
ÇOMÜ Zir. Fak. Derg. (COMU J. Agric. Fac.)       

2025: 13 (1): 12-31 

ISSN: 2147–8384 / e-ISSN: 2564–6826                                       

doi: 10.33202/comuagri.1586063 

0): 000-000, 202* 

https://doi.org/10.18016/ksutarimdoga.vi.000000 

 

 
 

12 

 

Research Article 

AI-Based Prediction of Microelement and Heavy Metal Contents in 

Central-Southern Anatolian Soils: A Pilot Study 
 

Noyan Eken1  Enes Efe2  Kamer Yazar3  Mehmet Hamurcu3  

Fatma Gökmen Yilmaz3  Sait Gezgin3  Erdoğan Eşref Hakki3*  

 
1Ege University, Department of Organic Agriculture, Ödemis Vocational Training High School, 35750 Izmir, Türkiye 
2Hitit University, Department of Electrical and Electronics Engineering, 19169 Çorum, Türkiye  
3Selcuk University, Department of Soil Science and Plant Nutrition, Faculty of Agriculture, 42280, Konya, Türkiye 

*Corresponding author: eehakki@selcuk.edu.tr  

 

Received Date: 15.10.2024                                                Accepted Date: 13.03.2025 

 

Abstract  
The estimation of total microelement and heavy metal concentrations in soil samples taken from the 

Central-Southern Anatolian Region of Türkiye was conducted using artificial intelligence models. The accurate 

prediction of microelement contents and heavy metal contents of soils is of importance for agricultural productivity 

and environmental health. A total of 62 soil samples were analyzed for Boron (B), Iron (Fe), Zinc (Zn), Manganese 

(Mn), Copper (Cu), Cadmium (Cd), Chromium (Cr), Nickel (Ni) and Lead (Pb). The artificial intelligence models 

used in this study were Random Forest (RF), Gradient Boosting (GB), and Support Vector Regressor (SVR). 

Model performance was evaluated based on Mean Absolute Error (MAE), Mean Squared Error (MSE) and R² 

scores. The best performance was achieved for the B and Cu contents, according to the results. In the case of B 

contents, the GB model provided the best results (MAE: 4.89, MSE: 28.01 and R²: 0.55), while the RF model 

showed the highest performance for Cu predictions (MAE: 3.20, MSE: 16.80, and R²: 0.75). In addition, the results 

indicate that the artificial intelligence models used in the present study hold promising potential for predicting 

microelement and heavy metal concentrations in soil samples. 

Keywords: Prediction. Total micro element content, Total heavy metal content, Central Southern Anatolia Region 

soils, Artificial Intelligence 

 

Yapay Zekâ ile Orta-Güney Anadolu Topraklarında Mikroelement ve Ağır Metal 

Tahmini: Pilot Bir Çalışma 

Öz 
Türkiye'nin Orta-Güney Anadolu Bölgesi'nden alınan toprak örnekleri üzerinde toplam mikro element ve 

toplam ağır metal konsantrasyonlarının tahmini yapay zekâ modelleri kullanılarak yapılmıştır. Toprakların mikro 

element ve ağır metal içeriklerinin doğru şekilde tahmin edilmesi tarımsal verimlilik ve çevre sağlığı açısından 

büyük önem taşımaktadır. Toplam 62 toprak örneğinde Bor (B), Demir (Fe), Çinko (Zn), Mangan (Mn), Bakır 

(Cu), Kadmiyum (Cd), Krom (Cr), Nikel (Ni) ve Kurşun (Pb) elementleri analiz edilmiştir. Bu çalışmada yapay 

zekâ modelleri olarak Random Forest (RF), Gradient Boosting (GB) ve Support Vector Regressor (SVR) 

kullanılmıştır. Modellerin performansı, Ortalama Mutlak Hata (MAE), Ortalama Kare Hatası (MSE) ve R² skorları 

ile değerlendirilmiştir. En iyi performans B ve Cu içeriklerinde elde edilmiştir. B içeriği tahmininde en iyi sonuç 

GB modeliyle sağlanmıştır (MAE: 4.89, MSE: 28.01, R²: 0.55). Cu içeriği tahmininde ise RF modeli üstünlük 

göstermiştir (MAE: 3.21, MSE: 16.81, R²: 0.75). Ayrıca sonuçlar, bu çalışmada kullanılan yapay zeka modellerinin 

toprak örneklerindeki mikroelement ve ağır metal konsantrasyonlarının tahmini için umut verici bir potansiyele 

sahip olduğunu göstermektedir.  

Anahtar Kelimeler: Tahmin, Toplam mikro element içeriği, Toplam ağır metal içeriği, Orta Güney Anadolu 

Bölgesi toprakları, Yapay Zeka 
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Introduction 

Soil is considered a vital resource for global food production and ecosystem balance. The 

sustainability of agricultural activities depends on the preservation and optimization of soil quality. The 

abundance of microelements and heavy metals in the soil directly affects plant growth and agricultural 

productivity. Although microelements are required by plants in trace amounts, their deficiency or excess 

can negatively impact crop quality and yield. Additionally, the use of agricultural chemicals and 

industrialization can lead to the accumulation of heavy metals in the soil, which poses a threat to both 

plant and human health (Khosravi et al., 2018; Nie et al., 2024). Accurate analysis of soil components 

is essential for improving agricultural productivity and maintaining ecosystem health. Predicting the 

chemical properties of soil offers valuable insights into nutrient availability and potential toxicities, 

forming a foundation for sustainable land management practices. 

Gezgin et al. (2002) conducted a comprehensive analysis of soils from Central and Southern 

Anatolia, focusing on B content and its influencing factors. Their findings revealed significant 

variability in soil properties, including pH (8.59–9.4), electrical conductivity (0.047–3.34 mS cm⁻¹), 

lime content (0.17–69.1%), and organic matter content (0.15–8.8%). They also identified diverse soil 

texture classes, with 51% classified as fine, 44.5% as loamy, and 4.5% as coarse. Extractable 

microelement concentrations, such as Fe, Zn, Mn, and Cu, varied widely, while extractable B ranged 

from 0.01–63.9 mg kg⁻¹. Notably, 26.6% of the soils were boron-deficient (<0.5 mg kg⁻¹), whereas 9.9% 

exhibited toxic boron levels (>0.5 mg kg⁻¹), highlighting the need for targeted soil management 

strategies. 

Similarly, Ozyazici et al. (2017) investigated heavy metal contamination in agricultural soils 

from the Central and Eastern Black Sea Region. Using geostatistics combined with GIS, they analyzed 

3400 surface soil samples and quantified levels of Cd, Co, Cu, Ni, Pb, and Zn. Their results indicated 

that while Ni and Co concentrations exceeded threshold levels due to natural sources, other heavy metals 

remained below critical values. The average concentrations of heavy metals followed the order: Ni > Zn 

> Cu > Pb > Co > Cd. This study emphasized the importance of distinguishing between natural and 

anthropogenic sources of contamination to develop effective mitigation strategies. 

