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Abstract

The estimation of total microelement and heavy metal concentrations in soil samples taken from the
Central-Southern Anatolian Region of Tirkiye was conducted using artificial intelligence models. The accurate
prediction of microelement contents and heavy metal contents of soils is of importance for agricultural productivity
and environmental health. A total of 62 soil samples were analyzed for Boron (B), Iron (Fe), Zinc (Zn), Manganese
(Mn), Copper (Cu), Cadmium (Cd), Chromium (Cr), Nickel (Ni) and Lead (Pb). The artificial intelligence models
used in this study were Random Forest (RF), Gradient Boosting (GB), and Support Vector Regressor (SVR).
Model performance was evaluated based on Mean Absolute Error (MAE), Mean Squared Error (MSE) and R?
scores. The best performance was achieved for the B and Cu contents, according to the results. In the case of B
contents, the GB model provided the best results (MAE: 4.89, MSE: 28.01 and R2: 0.55), while the RF model
showed the highest performance for Cu predictions (MAE: 3.20, MSE: 16.80, and R2: 0.75). In addition, the results
indicate that the artificial intelligence models used in the present study hold promising potential for predicting
microelement and heavy metal concentrations in soil samples.
Keywords: Prediction. Total micro element content, Total heavy metal content, Central Southern Anatolia Region
soils, Artificial Intelligence

Yapay Zeka ile Orta-Giiney Anadolu Topraklarinda Mikroelement ve Agir Metal
Tahmini: Pilot Bir Calisma
Oz
Tiirkiye'nin Orta-Giiney Anadolu Bolgesi'nden alinan toprak rnekleri lizerinde toplam mikro element ve
toplam agir metal konsantrasyonlarinin tahmini yapay zeka modelleri kullanilarak yapilmistir. Topraklarin mikro
element ve agir metal igeriklerinin dogru sekilde tahmin edilmesi tarimsal verimlilik ve ¢evre saglig1 agisindan
biiyiik 6nem tagimaktadir. Toplam 62 toprak 6rneginde Bor (B), Demir (Fe), Cinko (Zn), Mangan (Mn), Bakir
(Cu), Kadmiyum (Cd), Krom (Cr), Nikel (Ni) ve Kursun (Pb) elementleri analiz edilmistir. Bu ¢alismada yapay
zekd modelleri olarak Random Forest (RF), Gradient Boosting (GB) ve Support Vector Regressor (SVR)
kullanilmistir. Modellerin performansi, Ortalama Mutlak Hata (MAE), Ortalama Kare Hatas1 (MSE) ve R? skorlari
ile degerlendirilmistir. En iyi performans B ve Cu igeriklerinde elde edilmistir. B igerigi tahmininde en iyi sonug
GB modeliyle saglanmistir (MAE: 4.89, MSE: 28.01, R% 0.55). Cu igerigi tahmininde ise RF modeli iistiinliik
gostermistir (MAE: 3.21, MSE: 16.81, R2: 0.75). Ayrica sonuglar, bu ¢alismada kullanilan yapay zeka modellerinin
toprak orneklerindeki mikroelement ve agir metal konsantrasyonlarinin tahmini i¢in umut verici bir potansiyele
sahip oldugunu gostermektedir.
Anahtar Kelimeler: Tahmin, Toplam mikro element igerigi, Toplam agir metal igerigi, Orta Giiney Anadolu
Bolgesi topraklari, Yapay Zeka

12


https://orcid.org/0000-0001-6609-7106
https://orcid.org/0000-0002-6136-6140
https://orcid.org/0009-0002-3631-088X
https://orcid.org/0000-0001-7378-4406
https://orcid.org/0000-0001-8523-1825
https://orcid.org/0000-0002-3795-4575
https://orcid.org/0000-0001-7147-7875

COMU Zir. Fak. Derg. (COMU J. Agric. Fac.) Research Article

Introduction

Soil is considered a vital resource for global food production and ecosystem balance. The
sustainability of agricultural activities depends on the preservation and optimization of soil quality. The
abundance of microelements and heavy metals in the soil directly affects plant growth and agricultural
productivity. Although microelements are required by plants in trace amounts, their deficiency or excess
can negatively impact crop quality and yield. Additionally, the use of agricultural chemicals and
industrialization can lead to the accumulation of heavy metals in the soil, which poses a threat to both
plant and human health (Khosravi et al., 2018; Nie et al., 2024). Accurate analysis of soil components
is essential for improving agricultural productivity and maintaining ecosystem health. Predicting the
chemical properties of soil offers valuable insights into nutrient availability and potential toxicities,
forming a foundation for sustainable land management practices.

Gezgin et al. (2002) conducted a comprehensive analysis of soils from Central and Southern
Anatolia, focusing on B content and its influencing factors. Their findings revealed significant
variability in soil properties, including pH (8.59-9.4), electrical conductivity (0.047-3.34 mS cm™),
lime content (0.17-69.1%), and organic matter content (0.15-8.8%). They also identified diverse soil
texture classes, with 51% classified as fine, 44.5% as loamy, and 4.5% as coarse. Extractable
microelement concentrations, such as Fe, Zn, Mn, and Cu, varied widely, while extractable B ranged
from 0.01-63.9 mg kg™'. Notably, 26.6% of the soils were boron-deficient (<0.5 mg kg™), whereas 9.9%
exhibited toxic boron levels (>0.5 mg kg™), highlighting the need for targeted soil management
strategies.

Similarly, Ozyazici et al. (2017) investigated heavy metal contamination in agricultural soils
from the Central and Eastern Black Sea Region. Using geostatistics combined with GIS, they analyzed
3400 surface soil samples and guantified levels of Cd, Co, Cu, Ni, Pb, and Zn. Their results indicated
that while Ni and Co concentrations exceeded threshold levels due to natural sources, other heavy metals
remained below critical values. The average concentrations of heavy metals followed the order: Ni > Zn
> Cu > Pb > Co > Cd. This study emphasized the importance of distinguishing between natural and
anthropogenic sources of contamination to develop effective mitigation strategies.

Traditional soil analysis methods, while accurate, are often labor-intensive, time-consuming,
and costly. These limitations highlight the potential of advanced data science techniques, such as
artificial intelligence (Al) and machine learning (ML). By utilizing large datasets, these technologies
can streamline soil analysis, predict microelement and heavy metal concentrations, and enable efficient
large-scale assessments, offering a valuable tool for modern agricultural practices. Al models can learn
from large datasets and make predictions regarding microelement and heavy metal contents based on
soil characteristics. Recent studies have demonstrated that Al has proven to be an effective tool in the
fields of agriculture and environmental sciences. For instance, (Shi et al., 2022) and (Khosravi et al.,
2018) have shown that Al models integrated with spectral analysis yielded successful results in
predicting heavy metal contamination. Random Forest (RF) and Gradient Boosting (GB) algorithms, in
particular, are among the widely used models in soil analysis (Nie et al., 2024). However, as far as we
know, studies using limited datasets remain scarce, and comprehensive research focusing on the
prediction of microelements and heavy metals based on fundamental soil components is still lacking.

