1-specificity) 

at various classification thresholds. A well-performing model is characterized by a curve that closely 

hugs the top left corner of the graph, indicating high sensitivity and low false positive rate.  

 

Figure 7 presents the accuracy and loss graphs of the proposed CNN models, specifically designed for 

k = 5 cross validation method. These graphs offer a visual representation of the models' performance 

and shed light on important aspects of their training process. Upon examining the accuracy graph, it 

becomes evident that the proposed CNN models exhibit consistent and desirable accuracy rates 

throughout the training phase. This implies that the models effectively learn the underlying patterns 

and features of the training data. Notably, the absence of overfitting is observed, which indicates that 

the models do not excessively memorize the training data, thus enabling them to generalize well to 

unseen instances. Additionally, the absence of underfitting suggests that the models are capable of 

capturing and leveraging the key characteristics of the data, rather than oversimplifying the problem. 

The loss graph, on the other hand, provides insights into the models' optimization process. The loss 

values decrease steadily, indicating that the models are successfully minimizing the discrepancy 

between their predicted outputs and the actual labels. The smooth and continuous decline in the loss 

signifies that the models are steadily improving their performance and converging towards an optimal 
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state. A novel approach is proposed for developing new CNN models and utilizing pre-trained models, 

which involves two main components. 

 

 
                                              (a)                                                                         (b) 

 
                                              (c)                                                                          (d) 

 

 
                                              (e)                                                                           (f) 
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                                              (g)                                                                          (h) 

 
Figure 7. Accuracy and loss graphs of the models (a) CNN1, (c) CNN2, (e) ResNet50v2 and (g) VGG16, Loss 

graph of the models (b) CNN1, (d) CNN2, (f) ResNet50v2 and (h) VGG16 

 

B. CLASSIFICATION WITH HYBRID MODELS    
 

This section presents detailed results of the hybrid models used. The first component of the 2-stage 

model is a CNN network structure consisting of six layers, designed to generate feature vectors during 

the study. The CNN network is capable of processing high-dimensional data and extracting relevant 

features. The second component involves employing an SVM classifier layer for predicting outcomes. 

By combining these two techniques, the proposed hybrid approach aims to enhance the performance 

of CNN models and make them applicable in various image detection domains. However, traditional 

training of CNN models requires a significant amount of time and a large number of samples, 

imposing limitations on experimental conditions. On the other hand, SVM has demonstrated its 

effectiveness in regression, pattern classification, and prediction tasks [39], [40]. Unlike CNN, SVM 

does not require an extensive number of examples for training, but it faces challenges when it comes 

to identifying multiple classifications simultaneously [40], [41]. 

 

In this research, CNN1, a specific CNN model employed, comprises three convolution layers, three 

pooling layers, a fully connected layer, and a softmax classifier layer. Additionally, an SVM classifier 

is integrated into the CNN + SVM hybrid model for the classification process after the initial fully 

connected layer. The operational flow of CNN models involves several key stages. Initially, CT data 

images are inputted into the convolution layer to extract feature vectors, followed by the pooling layer 

to reduce data dimensionality. Finally, the fully connected layer is employed to further extract the 

feature vectors. The convolution layer utilizes a 2x2 kernel size, while the pooling layer employs a 1x1 

convolution kernel size. Dropout is applied to mitigate overfitting. The error function is determined 

using cross-entropy, and optimization of the error function is achieved through the use of either the 

Adam or Adagrad Optimizer algorithm. A flowchart of the hybrid model is given in Figure 8. 
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Figure 8. A flowchart of the hybrid model 

 

Table 7 presents an in-depth analysis of the hybrid model utilized in the study. It includes crucial 

performance metrics such as training and validation accuracy, precision, recall, and F1-score. 