Traditional soil analysis methods, while accurate, are often labor-intensive, time-consuming, 

and costly. These limitations highlight the potential of advanced data science techniques, such as 

artificial intelligence (AI) and machine learning (ML). By utilizing large datasets, these technologies 

can streamline soil analysis, predict microelement and heavy metal concentrations, and enable efficient 

large-scale assessments, offering a valuable tool for modern agricultural practices. AI models can learn 

from large datasets and make predictions regarding microelement and heavy metal contents based on 

soil characteristics. Recent studies have demonstrated that AI has proven to be an effective tool in the 

fields of agriculture and environmental sciences. For instance, (Shi et al., 2022) and (Khosravi et al., 

2018) have shown that AI models integrated with spectral analysis yielded successful results in 

predicting heavy metal contamination. Random Forest (RF) and Gradient Boosting (GB) algorithms, in 

particular, are among the widely used models in soil analysis (Nie et al., 2024). However, as far as we 

know, studies using limited datasets remain scarce, and comprehensive research focusing on the 

prediction of microelements and heavy metals based on fundamental soil components is still lacking. 

The existing literature highlights the use of various AI methods for predicting elements in 

agricultural soils. (Nie et al., 2024) successfully predicted the distribution of heavy metals such as Cr, 

Cd, Pb, and As in agricultural soils using the RF model. Similarly, (Shi et al., 2022) developed hybrid 

AI models to estimate heavy metal content in soils by leveraging remote sensing images. Additionally, 

(Khosravi et al., 2018) monitored heavy metal pollution using spectral data combined with machine 

learning techniques. (Luce et al., 2017) used visible near-infrared spectroscopy to predict heavy metal 

concentrations in soils contaminated with paper mill waste. These studies also underscore the challenges 

of working with limited datasets (Khosravi et al., 2018; Munnaf and Mouazen, 2021). 

This study integrates laboratory analyses and advanced AI modeling to comprehensively 

evaluate the microelement and heavy metal contents of soils. By leveraging key soil physicochemical 

properties such as pH, electrical conductivity (EC), lime content, texture, and organic matter from the 

Central and Southern Anatolian regions, robust AI models were developed and validated using metrics 

such as Mean Absolute Error (MAE), Mean Squared Error (MSE), and R². The primary objective of this 

research is to establish a reliable framework for predicting soil microelement and heavy metal 

concentrations through AI-based approaches. The findings not only contribute to precision agriculture 
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by enabling efficient and cost-effective soil management strategies tailored to the unique characteristics 

of these regions but also provide a foundation for future studies exploring the integration of AI in soil 

science and sustainable agriculture. 

 

Materials and Method 

Central and Southern Anatolia Geological Features 

The study area, located in the intermediate zone of Central Anatolia, lies between the Northern 

Anatolian (Anatolides) and Southern Anatolian (Taurides) fold systems. This region features a diverse 

geomorphology, including basins, tablelands, isolated folds, volcanic zones, and ancient crystalline 

masses (Lahn, 1949). The central portion of this zone is defined by three major geological units: (1) the 

Anatolide folds, comprising the Ankara fan, Çankırı-İskilip ranges, and Çorum fan, delineating the 

western, northern, and northeastern boundaries; (2) the volcanic zone of Hasan Dağı in the southeast; 

and (3) the inner Tauride folds in the south. Highlands such as Kırşehir-Keskin and Boz Dağlar further 

divide the region into three depressions: the Middle Kızılırmak-Delice Irmak basin, the Tuz Gölü basin, 

and the Konya-Ereğli basin. Volcanic activity in the Karaman district, located in the southern portion of 

the Central Anatolian Plateau, occurred over four distinct phases during the Late Pliocene to Late 

Pleistocene. The oldest volcanic deposits, dated at 3.2 million years, are found in the Mercik area, 

followed by volcanic formations in Sızak, Kartallık, and Kızıldağ, dated at 1.95–2.05 million years. A 

significant caldera-forming event approximately 1.1 million years ago produced andesites, tuffs, 

pumice, and volcanic breccias, with base surge deposits observed on the caldera's northern flank. The 

youngest volcanic activity, producing late-stage andesites, is seen in Bozdağ and Değle Dağı. 

Additionally, the region includes pre-Neogene crystalline limestones and Neogene formations 

comprising conglomerates, sandstones, and limestones (Koç, 1987). Climatic conditions in the region 

reflect a semi-arid climate, with annual average temperatures of 11.7°C and 12.1°C for Konya and 

Karaman provinces, respectively, and long-term annual precipitation averages of 329.7 mm for Konya 

and 336.7 mm for Karaman  (MGM, 2025). 

Soil Sampling 

A total of 62 soil samples, each weighing at least 1 kg, were collected through random sampling 

from various districts in the Central and Southern Anatolian regions, specifically representing the soils 

of Konya Province. The samples were taken from Seydişehir (10 samples), Karapınar (14 samples), 

Selçuklu and Meram (11 samples combined), Karatay (10 samples), Cihanbeyli (3 samples), Kulu (7 

samples), Hüyük (2 samples), and Sarayönü (1 sample) districts. Additionally, 4 soil samples were 

collected from Karaman Province. These samples were taken homogeneously from a depth of 0–30 cm 

to represent the region and were subsequently analyzed for essential soil properties, including pH, 

electrical conductivity (EC), lime percentage, organic matter percentage, and texture. These variables 

were used to estimate the concentrations of microelements and heavy metals. This research focused on 

predicting microelement and heavy metal contents in soils from agricultural lands in the Central-

Southern Anatolia region of Türkiye (Figure 1), covering approximately 324.61 ha in the Central 

Anatolia Region (Konya Province) and 47.22 ha in the Southern Anatolia Region (Karaman Province). 

To assess model performance, standard evaluation metrics such as MAE, MSE, and R² scores were 

applied. The results highlight the potential of AI techniques in predicting soil microelements and heavy 

metals, even with limited data. This demonstrates how AI can significantly improve soil quality 

monitoring and management, ultimately supporting more sustainable agricultural practices in the region. 

Furthermore, the integration of AI methods with soil analysis provides an innovative approach for better 

understanding and managing soil health. It offers valuable insights into sustainable farming practices in 

areas with diverse environmental conditions. 
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Figure 1. Location map of the study area 

 

Soil Physico-Chemical Analyses 
Upon arrival at the laboratory, the soil samples were air-dried at room temperature and sieved 

through a 2 mm mesh. The following key soil properties were analyzed: 

• pH: The pH of each soil sample was measured using a potentiometric method by 

preparing a soil-water mixture (1:2.5 ratio) (Jackson, 1958). 

• Electrical Conductivity (dS cm-1): Electrical conductivity was determined using an 

EC meter, which measures the soil solution's ability to conduct electricity (Jackson, 1958). 

• Lime Content (CaCO3 %): The lime content was determined by adding hydrochloric 

acid (HCl) to the soil samples, and the percentage of calcium carbonate (CaCO3) was calculated based 

on the amount of carbon dioxide (CO2) (Hızalan and Ünal, 1966). 

• Organic Matter (%): Organic matter content was quantified using the Smith-Weldon 

Method, which involves the oxidation of organic material by dichromate (Smith and Weldon, 1941). 

• Texture Class (%): The texture analysis was determined according to the Bouyocous 

method (Gee, 1986). 

• Total Micro Elements and Heavy Metals Contents (mg kg-1): The total 

concentrations of trace elements and heavy metals were determined using the aqua regia extraction 

method and quantified with a Varian Vista ICP-OES instrument (Kick et al., 1980). 