The existing literature highlights the use of various Al methods for predicting elements in
agricultural soils. (Nie et al., 2024) successfully predicted the distribution of heavy metals such as Cr,
Cd, Pb, and As in agricultural soils using the RF model. Similarly, (Shi et al., 2022) developed hybrid
Al models to estimate heavy metal content in soils by leveraging remote sensing images. Additionally,
(Khosravi et al., 2018) monitored heavy metal pollution using spectral data combined with machine
learning techniques. (Luce et al., 2017) used visible near-infrared spectroscopy to predict heavy metal
concentrations in soils contaminated with paper mill waste. These studies also underscore the challenges
of working with limited datasets (Khosravi et al., 2018; Munnaf and Mouazen, 2021).

This study integrates laboratory analyses and advanced Al modeling to comprehensively
evaluate the microelement and heavy metal contents of soils. By leveraging key soil physicochemical
properties such as pH, electrical conductivity (EC), lime content, texture, and organic matter from the
Central and Southern Anatolian regions, robust Al models were developed and validated using metrics
such as Mean Absolute Error (MAE), Mean Squared Error (MSE), and R?. The primary objective of this
research is to establish a reliable framework for predicting soil microelement and heavy metal
concentrations through Al-based approaches. The findings not only contribute to precision agriculture
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by enabling efficient and cost-effective soil management strategies tailored to the unique characteristics
of these regions but also provide a foundation for future studies exploring the integration of Al in soil
science and sustainable agriculture.

Materials and Method

Central and Southern Anatolia Geological Features

The study area, located in the intermediate zone of Central Anatolia, lies between the Northern
Anatolian (Anatolides) and Southern Anatolian (Taurides) fold systems. This region features a diverse
geomorphology, including basins, tablelands, isolated folds, volcanic zones, and ancient crystalline
masses (Lahn, 1949). The central portion of this zone is defined by three major geological units: (1) the
Anatolide folds, comprising the Ankara fan, Cankiri-Iskilip ranges, and Corum fan, delineating the
western, northern, and northeastern boundaries; (2) the volcanic zone of Hasan Dagi in the southeast;
and (3) the inner Tauride folds in the south. Highlands such as Kirsehir-Keskin and Boz Daglar further
divide the region into three depressions: the Middle Kizilirmak-Delice Irmak basin, the Tuz Go6lii basin,
and the Konya-Eregli basin. Volcanic activity in the Karaman district, located in the southern portion of
the Central Anatolian Plateau, occurred over four distinct phases during the Late Pliocene to Late
Pleistocene. The oldest volcanic deposits, dated at 3.2 million years, are found in the Mercik area,
followed by volcanic formations in Sizak, Kartallik, and Kizildag, dated at 1.95-2.05 million years. A
significant caldera-forming event approximately 1.1 million years ago produced andesites, tuffs,
pumice, and volcanic breccias, with base surge deposits observed on the caldera's northern flank. The
youngest volcanic activity, producing late-stage andesites, is seen in Bozdag and Degle Dagi.
Additionally, the region includes pre-Neogene crystalline limestones and Neogene formations
comprising conglomerates, sandstones, and limestones (Kog, 1987). Climatic conditions in the region
reflect a semi-arid climate, with annual average temperatures of 11.7°C and 12.1°C for Konya and
Karaman provinces, respectively, and long-term annual precipitation averages of 329.7 mm for Konya
and 336.7 mm for Karaman (MGM, 2025).

Soil Sampling

A total of 62 soil samples, each weighing at least 1 kg, were collected through random sampling
from various districts in the Central and Southern Anatolian regions, specifically representing the soils
of Konya Province. The samples were taken from Seydisehir (10 samples), Karapinar (14 samples),
Selguklu and Meram (11 samples combined), Karatay (10 samples), Cihanbeyli (3 samples), Kulu (7
samples), Hiiylik (2 samples), and Sarayonii (1 sample) districts. Additionally, 4 soil samples were
collected from Karaman Province. These samples were taken homogeneously from a depth of 0-30 cm
to represent the region and were subsequently analyzed for essential soil properties, including pH,
electrical conductivity (EC), lime percentage, organic matter percentage, and texture. These variables
were used to estimate the concentrations of microelements and heavy metals. This research focused on
predicting microelement and heavy metal contents in soils from agricultural lands in the Central-
Southern Anatolia region of Tirkiye (Figure 1), covering approximately 324.61 ha in the Central
Anatolia Region (Konya Province) and 47.22 ha in the Southern Anatolia Region (Karaman Province).
To assess model performance, standard evaluation metrics such as MAE, MSE, and R? scores were
applied. The results highlight the potential of Al techniques in predicting soil microelements and heavy
metals, even with limited data. This demonstrates how Al can significantly improve soil quality
monitoring and management, ultimately supporting more sustainable agricultural practices in the region.
Furthermore, the integration of Al methods with soil analysis provides an innovative approach for better
understanding and managing soil health. It offers valuable insights into sustainable farming practices in
areas with diverse environmental conditions.
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Figure 1. Location map of the study area

Soil Physico-Chemical Analyses

Upon arrival at the laboratory, the soil samples were air-dried at room temperature and sieved
through a 2 mm mesh. The following key soil properties were analyzed:

. pH: The pH of each soil sample was measured using a potentiometric method by
preparing a soil-water mixture (1:2.5 ratio) (Jackson, 1958).

. Electrical Conductivity (dS cm™): Electrical conductivity was determined using an
EC meter, which measures the soil solution's ability to conduct electricity (Jackson, 1958).

. Lime Content (CaCOs3; %): The lime content was determined by adding hydrochloric
acid (HCI) to the soil samples, and the percentage of calcium carbonate (CaCO3) was calculated based
on the amount of carbon dioxide (CO,) (Hizalan and Unal, 1966).

. Organic Matter (%0): Organic matter content was quantified using the Smith-Weldon
Method, which involves the oxidation of organic material by dichromate (Smith and Weldon, 1941).

. Texture Class (%): The texture analysis was determined according to the Bouyocous
method (Gee, 1986).

. Total Micro Elements and Heavy Metals Contents (mg kg'): The total
concentrations of trace elements and heavy metals were determined using the aqua regia extraction
method and quantified with a Varian Vista ICP-OES instrument (Kick et al., 1980).

Artificial Intelligence Statical Analyses

The statistical analysis involved developing machine learning models to predict the
microelement and heavy metal contents of the soil based on its physicochemical properties. The
independent variables (X) included pH, EC, lime percentage, organic matter percentage, and soil texture,
while the dependent variables (y) were the concentrations of microelements (B, Fe, Zn, Mn, Cu) and
heavy metals (Cd, Cr, Ni, Pb).

Data Normalization: Data normalization is an essential preprocessing step in machine learning
to ensure that all features contribute equally to the model. In this study, we employed the StandardScaler
method, which transforms the features by subtracting the mean and dividing by the standard deviation,
resulting in data with a mean of 0 and a standard deviation of 1. This scaling process is crucial, especially
for machine learning algorithms like Support Vector Regressor (SVR), which are sensitive to the
magnitude of feature values. Without normalization, features with larger magnitudes could dominate
the learning process, leading to biased predictions. By applying this technique, we ensured that the
model treated each soil property (pH, EC, lime, and organic matter) equally, improving the overall
model accuracy and stability.