Additionally, the table provides information on the number of parameters, training time, and the 

number of epochs employed. The results in Table 7 demonstrate that the proposed new CNN models 

exhibit high accuracy in diagnosing COVID-19, with exceptional performance observed in the 

CNN1+SVM model, achieving 100% accuracy. The accuracy metric reflects the ability of the models 

to correctly classify instances of COVID-19, indicating their effectiveness in capturing the relevant 

patterns and features in the dataset. Furthermore, Table 8 presents a comparison between the training 

time of the CNN models and the SVM model. It highlights the advantage of the SVM model over the 

hybrid model in terms of training time. SVM is known for its efficiency in training, as it does not 

require a large number of examples. This characteristic is particularly advantageous when dealing with 

limited resources or time constraints. The table emphasizes the time-saving benefit of incorporating 

SVM in the hybrid model, demonstrating its superiority over training CNN models alone. 

 
Table 7. Training and validation accuracy, precision, recall, and F1-score along with the number of parameters, 

training time, and epochs required to train deep learning architectures of CNN+SVM 

 

Models Parameters Storage  

Epochs 

for 

Training 

Training 

Accuracy 

Matthews 

corrcoef 

Testing 

Accuracy 
Precision Recall 

F1-

score 

ResNet50v

2 + SVM 
26,776,162 8 KB 10 99.99 97.11 98.55 99 99 99 

VGG16 + 

SVM 
15,517,602 4 KB 9 99.99 99.11 100 100 100 100 

CNN1 + 

SVM 
200,064,178 3 KB 14 100 100 100 100 100 100 

CNN2 + 

SVM 
205,548,082 2 KB 15 100 99.55 99.77 100 100 100 

 
Table 8. Training time of CNN and SVM models  

 

Architectures CNN Training Time (s) SVM Training Time (s) Total Time(s) 

ResNet50v2 504 0.1743 504.1743 

VGG16 752.4 0.1704 752.5704 

CNN1 682.2 0.0408 682.2408 

CNN2 1677.6 0.0484 1677.6484 

 

Classification report and confusion matrix of hybrid models are given in Table 9. In addition, the ROC 

curve, loss and accuracy curves of the models are also shown in Figures 9 and 10. 
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Table 9. Classification reports and confusion matrix of models 
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Figure 9 shows the ROC curves of used models. The ROC curve in the CNN1+SVM demonstrates 

perfect classification performance, with an AUC (Area Under the Curve) of 1.00 for all curves, 

including the micro-average, class 0, and class 1. This indicates that the model achieves 100% 

accuracy, correctly classifying all instances of both classes without any false positives or false 

negatives. The curve adheres to the upper-left corner of the plot, which represents the ideal 

performance of a classifier. The ROC curve for CNN2+SVM exhibits the same classification 

performance with CNN1+SVM, achieving an AUC (Area Under the Curve) of 1.00 across all metrics, 

including the micro-average, class 0, and class 1. This indicates that the model attains perfect 

accuracy, successfully identifying all instances of both classes without any errors, such as false 

positives or false negatives. The curve aligns perfectly with the upper-left corner of the plot, 

representing the optimal performance of a classifier. Similar to the first graph, VGG16+SVM graph 

reflects perfect classification performance, achieving an AUC of 1.00 for all curves. The ROC curve 

closely aligns with the upper-left corner, signifying that the model makes no classification errors for 

either class. This level of performance indicates the model's ability to completely differentiate between 

the two classes without overlap or ambiguity. The ResNet50v2+SVM graph shows a nearly perfect 

ROC curve, with an AUC of 0.99 for all curves (micro-average, class 0, and class 1). This suggests 

that the model performs exceptionally well but might misclassify a small number of instances. The 

slight deviation of the curve from the upper-left corner indicates minor imperfections in classification, 

but the model still achieves highly reliable performance. 

 

(a) CNN1+SVM (b) CNN2+SVM 

(c) VGG16+SVM (d) ResNet50v2+SVM 
 

Figure 9. ROC curves of the used models 
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Figure 10 illustrates the accuracy and loss graphs of the proposed used hybrid models, these graphs 

provide a visual overview of the models' performance and highlight key aspects of their training 

process. The accuracy graph reveals that the proposed hybrid models maintain consistent and 

favorable accuracy levels throughout the training phase, demonstrating their ability to effectively learn 

the underlying patterns and features of the training data. Importantly, there is no evidence of 

overfitting, suggesting that the models avoid excessively memorizing the training data and can 

generalize well to unseen instances. Furthermore, the absence of underfitting indicates that the models 

successfully capture and utilize the critical characteristics of the data without oversimplifying the 

problem. 