Artificial Intelligence Statical Analyses 
The statistical analysis involved developing machine learning models to predict the 

microelement and heavy metal contents of the soil based on its physicochemical properties. The 

independent variables (X) included pH, EC, lime percentage, organic matter percentage, and soil texture, 

while the dependent variables (y) were the concentrations of microelements (B, Fe, Zn, Mn, Cu) and 

heavy metals (Cd, Cr, Ni, Pb). 

Data Normalization: Data normalization is an essential preprocessing step in machine learning 

to ensure that all features contribute equally to the model. In this study, we employed the StandardScaler 

method, which transforms the features by subtracting the mean and dividing by the standard deviation, 

resulting in data with a mean of 0 and a standard deviation of 1. This scaling process is crucial, especially 

for machine learning algorithms like Support Vector Regressor (SVR), which are sensitive to the 

magnitude of feature values. Without normalization, features with larger magnitudes could dominate 

the learning process, leading to biased predictions. By applying this technique, we ensured that the 

model treated each soil property (pH, EC, lime, and organic matter) equally, improving the overall 

model accuracy and stability. 

Training and Testing Data: In this study, an 80:20 data split was applied, dividing the dataset 

into training (80%) and testing (20%) sets (Gholamy et al., 2018). The training data was used to train 

the machine learning models, while the testing data was held out to evaluate the model's generalization 

performance on unseen data. This method ensures that the model learns from the training data and 
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generalizes well to new data, thereby preventing overfitting. According to (Hastie et al., 2009), 

partitioning the dataset in this way is a standard approach in statistical learning and is critical to 

achieving a robust model evaluation. (Kohavi, 1995) also emphasized that separating training and testing 

data is vital for ensuring unbiased performance estimates in machine learning models. By utilizing a 

separate testing set, the model's ability to make predictions on data it has not encountered before is 

assessed, providing a clearer picture of its generalization capabilities. 

Machine Learning Models: To model the relationships between soil properties and the 

concentrations of microelements (B, Fe, Zn, Mn, and Cu) and heavy metals (Cd, Cr, Ni, and Pb), we 

employed three different machine learning algorithms: 

Random Forest: Random Forest (RF) is a robust ensemble learning algorithm introduced by 

(Breiman, 2001). It addresses the limitations of decision trees, such as overfitting and high variance, by 

constructing multiple decision trees and aggregating their outputs. Each decision tree in the forest is 

trained on a random subset of the data through a process known as bootstrap sampling, where samples 

are drawn with replacement to ensure diversity among the trees. At each node within the trees, a random 

subset of features is considered during the split—a technique referred to as random feature selection. 

This approach reduces correlation between the trees, enhances generalization, and minimizes 

overfitting. 

For regression tasks, the final prediction  𝒚̂ is obtained by averaging the predictions from all 

decision trees: 

  𝑦̂  =
1

𝑚
∑ 𝑇𝑖(𝑋)

𝑚

𝑖=1

 (1) 

Where 𝑻𝒊(𝑿) is the prediction from the 𝒊-th tree, and 𝒎 is the total number of trees in the forest. 

For classification tasks, the final class prediction  𝒚̂ is determined by the majority vote across the trees: 

  𝑦̂  = 𝑚𝑜𝑑𝑒(𝑇1(𝑋), 𝑇2(𝑋), … . . 𝑇𝑚(𝑋)) (2) 

To evaluate the best splits at each node, the Gini impurity for classification is commonly 

minimized, defined as: 

 𝐼 𝐺(𝑡) = 1 − ∑ 𝑝𝑖
2

𝑘

𝑖−1

 (3) 

Where 𝒑 𝒊 is the proportion of class 𝒊 at node 𝒕, and 𝒌 is the number of classes. In the case of 

regression, splits are chosen to minimize the MSE. This ensemble method improves both accuracy and 

generalization of the model by combining predictions from multiple trees, making it robust against 

overfitting and highly effective for a wide range of tasks. 

Gradient Boosting: Gradient Boosting (GB) is an iterative machine learning algorithm used 

for both regression and classification tasks. Its primary goal is to build a model by sequentially adding 

weak learners, typically decision trees, to correct the errors made by previous trees. GB aims to minimize 

a loss function using gradient descent, which measures the difference between the actual and predicted 

values (Sigrist, 2021). 

The algorithm starts with an initial model, usually a simple prediction (like the mean for 

regression), and then adds trees iteratively to improve predictions. At each step, the residuals (errors 

from the previous model) are used to fit a new decision tree, with the goal of reducing these errors. The 

new tree is added to the existing model with a weight controlled by a learning rate, which prevents 

overfitting by limiting how much each tree contributes. 

The core equation for GB is: 

 F𝑚+1(𝑥) = F𝑚(𝑥) + η. ℎ𝑚(𝑥) (4) 

Where: 

 𝐅𝒎(𝒙)  is the prediction from the model at the 𝒎-th iteration. 

 𝒉𝒎(𝒙) is the new decision tree fitted to the residuals. 

 𝛈 is the learning rate, a hyperparameter that controls how much of the new tree’s 

prediction is added to the model. 

The algorithm minimizes a specified loss function 𝑳(𝒚, 𝒚̂), such as MSE for regression or log 

loss for classification. The residuals used to fit the new tree are the negative gradients of this loss 

function with respect to the model's predictions. In mathematical terms, for each data point 𝒊, the 

residuals are: 
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 𝑟𝑖(𝑥) = −
∂L(𝑦𝑖 , F𝑚(𝑥𝑖))

∂F𝑚(𝑥𝑖)
 (5) 

Thus, the new decision tree 𝒉𝒎(𝒙) is fitted to these residuals to minimize the error at each step 

(Ke et al., 2017). 

Support Vector Regressor (SVR): One of the machine learning models used in this study is 

the SVR, a powerful algorithm designed to address regression problems. SVR is built on the 

foundational principles of the Support Vector Machine (SVM) algorithm, which is commonly used for 

classification tasks, but extended here to predict continuous values (Awad et al., 2015). SVR is 

particularly useful for modeling both linear and non-linear relationships between input features and the 

target variable, utilizing support vectors to form the regression line. 

The main objective of SVR is to learn the underlying patterns in the data while minimizing 

errors within a certain margin of tolerance, known as the epsilon-insensitive loss function. Unlike 

traditional regression approaches that minimize the squared error, SVR ignores small deviations within 

a defined epsilon margin and focuses only on larger deviations outside this margin. This approach allows 

SVR to balance accuracy and model simplicity. 

SVR is capable of handling non-linear relationships through the use of kernel functions. In this 

study, we employed popular kernels such as linear, polynomial, and the Radial Basis Function (RBF). 

These kernels transform the input data into a higher-dimensional space, where non-linear relationships 

can be more easily modeled with a linear decision boundary. 

The regularization parameter (C) controls the trade-off between the model's complexity and its 

tolerance to errors. A smaller value of (C) allows for a simpler model with greater tolerance for errors, 

while a larger (C) places more emphasis on minimizing errors, potentially leading to overfitting. 

The epsilon parameter defines a margin of tolerance around the predicted function, within which 

deviations from the true target values are ignored. By tuning epsilon, the model can be adjusted to 

disregard small variations in the data, resulting in a more generalized model. 