Training and Testing Data: In this study, an 80:20 data split was applied, dividing the dataset
into training (80%) and testing (20%) sets (Gholamy et al., 2018). The training data was used to train
the machine learning models, while the testing data was held out to evaluate the model's generalization
performance on unseen data. This method ensures that the model learns from the training data and
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generalizes well to new data, thereby preventing overfitting. According to (Hastie et al., 2009),
partitioning the dataset in this way is a standard approach in statistical learning and is critical to
achieving a robust model evaluation. (Kohavi, 1995) also emphasized that separating training and testing
data is vital for ensuring unbiased performance estimates in machine learning models. By utilizing a
separate testing set, the model's ability to make predictions on data it has not encountered before is
assessed, providing a clearer picture of its generalization capabilities.

Machine Learning Models: To model the relationships between soil properties and the
concentrations of microelements (B, Fe, Zn, Mn, and Cu) and heavy metals (Cd, Cr, Ni, and Pb), we
employed three different machine learning algorithms:

Random Forest: Random Forest (RF) is a robust ensemble learning algorithm introduced by
(Breiman, 2001). It addresses the limitations of decision trees, such as overfitting and high variance, by
constructing multiple decision trees and aggregating their outputs. Each decision tree in the forest is
trained on a random subset of the data through a process known as bootstrap sampling, where samples
are drawn with replacement to ensure diversity among the trees. At each node within the trees, a random
subset of features is considered during the split—a technique referred to as random feature selection.
This approach reduces correlation between the trees, enhances generalization, and minimizes
overfitting.

For regression tasks, the final prediction 7 is obtained by averaging the predictions from all
decision trees:

1 m
¥ == 100 @)

i=1
Where T;(X) is the prediction from the i-th tree, and m is the total number of trees in the forest.
For classification tasks, the final class prediction y is determined by the majority vote across the trees:
P = mode(T,(X), T,(X), ..... T, (X)) 2
To evaluate the best splits at each node, the Gini impurity for classification is commonly

minimized, defined as:
k

e =1- p? ®3)

-1

Where p ; is the proportion of class i at node t, and k is the number of classes. In the case of
regression, splits are chosen to minimize the MSE. This ensemble method improves both accuracy and
generalization of the model by combining predictions from multiple trees, making it robust against
overfitting and highly effective for a wide range of tasks.

Gradient Boosting: Gradient Boosting (GB) is an iterative machine learning algorithm used
for both regression and classification tasks. Its primary goal is to build a model by sequentially adding
weak learners, typically decision trees, to correct the errors made by previous trees. GB aims to minimize
a loss function using gradient descent, which measures the difference between the actual and predicted
values (Sigrist, 2021).

The algorithm starts with an initial model, usually a simple prediction (like the mean for
regression), and then adds trees iteratively to improve predictions. At each step, the residuals (errors
from the previous model) are used to fit a new decision tree, with the goal of reducing these errors. The
new tree is added to the existing model with a weight controlled by a learning rate, which prevents
overfitting by limiting how much each tree contributes.

The core equation for GB is:

Fm+1(x) = Fm(x) + nhm(x) (4)

Where:

e F,,(x) isthe prediction from the model at the m-th iteration.

e h,,(x) is the new decision tree fitted to the residuals.

e 1 is the learning rate, a hyperparameter that controls how much of the new tree’s
prediction is added to the model.

The algorithm minimizes a specified loss function L(y,¥), such as MSE for regression or log
loss for classification. The residuals used to fit the new tree are the negative gradients of this loss
function with respect to the model's predictions. In mathematical terms, for each data point i, the
residuals are:
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Thus, the new decision tree h,,, (x) is fitted to these residuals to minimize the error at each step
(Keetal., 2017).

Support Vector Regressor (SVR): One of the machine learning models used in this study is
the SVR, a powerful algorithm designed to address regression problems. SVR is built on the
foundational principles of the Support Vector Machine (SVM) algorithm, which is commonly used for
classification tasks, but extended here to predict continuous values (Awad et al., 2015). SVR is
particularly useful for modeling both linear and non-linear relationships between input features and the
target variable, utilizing support vectors to form the regression line.

The main objective of SVR is to learn the underlying patterns in the data while minimizing
errors within a certain margin of tolerance, known as the epsilon-insensitive loss function. Unlike
traditional regression approaches that minimize the squared error, SVR ignores small deviations within
a defined epsilon margin and focuses only on larger deviations outside this margin. This approach allows
SVR to balance accuracy and model simplicity.

SVR is capable of handling non-linear relationships through the use of kernel functions. In this
study, we employed popular kernels such as linear, polynomial, and the Radial Basis Function (RBF).
These kernels transform the input data into a higher-dimensional space, where non-linear relationships
can be more easily modeled with a linear decision boundary.

The regularization parameter (C) controls the trade-off between the model's complexity and its
tolerance to errors. A smaller value of (C) allows for a simpler model with greater tolerance for errors,
while a larger (C) places more emphasis on minimizing errors, potentially leading to overfitting.

The epsilon parameter defines a margin of tolerance around the predicted function, within which
deviations from the true target values are ignored. By tuning epsilon, the model can be adjusted to
disregard small variations in the data, resulting in a more generalized model.

SVR performs exceptionally well with high-dimensional datasets, as it focuses on the most
informative data points (support vectors) to construct the model. However, the performance of SVR is
highly sensitive to the choice of kernel function and the tuning of hyperparameters such as (C) and the
epsilon parameter. Additionally, SVR can be computationally expensive when applied to large datasets
due to the complexity of solving quadratic optimization problems.

In this study, SVR was employed to model the relationships between the chemical properties of
soil samples (pH, EC, organic matter, and lime percentage) and the concentrations of microelements
and heavy metals. The results indicate that SVR effectively captures both linear and non-linear
relationships, significantly improving prediction accuracy (Awad et al., 2015).

Hyperparameter Tuning: To enhance the predictive accuracy of each machine learning model,
GridSearchCV was employed for hyperparameter optimization. GridSearchCV systematically tests
multiple combinations of hyperparameters to identify the set that maximizes model performance
(Bergstra and Bengio, 2012). This technique is crucial in machine learning, as the choice of
hyperparameters significantly influences model accuracy, robustness, and generalization capabilities.

For instance, in the RF model, critical hyperparameters such as the number of trees
(n_estimators) and the maximum depth of each tree (max_depth) were adjusted to improve performance.
Similarly, for the GB model, hyperparameters such as the learning rate and the number of boosting
stages were fine-tuned to enhance predictive capabilities. In each model, a wide range of values for each
parameter was tested.

The GridSearchCV method utilizes cross-validation to evaluate model performance across
different subsets of the data. This ensures that the model's predictive accuracy is consistent and not
biased toward any particular subset of the training data (Hastie et al., 2009). Cross-validation also helps
prevent overfitting, where a model performs well on the training data but fails to generalize to unseen
data. Through this method, we ensured that the models developed were robust and generalized well
across varying data samples.

Data Augmentation Techniques: Given the relatively small size of the dataset used in this
study, data augmentation techniques were applied to artificially expand the training data and improve
the model's generalization ability. These techniques create additional training samples by introducing
slight variations to the existing data, enabling the model to learn more robust patterns and reduce the
risk of overfitting. The following augmentation methods were employed:

ri(x) =
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e Random Sampling: This technique generates new samples by adding small amounts
of noise to the original data. By slightly perturbing the feature values, this method
increases the variety of data points, helping the model better capture variability and
learn from diverse scenarios (Hastie et al., 2009).

e Jittering: Jittering involves adding random Gaussian noise to the input features,
creating slightly altered versions of the original samples. This prevents the model from
memorizing specific patterns in the data and enhances its ability to generalize to unseen
data (Geman et al., 1992). Jittering is particularly useful for models prone to overfitting
when dealing with a limited number of data points.

e Bootstrap Sampling: This method involves creating new training sets by sampling
with replacement from the original dataset. Bootstrap sampling enables the construction
of multiple variations of the training data, allowing the model to learn from diverse
subsets (Tibshirani and Efron, 1993). It has been widely used in ensemble methods to
enhance robustness by training the model on different subsets of data, thereby reducing
overfitting and improving generalization.