 

The loss graph, in contrast, offers insights into the optimization process of the models. It shows a 

steady decline in loss values, signifying that the models are effectively minimizing the difference 

between their predicted outputs and the actual labels. The smooth, continuous reduction in loss 

indicates that the models are progressively improving their performance and converging toward an 

optimal state. A novel methodology is introduced for developing new hybrid models and leveraging 

pre-trained models, consisting of two key components. 

 

 
                                              (a)                                                                            (b) 

 
                                              (c)                                                                             (d) 
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                                              (e)                                                                              (f) 

 
                                              (g)                                                                                                  (h) 

 

Figure 10. Accuracy and loss graph of the models (a) CNN1+SVM, (b) CNN2+SVM, (c) ResNet50v2+SVM and 

(d) VGG16+SVM 

 

While our study showcases promising results with CNN and hybrid CNN+SVM models, it is crucial to 

acknowledge the advancements made by previous researchers in the field. The higher accuracy rates 

reported in the comparative studies may be attributed to various factors such as different datasets, 

model architectures, hyperparameter optimization techniques, and data preprocessing methods. 

Understanding these variations and incorporating the relevant advancements into our models can 

potentially lead to enhanced accuracy and improved performance. Table 10 presents a comparison of 

similar studies in the literature. Upon examining these studies in relation to our recommended models, 

it becomes evident that the accuracy rates achieved by the other proposed models are higher. This 

suggests that there is room for improvement in our proposed models to match or surpass the 

performance of these comparative studies. 

 
Table 10. Comparison of similar studies in the literature 

 

Models Data Size Data Type Performance (%) Study 

CNN 1430 X-ray 97.92 [22] 

WCNN 1000 CT 98.19 [23] 

CNN 6310 X-ray 95 [24] 

MobileNetV3Large 15186 CT 99.74 [25] 

SeNet154 22779 CT 98 [25] 

CNN 2905 X-ray 98.13 [26] 

CNN 15471 X-ray 94.55 [26] 

ResNet101 8900 X-ray 98 [27] 

VGG19 7455 CT 97 [27] 
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Table 10(cont). Comparison of similar studies in the literature 

 

ResNet50 - CT 98.78 [28] 

CNN 15871 CT 98.36 [29] 

CNN+SVM 5360 X-ray 97.41 [30] 

CNN+SVM 6000 X-ray 91.1 [31] 

ResNet50+SVM 13808 X-ray 97.3 [32] 

mAlexNet+SVM 3911 X-ray 99.8 [42] 

CNN+SVM 746 CT 91.1 [43] 

This Study (Hybid 

CNN+SVM) 
6000 CT 100 - 

 

 

IV. DISCUSSION 
 

There have been numerous studies in the literature focusing on the detection of COVID-19, including 

hybrid models that have shown high accuracy [44]. These studies have laid the foundation for 

exploring innovative approaches to leveraging medical imaging for disease detection. In our proposed 

study, we observed that both newly developed CNN models and CNN+SVM hybrid models achieved 

superior accuracy on the original dataset compared to results reported in prior studies. This 

improvement highlights the potential of our approach to effectively capture and utilize features from 

medical images for COVID-19 detection. It is worth noting that previous studies often utilized limited 

datasets with few images per class [45]–[48]. In contrast, our study adopted a comprehensive approach 

by analyzing a large dataset, which prioritizes studies that incorporate more extensive data. While 

these studies have contributed valuable insights, their findings may not generalize well due to the 

constrained size and diversity of the datasets. In contrast, our study adopted a more comprehensive 

approach by analyzing a significantly larger dataset, which allows for the exploration of a wider range 

of imaging patterns and patient characteristics. This emphasis on larger datasets not only improves the 

reliability of the findings but also ensures that the models are trained on data that more closely 

resemble real-world scenarios. 