SVR performs exceptionally well with high-dimensional datasets, as it focuses on the most 

informative data points (support vectors) to construct the model. However, the performance of SVR is 

highly sensitive to the choice of kernel function and the tuning of hyperparameters such as (C) and the 

epsilon parameter. Additionally, SVR can be computationally expensive when applied to large datasets 

due to the complexity of solving quadratic optimization problems. 

In this study, SVR was employed to model the relationships between the chemical properties of 

soil samples (pH, EC, organic matter, and lime percentage) and the concentrations of microelements 

and heavy metals. The results indicate that SVR effectively captures both linear and non-linear 

relationships, significantly improving prediction accuracy (Awad et al., 2015). 

Hyperparameter Tuning: To enhance the predictive accuracy of each machine learning model, 

GridSearchCV was employed for hyperparameter optimization. GridSearchCV systematically tests 

multiple combinations of hyperparameters to identify the set that maximizes model performance 

(Bergstra and Bengio, 2012). This technique is crucial in machine learning, as the choice of 

hyperparameters significantly influences model accuracy, robustness, and generalization capabilities. 

For instance, in the RF model, critical hyperparameters such as the number of trees 

(n_estimators) and the maximum depth of each tree (max_depth) were adjusted to improve performance. 

Similarly, for the GB model, hyperparameters such as the learning rate and the number of boosting 

stages were fine-tuned to enhance predictive capabilities. In each model, a wide range of values for each 

parameter was tested. 

The GridSearchCV method utilizes cross-validation to evaluate model performance across 

different subsets of the data. This ensures that the model's predictive accuracy is consistent and not 

biased toward any particular subset of the training data (Hastie et al., 2009). Cross-validation also helps 

prevent overfitting, where a model performs well on the training data but fails to generalize to unseen 

data. Through this method, we ensured that the models developed were robust and generalized well 

across varying data samples. 

Data Augmentation Techniques: Given the relatively small size of the dataset used in this 

study, data augmentation techniques were applied to artificially expand the training data and improve 

the model's generalization ability. These techniques create additional training samples by introducing 

slight variations to the existing data, enabling the model to learn more robust patterns and reduce the 

risk of overfitting. The following augmentation methods were employed: 
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 Random Sampling: This technique generates new samples by adding small amounts 

of noise to the original data. By slightly perturbing the feature values, this method 

increases the variety of data points, helping the model better capture variability and 

learn from diverse scenarios (Hastie et al., 2009). 

 Jittering: Jittering involves adding random Gaussian noise to the input features, 

creating slightly altered versions of the original samples. This prevents the model from 

memorizing specific patterns in the data and enhances its ability to generalize to unseen 

data (Geman et al., 1992). Jittering is particularly useful for models prone to overfitting 

when dealing with a limited number of data points. 

 Bootstrap Sampling: This method involves creating new training sets by sampling 

with replacement from the original dataset. Bootstrap sampling enables the construction 

of multiple variations of the training data, allowing the model to learn from diverse 

subsets (Tibshirani and Efron, 1993). It has been widely used in ensemble methods to 

enhance robustness by training the model on different subsets of data, thereby reducing 

overfitting and improving generalization. 

These augmentation techniques were crucial in improving the performance of the machine 

learning models in this study, allowing them to learn from limited data and make more accurate and 

robust predictions. 

Evaluation Metrics and Performance Criteria: In this study, various evaluation metrics were 

used to assess the performance of the machine learning models employed for predicting the 

concentrations of microelements and heavy metals in soil samples. The chosen metrics were critical for 

understanding the model's accuracy, error rate, and overall predictive capability. These metrics are 

widely used in regression problems and offer a comprehensive view of the model's performance across 

various aspects (Wang et al., 2022). 

The following performance metrics were used: 

The Mean Absolute Error (MAE) measures the average magnitude of the errors between 

predicted values 𝒚̂ and actual values 𝒚, without considering the direction of the errors. It provides a 

straightforward interpretation of the model's accuracy by averaging the absolute differences between 

predicted and observed values. A lower MAE indicates better model performance. 

The formula for MAE is: 

 𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 (6) 

where: 

 n is the number of observations, 

 𝒚𝒊 represents the actual value, and 

 𝒚̂𝒊 represents the predicted value. 

MAE gives a clear insight into the model's accuracy by showing the average error magnitude, 

without amplifying larger errors as is the case with squared errors. 

The Mean Squared Error (MSE) is another common metric for evaluating regression models. 

Unlike MAE, MSE squares the error terms, which places greater emphasis on larger errors. This makes 

it a more sensitive metric to large deviations from the true values. 

The formula for MSE is: 

 𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 (7) 

MSE provides an overall view of the error distribution by penalizing larger deviations, which 

can highlight where the model struggles with extreme values. A lower MSE indicates better model 

performance, with zero indicating a perfect fit. 

The R-squared (R²) metric, also known as the coefficient of determination, measures the 

proportion of the variance in the dependent variable that is predictable from the independent variables. 

R² provides an indication of the goodness-of-fit of the model. A value closer to 1 indicates that the model 

explains a large proportion of the variance, while values closer to 0 indicate that the model fails to 

explain much of the variability in the data. 

The formula for R² is: 
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 R2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦̂)2𝑛
𝑖=1

 (8) 

Where 𝒚̂ is the mean of the actual values. 

An R² value of 1 represents a perfect fit, meaning that the model captures all the variance in the 

data. However, R² can sometimes give misleading results in the presence of overfitting or for non-linear 

models, which is why it is used alongside other metrics like MAE and MSE. 

 

Results and Discussion 

Phsico-Chemical Properties of Soil 

In addition to the physico-chemical properties of the soil samples, the maximum, minimum, and 

mean values of the total microelement and heavy metal contents are presented in Table 1. 

 
Table1. The summary statistics of the soil physico-chemical properties analyzed 

Regions 

from 

Which 

Soil 

Samples 

Were 

Collected 

 

Soil Sample Code 

 

pH 

 

EC 

(dS cm-1) 

 

CaCO3 

(%) 

 

 

Organic Matter (%) 

 

Texture Class 

 

 

 

 

 

 

 

Central 

Anatolia 

Region 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Central 

Anatolia 

Region 

 

 

 

 

 

 

 

 

 

 