These augmentation techniques were crucial in improving the performance of the machine
learning models in this study, allowing them to learn from limited data and make more accurate and
robust predictions.

Evaluation Metrics and Performance Criteria: In this study, various evaluation metrics were
used to assess the performance of the machine learning models employed for predicting the
concentrations of microelements and heavy metals in soil samples. The chosen metrics were critical for
understanding the model's accuracy, error rate, and overall predictive capability. These metrics are
widely used in regression problems and offer a comprehensive view of the model's performance across
various aspects (Wang et al., 2022).

The following performance metrics were used:

The Mean Absolute Error (MAE) measures the average magnitude of the errors between
predicted values y and actual values y, without considering the direction of the errors. It provides a
straightforward interpretation of the model's accuracy by averaging the absolute differences between
predicted and observed values. A lower MAE indicates better model performance.

The formula for MAE is:

n
1
MAE =£Z|Yi_yi| (6)
i=1

where:
e nisthe number of observations,
e y; represents the actual value, and
e y; represents the predicted value.
MAE gives a clear insight into the model's accuracy by showing the average error magnitude,
without amplifying larger errors as is the case with squared errors.
The Mean Squared Error (MSE) is another common metric for evaluating regression models.
Unlike MAE, MSE squares the error terms, which places greater emphasis on larger errors. This makes
it a more sensitive metric to large deviations from the true values.
The formula for MSE is:

1 n
MSE = ;Z(yi % 7

i=1

MSE provides an overall view of the error distribution by penalizing larger deviations, which
can highlight where the model struggles with extreme values. A lower MSE indicates better model
performance, with zero indicating a perfect fit.

The R-squared (R?) metric, also known as the coefficient of determination, measures the
proportion of the variance in the dependent variable that is predictable from the independent variables.
R? provides an indication of the goodness-of-fit of the model. A value closer to 1 indicates that the model
explains a large proportion of the variance, while values closer to O indicate that the model fails to
explain much of the variability in the data.

The formula for R? is:
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X —9?
Yie (i —9)?
Where ¥ is the mean of the actual values.
An R? value of 1 represents a perfect fit, meaning that the model captures all the variance in the
data. However, R? can sometimes give misleading results in the presence of overfitting or for non-linear
models, which is why it is used alongside other metrics like MAE and MSE.

R*=1

(8)

Results and Discussion

Phsico-Chemical Properties of Soil

In addition to the physico-chemical properties of the soil samples, the maximum, minimum, and
mean values of the total microelement and heavy metal contents are presented in Table 1.

Tablel. The summary statistics of the soil physico-chemical properties analyzed

Regions
from Soil Sample Code pH EC CaCOs3 Organic Matter (%) Texture Class
Which (dS cmt) (%)
Soail
Samples
Were
Collected
T1 7.60 0.26 1.39 1.43 CL
T2 7.40 0.19 1.39 1.20 CL
T3 7.80 0.11 1.39 1.22 CL
T4 7.10 0.20 1.39 1.48 CL
T5 7.10 0.22 1.39 1.26 CL
T6 7.30 0.28 1.39 0.62 CL
T7 7.90 0.25 1.40 1.07
Central T8 7.90 0.14 3.49 124 CL
Anatolia T9 8.00 0.11 2.10 0.93 L
Region T10 6.50 0.15 1.39 1.37 CL
T11 7.90 0.10 35.77 1.27 CL
T12 7.60 0.15 34.37 1.59 CL
T13 7.90 0.18 21.04 1.05 CL
T4 8.00 0.23 27.36 1.20 L
T15 8.00 0.17 35.07 1.20 CL
T16 8.00 0.10 30.86 1.21 CL
T17 8.00 0.21 23.85 171 CL
T18 8.00 0.17 49.18 1.28 CL
T19 8.00 0.18 28.93 1.39 CL
T20 7.90 0.24 32.27 1.76 L
T21 8.10 0.17 37.88 1.44 L
T22 7.80 0.39 23.15 1.03 L
T23 7.80 0.23 13.33 1.43 CL
T24 8.00 0.10 14.73 0.94 CL
T25 8.00 0.29 5.01 1.37 CL
T26 7.90 0.19 5.72 0.88 C
T27 8.00 0.24 22.2 0.64 CL
T28 7.80 0.20 135 1.18 CL
T29 7.80 0.16 16.19 0.70 CL
T30 8.00 0.12 12.2 0.86 CL
Central T31 8.10 0.16 8.58 1.20 CL
Anatolia T32 8.00 0.15 18.6 127 CL
Region T33 8.00 0.22 15.7 141 CL
T34 7.90 0.21 7.87 1.07 CL
T35 8.20 0.11 36.50 0.84 CL
T36 8.02 0.34 41.50 1.66 CL
T37 8.10 0.19 42.20 1.24 CL
T38 7.90 0.36 44.30 1.14 CL
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Table 1.
cont. T39 8.10 0.12 44.30 1.29 CL
T40 8.00 0.16 41.50 1.30 CL
T41 8.10 0.08 49.30 1.01 CL
T42 7.90 0.13 35.00 1.46 CL
T43 8.00 0.12 16.50 1.07 CL
T44 8.00 0.16 12.20 1.20 CL
T45 8.00 0.18 8.58 1.31 CL
T46 7.90 0.21 35.00 1.08 CL
T47 7.80 0.33 4.29 0.79 L
T48 7.80 0.17 7.15 147 CL
T49 7.90 0.10 4.29 1.29 L
T50 7.80 0.19 7.15 1.19 CL
Central T51 7.90 0.16 8.57 1.01 CL
Anatolia T52 7.90 0.19 8.57 1.07 CL
Region T53 7.80 0.17 10.70 0.90 L
T54 7.90 0.15 9.29 0.93 CL
T55 7.80 0.18 7.86 1.01 CL
T56 7.60 0.10 2.08 1.26 CL
T57 7.40 0.09 1.39 1.33 CL
T58 8.10 1.90 23.00 2.20 SL
T59 7.80 0.22 7.63 1.31 CL
Southern T60 7.80 0.19 20.8 1.26 CL
Anatolia T61 7.80 0.14 9.71 1.15 CL
Region T62 8.10 0.16 3.47 1.37 CL
Minimum Value 6.50 0.08 1.39 0.62
MaximumValue 8.20 1.90 49.3 2.20
Average 7.84 0.21 17.63 1.21