 

By prioritizing studies that incorporate extensive data, we aim to address key challenges in medical 

image classification, including the variability in imaging protocols, patient demographics, and disease 

presentation. Furthermore, our approach underscores the importance of scalability and adaptability, 

which are critical for developing models that can be effectively deployed in clinical practice. 

 

 

V. LIMITATION AND FUTURE WORK 

 

This study emphasizes the importance of dataset size in enhancing the robustness and reliability of our 

findings. While the system demonstrates good performance on our datasets, it is important to 

acknowledge several limitations that need to be addressed. Firstly, our research is currently in the 

theoretical phase, and the models have not yet been validated in real clinical routines. This limits the 

immediate applicability of our findings to practical medical settings. Additionally, the datasets used in 

this study, although comprehensive, may not fully represent the diversity of real-world clinical data, 

such as variations in imaging protocols, patient demographics, and disease presentation. As a result, 

there is a potential risk that the models may not generalize well across different populations or clinical 

environments. 

 

Moreover, while our models show promising results in detecting COVID-19 from CT images, their 

interpretability and the exact mechanisms through which they identify key features remain 

underexplored. This lack of transparency could hinder clinical acceptance, as clinicians often require 

an understanding of how diagnostic tools make predictions to trust and effectively use them. 
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In future research, we plan to address these limitations through several initiatives. First, we aim to 

validate our models in clinical settings by conducting rigorous tests in collaboration with healthcare 

professionals. This will not only help evaluate the models’ real-world performance but also allow us to 

understand clinicians' usage patterns and gather valuable feedback on their practicality and reliability. 

Such insights will guide us in refining and improving the models to better align with clinical needs. 

 

Additionally, we will focus on assessing the severity of COVID-19 and extracting valuable 

information from CT images to contribute to global efforts against the pandemic. This includes 

performing detailed descriptive analyses of our models to identify and interpret the key features in CT 

images that are critical for the detection and severity assessment of COVID-19. By doing so, we aim 

to enhance the transparency and explainability of the models, thereby facilitating the adoption of these 

tools in clinical practice. 

 

Finally, we plan to expand the scope of our study by incorporating diverse and larger datasets, 

ensuring that the models can generalize effectively across various clinical scenarios. This will also 

involve engaging with a broader range of healthcare professionals across different regions to ensure 

that the models are both adaptable and widely applicable. Through these efforts, we aim to make 

meaningful contributions to improving screening processes for clinicians and supporting global 

healthcare systems in their fight against COVID-19. 

 

 

VI. CONCLUSION 

 

The objective of this study is to introduce a decision support system that utilizes deep learning 

algorithms for the accurate diagnosis of COVID-19 by analyzing CT images. Along with two novel 

CNN models developed in this study, we also conducted a comprehensive modeling study using pre-

trained architectures such as ResNet50v2 and VGG16. Furthermore, we propose a hybrid model by 

combining these CNN models with the SVM algorithm. During the modeling process, we performed 

parameter selection using the grid search method for hyperparameter optimization. The original 

dataset used in the modeling consists of two classes, and detailed information about the dataset is 

provided. To evaluate the performance of our models, we split the original dataset as well as newly 

created datasets into training and test sets using an 85-15 ratio, and we also employed 5-fold cross-

validation. All results were presented in a comparative manner. The accuracy values of the results 

obtained are 99.93% and 99.86% CNN models, 100%  and 99.77% CNN+SVM models, and it is seen 

that the proposed models can classify the CT images of COVID-19 patients and make the diagnosis of 

COVID-19 with high accuracy. Additionally, we assessed the effectiveness of our proposed methods 

on a different dataset, thereby increasing the efficiency of the study. These results provide strong 

evidence that the proposed deep learning models can be successfully utilized in the healthcare domain. 
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