T1 7.60 0.26 1.39 1.43 CL 

T2 7.40 0.19 1.39 1.20 CL 

T3 7.80 0.11 1.39 1.22 CL 

T4 7.10 0.20 1.39 1.48 CL 

T5 7.10 0.22 1.39 1.26 CL 

T6 7.30 0.28 1.39 0.62 CL 

T7 7.90 0.25 1.40 1.07  

T8 7.90 0.14 3.49 1.24 CL 

T9 8.00 0.11 2.10 0.93 L 

T10 6.50 0.15 1.39 1.37 CL 

T11 7.90 0.10 35.77 1.27 CL 

T12 7.60 0.15 34.37 1.59 CL 

T13 7.90 0.18 21.04 1.05 CL 

T14 8.00 0.23 27.36 1.20 L 

T15 8.00 0.17 35.07 1.20 CL 

T16 8.00 0.10 30.86 1.21 CL 

T17 8.00 0.21 23.85 1.71 CL 

T18 8.00 0.17 49.18 1.28 CL 

T19 8.00 0.18 28.93 1.39 CL 

T20 7.90 0.24 32.27 1.76 L 

T21 8.10 0.17 37.88 1.44 L 

T22 7.80 0.39 23.15 1.03 L 

T23 7.80 0.23 13.33 1.43 CL 

T24 8.00 0.10 14.73 0.94 CL 

T25 8.00 0.29 5.01 1.37 CL 

T26 7.90 0.19 5.72 0.88 C 

T27 8.00 0.24 22.2 0.64 CL 

T28 7.80 0.20 13.5 1.18 CL 

T29 7.80 0.16 16.19 0.70 CL 

T30 8.00 0.12 12.2 0.86 CL 

T31 8.10 0.16 8.58 1.20 CL 

T32 8.00 0.15 18.6 1.27 CL 

T33 8.00 0.22 15.7 1.41 CL 

T34 7.90 0.21 7.87 1.07 CL 

T35 8.20 0.11 36.50 0.84 CL 

T36 8.02 0.34 41.50 1.66 CL 

T37 8.10 0.19 42.20 1.24 CL 

T38 7.90 0.36 44.30 1.14 CL 
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Table 1. 

cont. 

 

 

 

 

 

 

 

 

 

 

 

Central 

Anatolia 

Region 

 

T39 8.10 0.12 44.30 1.29 CL 

T40 8.00 0.16 41.50 1.30 CL 

T41 8.10 0.08 49.30 1.01 CL 

T42 7.90 0.13 35.00 1.46 CL 

T43 8.00 0.12 16.50 1.07 CL 

T44 8.00 0.16 12.20 1.20 CL 

T45 8.00 0.18 8.58 1.31 CL 

T46 7.90 0.21 35.00 1.08 CL 

T47 7.80 0.33 4.29 0.79 L 

T48 7.80 0.17 7.15 1.47 CL 

T49 7.90 0.10 4.29 1.29 L 

T50 7.80 0.19 7.15 1.19 CL 

T51 7.90 0.16 8.57 1.01 CL 

T52 7.90 0.19 8.57 1.07 CL 

T53 7.80 0.17 10.70 0.90 L 

T54 7.90 0.15 9.29 0.93 CL 

T55 7.80 0.18 7.86 1.01 CL 

T56 7.60 0.10 2.08 1.26 CL 

T57 7.40 0.09 1.39 1.33 CL 

T58 8.10 1.90 23.00 2.20 SL 

 

Southern 

Anatolia 

Region 

T59 7.80 0.22 7.63 1.31 CL 

T60 7.80 0.19 20.8 1.26 CL 

T61 7.80 0.14 9.71 1.15 CL 

T62 8.10 0.16 3.47 1.37 CL 

Minimum Value 6.50 0.08 1.39 0.62  

MaximumValue 8.20 1.90 49.3 2.20  

Average 7.84 0.21 17.63 1.21  
Abbrevations.:C:Clay, L:Loam, CL:Clay Loam, SL:Sandy Loam 
 

The pH values of the soils sampled from the Central and Southern Anatolia regions ranged from 

6.50 to 8.20. It was determined that 90.32% of the soils were mildly alkaline, while 9.68% were neutral. 

The EC values of the soils ranged from 0.08 to 1.90 dS/cm, with 88.71% classified as highly saline and 

11.29% as very saline. The lime content of the soils ranged from a minimum of 1.39% to a maximum 

of 49.3%, with 25.81% classified as calcareous, 32.26% as moderately calcareous, 14.52% as highly 

calcareous, and 27.42% as very highly calcareous. The organic matter content ranged from 0.62% to 

2.20%, with 17.74% classified as very low, 80.65% as low, and 1.62% as moderate. Texture analysis 

revealed that 82.26% of the soils were clay loam, 14.52% were loam, and 1.61% were sandy loam and 

clay. In a study by (Gezgin et al. (2002), the pH values of soils in the Central Anatolia region were 

similarly reported as alkaline. The EC values indicated that 13.5% of the soils were classified as highly 

saline. Lime content in their study was distributed as 13.6% lightly calcareous, 53.3% calcareous, and 

33.1% highly calcareous. Regarding organic matter content, 87.5% of the soils had low levels, while 

12.5% had adequate organic matter. Soil texture was reported as 51% fine-textured, 44.5% loamy, and 

4.5% coarse-textured. A comparison of the results reveals notable differences between the present study 

and those of (Gezgin et al. (2002). While both studies agree on the alkaline nature and lime content of 

the soils, this study shows significantly higher salinity levels, likely due to recent changes in climate and 

agricultural practices. The increased salinity may be attributed to climate change, improper fertilization, 

and unsustainable farming practices over the years. Additionally, the low organic matter content 

observed in both studies underscores the negative impact of these practices on soil health. These findings 

highlight the urgent need to adopt sustainable farming methods that address soil salinity and organic 

matter depletion to maintain soil quality and productivity in the long term. 

 

Total Microelement and Total Heavy Metal Contents of the Soils 

In addition to the total macroelement, microelement, and heavy metal contents of the soil 

samples, the maximum, minimum, and mean values are also presented in Table 2. 
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Table2. The summary statistics of the total microelements and heavy metals in the soil are presented based on the analysis. 

Regions 

fromWhich Soil 

Samples Were 

Collected 

 

 

Soil 

Sample 

Code 

Micro Elements Heavy Metals 

mg kg-1 mg kg-1 

 

B 

 

Fe 

 

Zn 

 

Mn 

 

Cu 

 

Cd 

 

Cr 

 

Mo 

 

Ni 

 

Pb 

 

 

 

 

 

 

 

Central Anatolia 

Region 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Central Anatolia 

Region 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Central Anatolia 

Region 

 

 

 

 

 

 

 

 