Abbrevations.:C:Clay, L:Loam, CL:Clay Loam, SL:Sandy Loam

The pH values of the soils sampled from the Central and Southern Anatolia regions ranged from
6.50 to 8.20. It was determined that 90.32% of the soils were mildly alkaline, while 9.68% were neutral.
The EC values of the soils ranged from 0.08 to 1.90 dS/cm, with 88.71% classified as highly saline and
11.29% as very saline. The lime content of the soils ranged from a minimum of 1.39% to a maximum
of 49.3%, with 25.81% classified as calcareous, 32.26% as moderately calcareous, 14.52% as highly
calcareous, and 27.42% as very highly calcareous. The organic matter content ranged from 0.62% to
2.20%, with 17.74% classified as very low, 80.65% as low, and 1.62% as moderate. Texture analysis
revealed that 82.26% of the soils were clay loam, 14.52% were loam, and 1.61% were sandy loam and
clay. In a study by (Gezgin et al. (2002), the pH values of soils in the Central Anatolia region were
similarly reported as alkaline. The EC values indicated that 13.5% of the soils were classified as highly
saline. Lime content in their study was distributed as 13.6% lightly calcareous, 53.3% calcareous, and
33.1% highly calcareous. Regarding organic matter content, 87.5% of the soils had low levels, while
12.5% had adequate organic matter. Soil texture was reported as 51% fine-textured, 44.5% loamy, and
4.5% coarse-textured. A comparison of the results reveals notable differences between the present study
and those of (Gezgin et al. (2002). While both studies agree on the alkaline nature and lime content of
the soils, this study shows significantly higher salinity levels, likely due to recent changes in climate and
agricultural practices. The increased salinity may be attributed to climate change, improper fertilization,
and unsustainable farming practices over the years. Additionally, the low organic matter content
observed in both studies underscores the negative impact of these practices on soil health. These findings
highlight the urgent need to adopt sustainable farming methods that address soil salinity and organic
matter depletion to maintain soil quality and productivity in the long term.

Total Microelement and Total Heavy Metal Contents of the Soils

In addition to the total macroelement, microelement, and heavy metal contents of the soil
samples, the maximum, minimum, and mean values are also presented in Table 2.
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Table2. The summary statistics of the total microelements and heavy metals in the soil are presented based on the analysis.

Regions
fromWhich Soil
Samples Were
Collected

Central Anatolia
Region

Central Anatolia
Region

Central Anatolia
Region

Southern Anatolia
Region

Soil
Sample
Code

T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20
T21
T22
T23
T24
T25
T26
T27
T28
T29
T30
T31
T32
T33
T34
T35
T36
T37
T38
T39
T40
T41
T42
T43
T44
T45
T46
T47
T48
T49
T50
T51
T52
T53
T54
T55
T56
T57
T58
T59
T60

B

39.09
42.47
46.63
35.50
38.79
48.64
43.01
26.89
44.92
42.49
30.89
36.98
48.17
38.91
32.24
35.77
42.00
29.55
45.92
42.87
41.87
46.61
48.95
55.64
58.06
46.85
37.71
43.26
34.57
40.24
71.03
41.59
61.94
5251
37.99
48.31
40.76
29.77
31.05
35.57
29.07
40.89
50.35
53.72
55.60
42.78
57.25
52.56
50.32
52.79
55.05
50.83
45.77
48.22
43.88
45.33
42.89
72.22
60.28
36.67

Fe

28702.06
29491.09
34286.72
25553.44
26318.76
26793.83
26919.50
19926.86
31848.74
32314.10
14209.91
17179.08
20169.91
17060.75
12072.04
17213.84
19300.58
11334.03
18961.87
16509.16
16970.93
18356.38
20652.37
24569.53
29005.27
27279.78
19982.59
25194.24
19385.96
23186.58
26740.35
18750.10
23505.50
25385.70
15262.54
12307.52
15045.98
10405.22
12350.35
13853.99
9814.94
15790.39
20580.58
23020.15
23611.77
12079.60
20036.12
24675.46
23088.50
28578.70
27914.73
25995.88
23448.25
25806.45
26199.80
28344.04
27785.50
14852.05
26818.84
19364.32

Micro Elements

mg kg™

Zn Mn
69.99  681.45
7238 932.36
76.63  750.98
56.74  529.98
6352 534.49
69.90 473.65
80.72  485.04
4376  303.27
77.04  639.77
61.40 786.01
40.04 306.61
4822 37653
68.28  484.64
53.13  378.09
29.38  250.56
4847 376.15
50.47 277.25
36.53 326.33
60.06 482.84
53.66 393.85
51.93  403.77
56.47  469.87
6354 520.41
76.74 682.21
168.25 961.38
83.37 779.31
79.00 479.52
75.60 774.71
54.04 464.71
59.85  496.52
102.13  752.06
65.13  680.55
94.06  747.09
7252 708.26
64.35 360.55
4520 336.89
46.48 370.52
32.40  266.32
3356 315.38
37.10 322.01
28.17  254.79
4965 386.28
64.82 481.78
7164 582.87
79.98 629.53
58.12  304.38
57.34 511.45
50.17 686.44
6139 612.34
7219 734.90
7554  738.95
67.21  605.05
58.85 619.74
60.93 650.41
63.76  613.84
86.59 676.49
115.08 752.11
126.95 428.22
8161 812.41
5551 527.88

Cu

32.59
42.92
22.10
22.38
24.56
28.49
36.15
11.05
18.93
25.39
15.48
24.96
31.70
23.29
14.72
21.71
21.14
15.24
26.10
21.58
23.49
29.15
27.35
37.06
46.03
31.01
23.21
3254
20.67
22.76
41.94
31.38
32.40
3211
19.85
21.63
18.13
14.72
17.43
14.79
15.19
23.29
26.45
2941
33.71
18.29
28.91
34.90
33.08
47.69
43.69
38.42
35.89
42.89
46.63
27.85
29.09
55.79
35.52
26.44

Cd

0.57
0.56
0.60
0.52
0.20
0.54
0.59
0.27
0.69
0.71
0.34
0.32
0.49
0.60
0.26
0.31
0.30
0.09
0.49
0.36
0.50
0.41
0.57
0.51
0.64
0.85
0.48
0.65
0.27
0.52
0.72
0.48
0.55
0.60
0.28
0.20
0.36
0.33
0.24
0.28
0.28
0.43
0.33
0.45
0.60
0.15
0.31
0.45
0.56
0.62
0.68
0.53
0.38
0.33
0.49
0.58
0.85
4.54
0.67
0.57

Cr

41.05
67.34
28.50
32.13
34.06
55.78
40.38
20.24
23.99
39.43
58.12
69.46
72.97
55.19
39.84
52.01
57.48
35.23
63.56
49.32
49.80
56.59
62.10
75.85
204.05
204.83
91.92
87.55
42.53
34.28
87.59
53.59
73.83
87.03
44.60
33.51
40.11
28.23
35.50
39.64
26.99
46.60
68.18
81.13
84.80
37.72
70.13
123.74
95.06
182.29
167.24
137.10
101.08
154.74
238.28
61.57
62.01
70.83
74.09
54.14

Heavy Metals
mg kg™
Mo Ni
0.75 27.86
156 51.68
0.39 18.24
0.77 20.07
0.70 23.83
145 34.40
150 25.72
0.52 13.18
0.10 13.89
1.17 22.08
0.66 44.31
0.55 5571
0.38 67.44
0.15 5242
0.43 37.66
0.41 51.07
0.45 51.99
0.94 32.00
0.19 57.60
159 48.42
162 47.83
0.87 57.10
127 65.77
0.58 87.86
0.33 308.79
1.20 270.60
0.49 129.41
0.94 8274
0.76  37.86
0.37 29.09
157 54.68
0.63 47.35
1.02 59.27
0.33 63.80
0.58 39.57
0.54 34.42
1.25 43.15
0.84 29.27
0.16 32.66
0.00 3755
0.81 24.87
0.85 41.96
0.72 60.85
0.82 71.02
1.01 82.03
051 36.28
0.36 70.38
0.45 11481
0.61 89.61
0.28 166.41
0.83 164.56
0.44 129.31
0.36 94.19
0.78 127.16
0.44 192.36
1.01 4334
249 42.18
221 69.56
0.60 67.24
0.28 52.40