T1 39.09 28702.06 69.99 681.45 32.59 0.57 41.05 0.75 27.86 173.88 

T2 42.47 29491.09 72.38 932.36 42.92 0.56 67.34 1.56 51.68 270.01 

T3 46.63 34286.72 76.63 750.98 22.10 0.60 28.50 0.39 18.24 79.80 

T4 35.50 25553.44 56.74 529.98 22.38 0.52 32.13 0.77 20.07 124.24 

T5 38.79 26318.76 63.52 534.49 24.56 0.20 34.06 0.70 23.83 146.89 

T6 48.64 26793.83 69.90 473.65 28.49 0.54 55.78 1.45 34.40 166.36 

T7 43.01 26919.50 80.72 485.04 36.15 0.59 40.38 1.50 25.72 117.69 

T8 26.89 19926.86 43.76 303.27 11.05 0.27 20.24 0.52 13.18 38.05 

T9 44.92 31848.74 77.04 639.77 18.93 0.69 23.99 0.10 13.89 84.78 

T10 42.49 32314.10 61.40 786.01 25.39 0.71 39.43 1.17 22.08 138.27 

T11 30.89 14209.91 40.04 306.61 15.48 0.34 58.12 0.66 44.31 68.30 

T12 36.98 17179.08 48.22 376.53 24.96 0.32 69.46 0.55 55.71 82.39 

T13 48.17 20169.91 68.28 484.64 31.70 0.49 72.97 0.38 67.44 94.95 

T14 38.91 17060.75 53.13 378.09 23.29 0.60 55.19 0.15 52.42 85.39 

T15 32.24 12072.04 29.38 250.56 14.72 0.26 39.84 0.43 37.66 49.02 

T16 35.77 17213.84 48.47 376.15 21.71 0.31 52.01 0.41 51.07 80.77 

T17 42.00 19300.58 50.47 277.25 21.14 0.30 57.48 0.45 51.99 88.50 

T18 29.55 11334.03 36.53 326.33 15.24 0.09 35.23 0.94 32.00 52.98 

T19 45.92 18961.87 60.06 482.84 26.10 0.49 63.56 0.19 57.60 105.20 

T20 42.87 16509.16 53.66 393.85 21.58 0.36 49.32 1.59 48.42 82.54 

T21 41.87 16970.93 51.93 403.77 23.49 0.50 49.80 1.62 47.83 82.62 

T22 46.61 18356.38 56.47 469.87 29.15 0.41 56.59 0.87 57.10 94.17 

T23 48.95 20652.37 63.54 520.41 27.35 0.57 62.10 1.27 65.77 97.99 

T24 55.64 24569.53 76.74 682.21 37.06 0.51 75.85 0.58 87.86 143.75 

T25 58.06 29005.27 168.25 961.38 46.03 0.64 204.05 0.33 308.79 133.24 

T26 46.85 27279.78 83.37 779.31 31.01 0.85 204.83 1.20 270.60 131.40 

T27 37.71 19982.59 79.00 479.52 23.21 0.48 91.92 0.49 129.41 93.38 

T28 43.26 25194.24 75.60 774.71 32.54 0.65 87.55 0.94 82.74 123.39 

T29 34.57 19385.96 54.04 464.71 20.67 0.27 42.53 0.76 37.86 104.67 

T30 40.24 23186.58 59.85 496.52 22.76 0.52 34.28 0.37 29.09 65.10 

T31 71.03 26740.35 102.13 752.06 41.94 0.72 87.59 1.57 54.68 1210.81 

T32 41.59 18750.10 65.13 680.55 31.38 0.48 53.59 0.63 47.35 143.36 

T33 61.94 23505.50 94.06 747.09 32.40 0.55 73.83 1.02 59.27 185.55 

T34 52.51 25385.70 72.52 708.26 32.11 0.60 87.03 0.33 63.80 188.08 

T35 37.99 15262.54 64.35 360.55 19.85 0.28 44.60 0.58 39.57 79.64 

T36 48.31 12307.52 45.20 336.89 21.63 0.20 33.51 0.54 34.42 76.88 

T37 40.76 15045.98 46.48 370.52 18.13 0.36 40.11 1.25 43.15 79.40 

T38 29.77 10405.22 32.40 266.32 14.72 0.33 28.23 0.84 29.27 45.28 

T39 31.05 12350.35 33.56 315.38 17.43 0.24 35.50 0.16 32.66 59.78 

T40 35.57 13853.99 37.10 322.01 14.79 0.28 39.64 0.00 37.55 48.39 

T41 29.07 9814.94 28.17 254.79 15.19 0.28 26.99 0.81 24.87 66.34 

T42 40.89 15790.39 49.65 386.28 23.29 0.43 46.60 0.85 41.96 86.59 

T43 50.35 20580.58 64.82 481.78 26.45 0.33 68.18 0.72 60.85 114.76 

T44 53.72 23020.15 71.64 582.87 29.41 0.45 81.13 0.82 71.02 103.05 

T45 55.60 23611.77 79.98 629.53 33.71 0.60 84.80 1.01 82.03 124.19 

T46 42.78 12079.60 58.12 304.38 18.29 0.15 37.72 0.51 36.28 69.50 

T47 57.25 20036.12 57.34 511.45 28.91 0.31 70.13 0.36 70.38 143.21 

T48 52.56 24675.46 59.17 686.44 34.90 0.45 123.74 0.45 114.81 105.72 

T49 50.32 23088.50 61.39 612.34 33.08 0.56 95.06 0.61 89.61 104.19 

T50 52.79 28578.70 72.19 734.90 47.69 0.62 182.29 0.28 166.41 72.85 

T51 55.05 27914.73 75.54 738.95 43.69 0.68 167.24 0.83 164.56 80.87 

T52 50.83 25995.88 67.21 605.05 38.42 0.53 137.10 0.44 129.31 140.23 

T53 45.77 23448.25 58.85 619.74 35.89 0.38 101.08 0.36 94.19 96.68 

T54 48.22 25806.45 60.93 650.41 42.89 0.33 154.74 0.78 127.16 58.03 

T55 43.88 26199.80 63.76 613.84 46.63 0.49 238.28 0.44 192.36 54.08 

T56 45.33 28344.04 86.59 676.49 27.85 0.58 61.57 1.01 43.34 161.70 

T57 42.89 27785.50 115.08 752.11 29.09 0.85 62.01 2.49 42.18 298.44 

T58 72.22 14852.05 126.95 428.22 55.79 4.54 70.83 2.21 69.56 2591.52 

Southern Anatolia 

Region 

T59 60.28 26818.84 81.61 812.41 35.52 0.67 74.09 0.60 67.24 165.76 

T60 36.67 19364.32 55.51 527.88 26.44 0.57 54.14 0.28 52.40 94.05 
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Table 2. cont.            

T61 39.27 17438.66 56.71 503.76 27.12 0.40 63.95 0.82 68.83 81.75 

T62 49.19 25310.12 82.97 638.91 41.49 0.61 58.40 0.62 64.24 88.63 

Minimum Value 26.89 9814.94 28.17 250.56 11.05 0.09 20.24 0.00 13.18 38.05 

Maximum Value 72.22 34286.72 168.25 961.38 55.79 4.54 238.28 2.49 308.79 2591.52 

Average 44.69 21530.84 65.42 538.94 28.39 0.53 71.44 0.76 67.45 164.82 

 

The total microelement contents of soil samples from the Central and Southern Anatolia regions 

exhibited a wide range of variability. B content ranged from 26.89 mg kg⁻¹ to 72.22 mg kg⁻¹, while Fe 

levels spanned from 9,814.94 mg kg⁻¹ to 34,286.72 mg kg⁻¹. Zn content varied between 28.17 mg kg⁻¹ 

and 168.25 mg kg⁻¹, Mn ranged from 250.56 mg kg⁻¹ to 961.38 mg kg⁻¹, and Cu levels ranged from 

11.05 mg kg⁻¹ to 55.79 mg kg⁻¹. When classified according to (Taylor, 1964) and (Taylor and 

McLennan, 1985), all soil samples (100%) were found to have sufficient B levels, exceeding the 

threshold of 10 mg kg⁻¹. However, Fe content in all samples was below the sufficient level of 44,100 

mg kg⁻¹, indicating a deficiency. Zn deficiency was observed in 82% of the soils (levels below 78.89 

mg kg⁻¹), while 18% had adequate Zn levels. Mn levels were insufficient in all soil samples, falling 

below the threshold of 1,900 mg kg⁻¹. Regarding Cu, 37% of the soils were deficient, while 63% had 

sufficient levels. The total heavy metal contents of the soils also showed significant variability. Cd 

content ranged from 0.09 mg kg⁻¹ to 4.54 mg kg⁻¹, Cr varied from 20.24 mg kg⁻¹ to 238.28 mg kg⁻¹, and 

Mo was detected between 0.00 mg kg⁻¹ and 2.49 mg kg⁻¹. Ni ranged from 13.18 mg kg⁻¹ to 308.79 mg 

kg⁻¹, while Pb ranged from 38.05 mg kg⁻¹ to 2,591.52 mg kg⁻¹. According to the Soil Pollution 

Parameters Regulation published by (T.O.B., 2010), 98% of the soils had cadmium concentrations below 

the threshold of 3 mg kg⁻¹, with only 2% exceeding the toxicity threshold. Cr concentrations were below 

the 100 mg kg⁻¹ threshold in 86% of the samples, while 14% exceeded it. Mo concentrations were below 

the 10 mg kg⁻¹ threshold in all samples, indicating no toxicity. Ni concentrations exceeded the 75 mg 

kg⁻¹ threshold in 23% of the samples, while 77% were below this level. Pb content was below the 300 

mg kg⁻¹ threshold in 97% of the soils, with only 3% exceeding the toxicity level. These findings provide 

a comprehensive assessment of microelement and heavy metal contents in soils from the Central 

Anatolia region, with significant implications for agriculture and environmental management. In 

comparison, the findings of (Gezgin et al., 2002) highlighted micronutrient deficiencies, particularly in 

B (26.6% of soils), Fe (86.3%), and Zi (61.0%), suggesting potential limitations in soil fertility that 

could negatively impact nutrient-sensitive crops. Similarly, (Günal et al., 2012) reported substantial 

variability in heavy metal concentrations, including Ni, Pb, Cd, Co, and Cr, and noted correlations with 

soil properties influenced by natural (geogenic) factors and human activities (anthropogenic). (Günal et 

al., 2022) emphasized the role of soil structure in land suitability for wheat cultivation, demonstrating 

the utility of geostatistical methods for generating suitability maps. Key factors such as soil pH, 

electrical conductivity, and organic matter significantly influenced soil fertility, crop yield, and heavy 

metal uptake. (Ozyazici et al., 2017) contributed to understanding heavy metal contamination by 

identifying that some soils exceeded permissible limits for Ni and cobalt. They observed that the 

generally acidic soils (pH 4.5–5.5) enhanced metal solubility and bioavailability, with agricultural 

practices, such as excessive fertilization, further contributing to increased levels of cadmium, copper, 

and zinc. Our study confirms the wide variability in microelement and heavy metal concentrations in 

soils from the Central and Southern Anatolia regions, reflecting both natural and anthropogenic 

influences. High levels of Cr, Ni, and Pb, alongside deficiencies in Fe, Zn, and Mn, highlight the need 

for targeted soil management strategies. Metal solubility, driven by factors like soil pH and organic 

content, plays a critical role in bioavailability and toxicity. The findings align with previous research, 

such as (Ozyazici et al., 2017), emphasizing the need for integrated soil management approaches that 

consider metal solubility dynamics and interactions between geogenic and anthropogenic factors. 

Regular monitoring, sustainable agricultural practices, and careful fertilizer management are essential 

for mitigating contamination risks and promoting sustainable land management. 

Machine Learining Applications in Central and Southern Anatolia Soils 

The performance of the machine learning models was evaluated using MAE, MSE, and R² score. 

The results are presented in Table 3 and visualized in Figures 2–11 for each element (B, Fe, Zn, Mn, 

Cu, Cd, Cr, Mo, Ni, Pb).  
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Table 3. Performance of Machine Learning Models with Different Data Augmentation Techniques for 

Predicting Microelements and Heavy Metals in Soil Samples 
Elements Augmentation Technique Models MAE MSE R² Score 

B 

Random Sampling 

RF 6,23 45,84 0,26 

GB 6,15 44,96 0,28 

SVR 6,76 72,93 0,01 

Jittering 

RF 5,17 34,39 0,45 

GB 6,15 45,29 0,27 

SVR 6,76 72,88 0,01 

Bootstrap Sampling 

RF 5,10 33,97 0,45 

GB 4,89 28,01 0,55 

SVR 6,94 80,37 0,01 

  

 

 

 

 

Fe 

 

 

 

 

 

Random Sampling 

RF 15,91 42,90 0,87 

GB 16,81 70,59 0,78 

SVR 50,06 325,22 0,00 

 

Jittering 

RF 17,38 62,25 0,81 

GB 17,61 58,14 0,82 

SVR 50,09 325,41 0,00 

Bootstrap Sampling 

RF 20,75 80,23 0,75 

GB 20,87 82,48 0,75 

SVR 50,12 331,65 0,01 

Zn 

Random Sampling 

RF 19,33 702,94 0,01 

GB 26,09 1793,14 0,01 

SVR 9,97 145,20 0,09 

Jittering 

RF 17,82 681,78 0,01 

GB 19,08 1026,01 0,01 

SVR 9,96 144,49 0,10 

Bootstrap Sampling 

RF 24,75 1504,91 0,01 

GB 25,76 1657,38 0,01 

SVR 10,02 156,70 0,02 

Mn 

Random Sampling 

RF 6,55 95,86 0,53 

GB 8,97 152,93 0,25 

SVR 10,13 147,03 0,27 

Jittering 

RF 8,33 141,39 0,30 

GB 8,44 180,08 0,11 

SVR 10,14 147,05 0,27 

Bootstrap Sampling 

RF 10,28 337,09 0,01 

GB 13,71 481,35 0,01 

SVR 8,83 116,61 0,42 

 

 

 

Cu 

 

 

 

Random Sampling 

RF 3,21 16,81 0,75 

GB 3,64 25,88 0,62 

SVR 4,46 33,19 0,51 

Jittering 

RF 3,23 18,07 0,73 

GB 5,00 48,08 0,29 

SVR 4,41 32,47 0,52 

Bootstrap Sampling 

RF 4,31 33,27 0,51 

GB 4,58 43,40 0,36 

SVR 4,62 35,31 0,48 

Cd 

Random Sampling 

RF 0,10 0,02 0,01 

GB 0,13 0,02 0,01 

SVR 0,07 0,01 0,44 

Jittering 

RF 0,10 0,02 0,01 

GB 0,12 0,02 0,01 

SVR 0,07 0,01 0,44 

Bootstrap Sampling 

RF 0,11 0,02 0,01 

GB 0,12 0,02 0,01 

SVR 0,09 0,01 0,01 
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Cr 

Random Sampling 

RF 37,02 235,18 0,01 

GB 27,71 172,33 0,12 

SVR 25,53 158,12 0,19 

Jittering 

RF 34,16 197,84 0,01 

GB 34,35 237,16 0,01 

SVR 25,50 158,16 0,19 

Bootstrap Sampling 

RF 44,60 413,52 0,01 

GB 40,77 441,56 0,01 

SVR 25,34 150,79 0,23 

Mo 

Random Sampling 

RF 0,40 0,21 0,01 

GB 0,50 0,40 0,01 

SVR 0,33 0,15 0,01 

Jittering 

RF 0,36 0,16 0,01 

GB 0,39 0,18 0,01 

SVR 0,33 0,15 0,01 

Bootstrap Sampling 

RF 0,34 0,14 0,01 

GB 0,44 0,26 0,01 

SVR 0,50 0,38 0,01 

 