Pb

173.88
270.01
79.80
124.24
146.89
166.36
117.69
38.05
84.78
138.27
68.30
82.39
94.95
85.39
49.02
80.77
88.50
52.98
105.20
82.54
82.62
94.17
97.99
143.75
133.24
131.40
93.38
123.39
104.67
65.10
1210.81
143.36
185.55
188.08
79.64
76.88
79.40
45.28
59.78
48.39
66.34
86.59
114.76
103.05
124.19
69.50
143.21
105.72
104.19
72.85
80.87
140.23
96.68
58.03
54.08
161.70
298.44
2591.52
165.76
94.05
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T61 39.27 17438.66 56.71 503.76 27.12 040 63.95 0.82 68.83 81.75
T62 49.19 25310.12 8297 63891 4149 061 5840 0.62 64.24 88.63
Minimum Value 26.89 9814.94 28.17 25056 1105 0.09 20.24 0.00 13.18 38.05
Maximum Value 72.22 34286.72 168.25 961.38 55.79 454 238.28 2.49 308.79 259152
Average 4469 21530.84 6542 53894 2839 053 7144 0.76 6745 164.82

The total microelement contents of soil samples from the Central and Southern Anatolia regions
exhibited a wide range of variability. B content ranged from 26.89 mg kg™' to 72.22 mg kg™, while Fe
levels spanned from 9,814.94 mg kg' to 34,286.72 mg kg™'. Zn content varied between 28.17 mg kg™!
and 168.25 mg kg™', Mn ranged from 250.56 mg kg to 961.38 mg kg™', and Cu levels ranged from
11.05 mg kg to 55.79 mg kg'. When classified according to (Taylor, 1964) and (Taylor and
McLennan, 1985), all soil samples (100%) were found to have sufficient B levels, exceeding the
threshold of 10 mg kg™'. However, Fe content in all samples was below the sufficient level of 44,100
mg kg™', indicating a deficiency. Zn deficiency was observed in 82% of the soils (levels below 78.89
mg kg), while 18% had adequate Zn levels. Mn levels were insufficient in all soil samples, falling
below the threshold of 1,900 mg kg'. Regarding Cu, 37% of the soils were deficient, while 63% had
sufficient levels. The total heavy metal contents of the soils also showed significant variability. Cd
content ranged from 0.09 mg kg to 4.54 mg kg™', Cr varied from 20.24 mg kg™ to 238.28 mg kg™, and
Mo was detected between 0.00 mg kg and 2.49 mg kg'. Ni ranged from 13.18 mg kg™ to 308.79 mg
kg™, while Pb ranged from 38.05 mg kg™ to 2,591.52 mg kg'. According to the Soil Pollution
Parameters Regulation published by (T.O.B., 2010), 98% of the soils had cadmium concentrations below
the threshold of 3 mg kg, with only 2% exceeding the toxicity threshold. Cr concentrations were below
the 100 mg kg threshold in 86% of the samples, while 14% exceeded it. Mo concentrations were below
the 10 mg kg™ threshold in all samples, indicating no toxicity. Ni concentrations exceeded the 75 mg
kg! threshold in 23% of the samples, while 77% were below this level. Pb content was below the 300
mg kg threshold in 97% of the soils, with only 3% exceeding the toxicity level. These findings provide
a comprehensive assessment of microelement and heavy metal contents in soils from the Central
Anatolia region, with significant implications for agriculture and environmental management. In
comparison, the findings of (Gezgin et al., 2002) highlighted micronutrient deficiencies, particularly in
B (26.6% of soils), Fe (86.3%), and Zi (61.0%), suggesting potential limitations in soil fertility that
could negatively impact nutrient-sensitive crops. Similarly, (Giinal et al., 2012) reported substantial
variability in heavy metal concentrations, including Ni, Pb, Cd, Co, and Cr, and noted correlations with
soil properties influenced by natural (geogenic) factors and human activities (anthropogenic). (Giinal et
al., 2022) emphasized the role of soil structure in land suitability for wheat cultivation, demonstrating
the utility of geostatistical methods for generating suitability maps. Key factors such as soil pH,
electrical conductivity, and organic matter significantly influenced soil fertility, crop yield, and heavy
metal uptake. (Ozyazici et al., 2017) contributed to understanding heavy metal contamination by
identifying that some soils exceeded permissible limits for Ni and cobalt. They observed that the
generally acidic soils (pH 4.5-5.5) enhanced metal solubility and bioavailability, with agricultural
practices, such as excessive fertilization, further contributing to increased levels of cadmium, copper,
and zinc. Our study confirms the wide variability in microelement and heavy metal concentrations in
soils from the Central and Southern Anatolia regions, reflecting both natural and anthropogenic
influences. High levels of Cr, Ni, and Pb, alongside deficiencies in Fe, Zn, and Mn, highlight the need
for targeted soil management strategies. Metal solubility, driven by factors like soil pH and organic
content, plays a critical role in bioavailability and toxicity. The findings align with previous research,
such as (Ozyazici et al., 2017), emphasizing the need for integrated soil management approaches that
consider metal solubility dynamics and interactions between geogenic and anthropogenic factors.
Regular monitoring, sustainable agricultural practices, and careful fertilizer management are essential
for mitigating contamination risks and promoting sustainable land management.

Machine Learining Applications in Central and Southern Anatolia Soils

The performance of the machine learning models was evaluated using MAE, MSE, and R? score.
The results are presented in Table 3 and visualized in Figures 2—-11 for each element (B, Fe, Zn, Mn,
Cu, Cd, Cr, Mo, Ni, Pb).
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Table 3. Performance of Machine Learning Models with Different Data Augmentation Techniques for
Predicting Microelements and Heavy Metals in Soil Samples

Elements Augmentation Technigue Models MAE MSE R? Score
RF 6,23 45,84 0,26
Random Sampling GB 6,15 44,96 0,28
SVR 6,76 72,93 0,01
RF 5,17 34,39 0,45
B Jittering GB 6,15 45,29 0,27
SVR 6,76 72,88 0,01
RF 5,10 33,97 0,45
Bootstrap Sampling GB 4,89 28,01 0,55
SVR 6,94 80,37 0,01
RF 15,91 42,90 0,87
Random Sampling GB 16,81 70,59 0,78
SVR 50,06 325,22 0,00
RF 17,38 62,25 0,81
Jittering GB 17,61 58,14 0,82
Fe SVR 50,09 325,41 0,00
RF 20,75 80,23 0,75
GB 20,87 82,48 0,75
Bootstrap Sampling
SVR 50,12 331,65 0,01
RF 19,33 702,94 0,01
Random Sampling GB 26,09 1793,14 0,01
SVR 9,97 145,20 0,09
RF 17,82 681,78 0,01
Zn Jittering GB 19,08 1026,01 0,01
SVR 9,96 144,49 0,10
RF 24,75 1504,91 0,01
Bootstrap Sampling GB 25,76 1657,38 0,01
SVR 10,02 156,70 0,02
RF 6,55 95,86 0,53
Random Sampling GB 8,97 152,93 0,25
SVR 10,13 147,03 0,27
RF 8,33 141,39 0,30
Mn Jittering GB 8,44 180,08 0,11
SVR 10,14 147,05 0,27
RF 10,28 337,09 0,01
Bootstrap Sampling GB 13,71 481,35 0,01
SVR 8,83 116,61 0,42
RF 3,21 16,81 0,75
Random Sampling GB 3,64 25,88 0,62
SVR 4,46 33,19 0,51
RF 3,23 18,07 0,73
Cu Jittering GB 5,00 48,08 0,29
SVR 4,41 32,47 0,52
RF 4,31 33,27 0,51
Bootstrap Sampling GB 4,58 43,40 0,36
SVR 4,62 35,31 0,48
RF 0,10 0,02 0,01
Random Sampling GB 0,13 0,02 0,01
SVR 0,07 0,01 0,44
RF 0,10 0,02 0,01
Cd Jittering GB 0,12 0,02 0,01
SVR 0,07 0,01 0,44
RF 0,11 0,02 0,01
Bootstrap Sampling GB 0,12 0,02 0,01
SVR 0,09 0,01 0,01
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RF 37,02 235,18 0,01
Random Sampling GB 27,71 172,33 0,12
SVR 25,53 158,12 0,19
RF 34,16 197,84 0,01
Cr Jittering GB 34,35 237,16 0,01
SVR 25,50 158,16 0,19
RF 44,60 413,52 0,01
Bootstrap Sampling GB 40,77 441,56 0,01
SVR 25,34 150,79 0,23
RF 0,40 0,21 0,01
Random Sampling GB 0,50 0,40 0,01
SVR 0,33 0,15 0,01
RF 0,36 0,16 0,01
Mo Jittering GB 0,39 0,18 0,01
SVR 0,33 0,15 0,01
RF 0,34 0,14 0,01
Bootstrap Sampling GB 0,44 0,26 0,01
SVR 0,50 0,38 0,01
RF 47,72 405,85 0,01
Random Sampling GB 36,76 300,01 0,01
SVR 27,04 154,05 0,15
RF 44,85 382,45 0,01
) Jittering GB 41,07 473,20 0,01
Ni SVR 27,05 154,87 0,15
RF 60,00 820,83 0,01
GB 46,91 721,99 0,01

Bootstrap Sampling
SVR 27,39 148,29 0,18
RF 52,89 1154,50 0,01
Random Sampling GB 54,11 1432,36 0,01
SVR 29,91 144,91 0,11
RF 47,84 863,68 0,01
Pb Jittering GB 59,63 1195,52 0,01
SVR 29,95 144,26 0,11
RF 60,66 1640,73 0,01
Bootstrap Sampling GB 102,85 5403,52 0,01
SVR 28,16 118,17 0,27

The best performance for B was achieved by GB using Bootstrap Sampling, with an MAE of
4.89 and an R? score of 0.55 (Figure 2). These results indicate good predictive capability, as the model
successfully reduced the error while capturing the variance in B concentrations.
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Actual vs Predicted Values for B (Best Model)
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Figure 2. Actual vs Predicted Values for B using the Best Model

For Fe, RF with Random Sampling provided the best performance, achieving an MAE of 15.91
and an R? score of 0.87 (Figure 3). The high R? score indicates that the model was highly accurate in
capturing the variability in iron concentrations, although the MAE remains relatively high due to the
large magnitude of the values.
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Figure 3. Actual vs Predicted Values for Fe using the Best Model

The best model for Zn was SVR combined with Jittering, yielding an MAE of 9.96 and an R?
score of 0.10 (Figure 4). Despite the relatively low R? score, the model effectively minimized prediction
errors, indicating its ability to capture the general trends in Zinc concentrations.
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Actual vs Predicted Values for Zn (Best Model)
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Figure 4. Actual vs Predicted Values for Zn using the Best Model

For Mn, RF using Random Sampling provided the best results, with an MAE of 6.55 and an R?
score of 0.53 (Figure 5). This model effectively captured the variability in the data and made accurate
predictions for manganese concentrations.
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Figure 5. Actual vs Predicted Values for Mn using the Best Model

The most accurate model for Cu was RF with Random Sampling, achieving an MAE of 3.21
and an R? score of 0.75 (Figure 6). This model demonstrated the highest predictive accuracy, as
evidenced by the strong alignment between actual and predicted values.
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Actual vs Predicted Values for Cu (Best Model)
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Figure 6. Actual vs Predicted Values for Cu using the Best Model

For Cd, SVR with Random Sampling yielded the best performance, with an MAE of 0.07 and
an R? score of 0.44 (Figure 7). The model effectively minimized the error, making it well-suited for
predicting cadmium concentrations in the soil.
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Figure 7. Actual vs Predicted Values for Cd using the Best Model

The best-performing model for Cr was SVR with Bootstrap Sampling, achieving an MAE of
25.34 and an R? score of 0.23 (Figure 8). While the error was minimized, the relatively low R? score
suggests that the model struggled to capture the full variability in Cr concentrations.

27



COMU Zir. Fak. Derg. (COMU J. Agric. Fac.) Research Article

Actual vs Predicted Values for Cr (Best Model)
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Figure 8. Actual vs Predicted Values for Cr using the Best Model

For Mo, RF with Bootstrap Sampling performed best, with an MAE of 0.34 and an R? score of
0.01 (Figure 9). The negative R? score indicates that the model struggled to generalize well for
molybdenum, highlighting the need for further refinement.
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Figure 9. Actual vs Predicted Values for Mo using the Best Model

The best model for Ni was SVR combined with Bootstrap Sampling, with an MAE of 27.39 and
an R? score of 0.18 (Figure 10). Although the model captured some variability, the low R? score suggests
that the predictions could be further improved.
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Actual vs Predicted Values for Ni (Best Model)
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Figure 10. Actual vs Predicted Values for Ni using the Best Model

For Pb, SVR with Bootstrap Sampling provided the best results, achieving an MAE of 28.16
and an R? score of 0.27 (Figure 11). The relatively low R? score indicates that while the model minimized
errors, there is still room for improvement in capturing the full variability of lead concentrations.
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Figure 11. Actual vs Predicted Values for Pb using the Best Model

The results of this study demonstrate that machine learning models, particularly RF, GB, and
SVR, can effectively predict microelement and heavy metal concentrations in soil samples. However,
the performance of these models varied depending on the element being predicted and the data
augmentation technique used. For elements such as B, Fe, and Cu (copper), the models demonstrated
strong predictive capabilities, as indicated by relatively high R? scores and low MAE values. This
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suggests that the concentrations of these elements are more easily predicted based on the available soil
features. Additionally, the use of Random Sampling and Bootstrap Sampling improved the models'
ability to generalize from the limited dataset. On the other hand, elements such as Mo, Cr, and Ni
presented challenges for the models, as evidenced by lower R? scores and higher error values. These
results may be attributed to the limited size of the dataset and the complexity of predicting the
concentrations of these elements based solely on the soil features provided. The negative R? score for
molybdenum suggests that the model struggled to generalize, indicating the need for either more
complex modeling approaches or additional features to improve prediction accuracy. Additionally, the
results highlight the importance of selecting appropriate data augmentation techniques. Jittering and
Bootstrap Sampling proved effective in improving model performance for certain elements, such as Zn
and Pb, respectively. These techniques expanded the dataset and allowed the models to train on a more
varied sample set, ultimately enhancing their generalization capability.