 

 

 

 

Ni 

 

 

 

 

 

 

Random Sampling 

RF 47,72 405,85 0,01 

GB 36,76 300,01 0,01 

SVR 27,04 154,05 0,15 

Jittering 

RF 44,85 382,45 0,01 

GB 41,07 473,20 0,01 

SVR 27,05 154,87 0,15 

Bootstrap Sampling 

RF 60,00 820,83 0,01 

GB 46,91 721,99 0,01 

SVR 27,39 148,29 0,18 

Pb 

Random Sampling 

RF 52,89 1154,50 0,01 

GB 54,11 1432,36 0,01 

SVR 29,91 144,91 0,11 

Jittering 

RF 47,84 863,68 0,01 

GB 59,63 1195,52 0,01 

SVR 29,95 144,26 0,11 

Bootstrap Sampling 

RF 60,66 1640,73 0,01 

GB 102,85 5403,52 0,01 

SVR 28,16 118,17 0,27 

 

The best performance for B was achieved by GB using Bootstrap Sampling, with an MAE of 

4.89 and an R² score of 0.55 (Figure 2). These results indicate good predictive capability, as the model 

successfully reduced the error while capturing the variance in B concentrations. 
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Figure 2. Actual vs Predicted Values for B using the Best Model 

 

 

For Fe, RF with Random Sampling provided the best performance, achieving an MAE of 15.91 

and an R² score of 0.87 (Figure 3). The high R² score indicates that the model was highly accurate in 

capturing the variability in iron concentrations, although the MAE remains relatively high due to the 

large magnitude of the values. 

 
Figure 3. Actual vs Predicted Values for Fe using the Best Model 

 

The best model for Zn was SVR combined with Jittering, yielding an MAE of 9.96 and an R² 

score of 0.10 (Figure 4). Despite the relatively low R² score, the model effectively minimized prediction 

errors, indicating its ability to capture the general trends in Zinc concentrations. 
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Figure 4. Actual vs Predicted Values for Zn using the Best Model 

 

For Mn, RF using Random Sampling provided the best results, with an MAE of 6.55 and an R² 

score of 0.53 (Figure 5). This model effectively captured the variability in the data and made accurate 

predictions for manganese concentrations. 

 
Figure 5. Actual vs Predicted Values for Mn using the Best Model 

 

The most accurate model for Cu was RF with Random Sampling, achieving an MAE of 3.21 

and an R² score of 0.75 (Figure 6). This model demonstrated the highest predictive accuracy, as 

evidenced by the strong alignment between actual and predicted values. 
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Figure 6. Actual vs Predicted Values for Cu using the Best Model 

 

For Cd, SVR with Random Sampling yielded the best performance, with an MAE of 0.07 and 

an R² score of 0.44 (Figure 7). The model effectively minimized the error, making it well-suited for 

predicting cadmium concentrations in the soil. 

 
Figure 7. Actual vs Predicted Values for Cd using the Best Model 

 

The best-performing model for Cr was SVR with Bootstrap Sampling, achieving an MAE of 

25.34 and an R² score of 0.23 (Figure 8). While the error was minimized, the relatively low R² score 

suggests that the model struggled to capture the full variability in Cr concentrations. 
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Figure 8. Actual vs Predicted Values for Cr using the Best Model 

 

For Mo, RF with Bootstrap Sampling performed best, with an MAE of 0.34 and an R² score of 

0.01 (Figure 9). The negative R² score indicates that the model struggled to generalize well for 

molybdenum, highlighting the need for further refinement. 

 
Figure 9. Actual vs Predicted Values for Mo using the Best Model 

 

The best model for Ni was SVR combined with Bootstrap Sampling, with an MAE of 27.39 and 

an R² score of 0.18 (Figure 10). Although the model captured some variability, the low R² score suggests 

that the predictions could be further improved. 



ÇOMÜ Zir. Fak. Derg. (COMU J. Agric. Fac.)       

000-000, 2020 

Research Article 

 

29 

 

 
Figure 10. Actual vs Predicted Values for Ni using the Best Model 

 

For Pb, SVR with Bootstrap Sampling provided the best results, achieving an MAE of 28.16 

and an R² score of 0.27 (Figure 11). The relatively low R² score indicates that while the model minimized 

errors, there is still room for improvement in capturing the full variability of lead concentrations. 

 
Figure 11. Actual vs Predicted Values for Pb using the Best Model 

 

The results of this study demonstrate that machine learning models, particularly RF, GB, and 

SVR, can effectively predict microelement and heavy metal concentrations in soil samples. However, 

the performance of these models varied depending on the element being predicted and the data 

augmentation technique used. For elements such as B, Fe, and Cu (copper), the models demonstrated 

strong predictive capabilities, as indicated by relatively high R² scores and low MAE values. This 
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suggests that the concentrations of these elements are more easily predicted based on the available soil 

features. Additionally, the use of Random Sampling and Bootstrap Sampling improved the models' 

ability to generalize from the limited dataset. On the other hand, elements such as Mo, Cr, and Ni 

presented challenges for the models, as evidenced by lower R² scores and higher error values. These 

results may be attributed to the limited size of the dataset and the complexity of predicting the 

concentrations of these elements based solely on the soil features provided. The negative R² score for 

molybdenum suggests that the model struggled to generalize, indicating the need for either more 

complex modeling approaches or additional features to improve prediction accuracy. Additionally, the 

results highlight the importance of selecting appropriate data augmentation techniques. Jittering and 

Bootstrap Sampling proved effective in improving model performance for certain elements, such as Zn 

and Pb, respectively. These techniques expanded the dataset and allowed the models to train on a more 

varied sample set, ultimately enhancing their generalization capability. 

Despite some challenges, the overall findings suggest that machine learning models, when 

combined with appropriate data augmentation techniques, hold significant potential for predicting soil 

properties, even with limited data. Future studies could benefit from larger datasets and the inclusion of 

additional soil features to further refine these models and enhance their predictive accuracy. 

 

Conclusion 
This study underscores the potential of machine learning models, specifically Random Forest, 

Gradient Boosting, and Support Vector Regressor, for predicting microelement and heavy metal 

concentrations in soils from Türkiye's Central-Southern Anatolian region. The integration of data 

augmentation techniques, such as Random Sampling, Jittering, and Bootstrap Sampling, significantly 

enhanced the models' performance, particularly under the constraints of limited datasets. 

Despite these advancements, the study faced several limitations, including the small dataset size 

and the limited diversity of soil properties analyzed. These factors restricted the models’ ability to 

generalize, especially for elements like Mo and Ni. To address these challenges, future research should 

focus on collecting larger and more diverse datasets, integrating additional soil properties, and exploring 

advanced modeling approaches, such as deep learning and hybrid techniques. 

Moreover, incorporating spatial and temporal data, as well as considering the impacts of 

geogenic and anthropogenic factors, could provide a more comprehensive understanding of soil 

characteristics. Such advancements would facilitate the development of robust predictive models, 

contributing to sustainable agricultural practices and improved environmental management. This study 

highlights the promise of machine learning as a cost-effective and efficient tool for soil analysis, offering 

valuable insights for agricultural and environmental applications. 
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