Despite some challenges, the overall findings suggest that machine learning models, when
combined with appropriate data augmentation techniques, hold significant potential for predicting soil
properties, even with limited data. Future studies could benefit from larger datasets and the inclusion of
additional soil features to further refine these models and enhance their predictive accuracy.

Conclusion

This study underscores the potential of machine learning models, specifically Random Forest,
Gradient Boosting, and Support Vector Regressor, for predicting microelement and heavy metal
concentrations in soils from Tirkiye's Central-Southern Anatolian region. The integration of data
augmentation techniques, such as Random Sampling, Jittering, and Bootstrap Sampling, significantly
enhanced the models' performance, particularly under the constraints of limited datasets.

Despite these advancements, the study faced several limitations, including the small dataset size
and the limited diversity of soil properties analyzed. These factors restricted the models’ ability to
generalize, especially for elements like Mo and Ni. To address these challenges, future research should
focus on collecting larger and more diverse datasets, integrating additional soil properties, and exploring
advanced modeling approaches, such as deep learning and hybrid techniques.

Moreover, incorporating spatial and temporal data, as well as considering the impacts of
geogenic and anthropogenic factors, could provide a more comprehensive understanding of soil
characteristics. Such advancements would facilitate the development of robust predictive models,
contributing to sustainable agricultural practices and improved environmental management. This study
highlights the promise of machine learning as a cost-effective and efficient tool for soil analysis, offering
valuable insights for agricultural and environmental applications.

Acknowledgements: Our research article was supported by project-based initiatives under the Mevlana Student
Exchange Program (Project No: MEV-2017-36), the Scientific and Technological Research Council of TurkeyTUBITAK
(Project No: 1160786) and the Selguk University Scientific Research Projects Coordination Unit (Project No: 18401058).

Researchers’ Contribution Rate Declaration Summary

The authors declare that they have contributed equally to the article.
Conflict to Interest Declaration

The authors declare that there is no conflict of interest between them.

References

Awad, M., Khanna, R., 2015. Support vector regression. In: Efficient learning machines: Theories, concepts, and
applications for engineers and system designers, pp. 67-80.

Bergstra, J., Bengio, Y., 2012. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13 (2).

Breiman, L., 2001. Random forests. Mach. Learn. 45: 5-32.

Gee, G.W., 1986. Particle size analysis. In: Methods of soil analysis/ASA and SSSA.

Geman, S., Bienenstock, E., Doursat, R., 1992. Neural networks and the bias/variance dilemma. Neural Comput.
4 (1): 1-58.

Gezgin, S., Dursun, N., Hamurcu, M., Harmankaya, M., Onder, M., Sade, B., 2002 Boron content of cultivated
soils in Central-Southern Anatolia and its relationship with soil properties and irrigation water quality.
Boron in plant and animal nutrition. 391-400.

Gholamy, A., Kreinovich, V., Kosheleva, O., 2018. Why 70/30 or 80/20 relation between training and testing sets:
A pedagogical explanation. Int. J. Intell. Technol. Appl. Stat. 11 (2): 105-111.

30



COMU Zir. Fak. Derg. (COMU J. Agric. Fac.) Research Article

Giinal, H., Acir, N., Budak, M., 2012. Heavy metal variability of a native saline pasture in arid regions of Central
Anatolia. Carpathian Journal of Earth and Environmental Sciences. 7: 183-193.

Giinal, H., Kilig, O.M., Ersayin, K., Acir, N., 2022. Land suitability assessment for wheat production using
analytical hierarchy process in a semi-arid region of Central Anatolia. Geocarto International. 37: 16418—
16436.

Hastie, T., Tibshirani, R., Friedman, J.H., 2009. The elements of statistical learning: Data mining, inference, and
prediction. Springer.

Hizalan, E., Unal, H., 1966. Topraklarda 6nemli kimyasal analizler. AU Ziraat Fakiiltesi Yayinlari. 278: 5—7.

Jackson, M., 1958. Soil chemical analysis. Prentice Hall, Englewood Cliffs, NJ, pp. 183-204.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.-Y., 2017. LightGBM: A highly efficient
gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 30.

Khosravi, V., Ardejani, F.D., Yousefi, S., Aryafar, A., 2018. Monitoring soil lead and zinc contents via
combination of spectroscopy with extreme learning machine and other data mining methods. Geoderma.
318: 29-41.

Kog, S., 1987. Karadag (Karaman) Volkanitlerinin Jeolojisi Ve “Base Surge” Olusuklari. Gazi Universitesi
Miihendislik Mimarlik Fakiiltesi Dergisi. 2.

Kohavi, R., 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. In:
Proceedings of IJCAI, Montreal, Canada, pp. 1137-1145.

Lahn, E., 1949. On the geology of Central Anatolia. Tiirkiye Jeoloji Biilteni. 2: 90-107.

Luce, M.S,, Ziadi, N., Gagnon, B., Karam, A., 2017. Visible near-infrared reflectance spectroscopy prediction of
soil heavy metal concentrations in paper mill biosolid- and liming by-product-amended agricultural soils.
Geoderma. 288: 23-36.

MGM, 2025. Meteoroloji Genel Iklim Verileri. Meteoroloji Genel Miidiirliigii, Ankara, Turkey.

Munnaf, M.A., Mouazen, A.M., 2021. Development of a soil fertility index using on-line Vis-NIR spectroscopy.
Comput. Electron. Agric. 188: 106341.

Nie, S., Chen, H., Sun, X., An, Y., 2024. Spatial distribution prediction of soil heavy metals based on random
forest model. Sustainability. 16 (11): 4358.

Ozyazici, M.A., Dengiz, O., Ozyazici, G., 2017 Spatial distribution of heavy metals density in cultivated soils of
Central and East Parts of Black Sea Region in Turkey. Eurasian Journal of Soil Science. 6: 197-205.

Shi, S., Hou, M., Gu, Z., Jiang, C., Zhang, W., Hou, M., Li, C., Xi, Z., 2022. Estimation of heavy metal content in
soil based on machine learning models. Land. 11 (7): 1037.

Sigrist, F., 2021. Gradient and Newton boosting for classification and regression. Expert Systems With
Applications. 167: 114080.

Smith, H.W., Weldon, M.D., 1941. A comparison of some methods for the determination of soil organic matter.

T.0.B., 2010. Toprak Kirlilik Parametreleri Y6netmeligi.

Taylor, S., 1964. Abundance of chemical elements in the continental crust: A new table. Geochimica et
Cosmochimica Acta. 28: 1273-1285.

Taylor, S., McLennan, S., 1985. The continental crust: Its composition and evolution. Geoscience Texts. 312.

Wang, Y., Zhao, Y., Xu, S., 2022. Application of VNIR and machine learning technologies to predict heavy metals
in soil and pollution indices in mining areas. Journal of Soils and Sediments. 22 (10): 2777-2791.

This work is licensed under a Creative Commons Attribution CC BY 4.0 International License.
BY

31



