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ABSTRACT

In this study, a classification study was carried out using multi-temporal Sentinel-2 imagery and datasets
generated from different vegetation and spectral indices, and the effects on the classification result were
investigated. As the study area has very fertile soils, suitable climate and temperature conditions and irrigated
land, it is possible to grow more than one crop on the same plot during a production season. Wheat_maize
(winter_wheat+summer_maize), wheat_cotton (winter_wheat+summer_cotton), lentil_cotton
(winter_lentil+summer_cotton), lentil_maize (winter_lentil+summer_maize) are the crops included in the
classification study, except for double crops; maize, cotton, wheat and lentils are also included. Time series of
vegetation indices can be used to capture information on plant phenology and can be used as reference
information in crop classification. Time series curves of different vegetation indices were constructed and
compared for all crops, especially for double crops with the same phenological periods. In addition to the
vegetation indices, the variation of the time series reflectance values of each spectral band was also observed
for all crops and the effect of different indices and bands on the classification result was investigated. The study
generated 16 different data sets using conventional vegetation indices, NDVI, SAVI, EVI and NDRE vegetation
indices and all other bands of the Sentinel-2 satellite except the 60m bands. While single crops with different
time series (maize, cotton, lentil, wheat) had an accuracy of over 90% in each dataset, double crops could not
exceed 81% accuracy by mixing with each other in the DS-5 (R-G-B-NIR) dataset. In the DS-1 (NDVI time series)
dataset, the overall accuracy for double crops is in the range of 84-85%. Classification with DS-2 (NDRE time
series) increased the overall accuracy for double crops to 90%. When comparing the time series reflectance
values of each spectral band for all crop types, except the crop indices, it was observed that the B6 (Red Edge-
2) and B11 (SWIR-1) bands were separated from the other bands and increased the classification result by 2%
when included in the dataset. Especially in the classification studies carried out on products with close
phenological periods, the Red Edge band (especially Red Edge-2) and the indices (NDRE) generated from these
bands will improve the classification result by preventing confusion between classes, and the B11 (SWIR-1)
band also has a positive effect on classification. This study has fully demonstrated the application potential of
red edge bands and the indices constructed from them. It also promotes the use of red edge band optical
satellite data in agricultural remote sensing.
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Spektral Bantlarin ve Bitki Ortiisii indeks Se¢iminin Tarimsal Uriin Siniflandirmasina
Etkisinin Arastiriimasi (Ozellikle Cift Ekim Yapilan Alanlarda)

0z

Bu c¢alismada, ¢ok zamanli Sentinel-2 goruntileri ile farkl bitki 6rtlisi ve spektral indekslerden
olusturulan veri setleri kullanilarak bir siniflandirma calismasi gerceklestirilmis ve siniflandirma sonucu
Gzerindeki etkileri arastirilmistir. Calisma alani ¢ok verimli topraklara, uygun iklim ve sicaklik kosullarina ve
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sulanan arazilere sahip oldugundan, bir lretim sezonu boyunca ayni parselde birden fazla Grin yetistirmek
mamkindir. Bugday_misir (kishk_bugday+ vyazlik_misir), bugday_pamuk (kislik_bugday+yazlik_pamuk),
mercimek_pamuk (kishk_mercimek+yazlik_pamuk), mercimek_misir (kishk_mercimek+yazlik_misir)
siniflandirma c¢alismasina dahil edilen Grinlerdir, gift Grinler disinda; misir, pamuk, bugday ve mercimek de
dahil edilmistir. Bitki Ortlsl indekslerinin zaman serileri, bitki fenolojisi hakkinda bilgi yakalamak igin
kullaniimakta olup ve Uriin siniflandirmasinda referans bilgi olarak kullanilmaktadir. Farkh bitki ortisi
indekslerinin zaman serisi egrileri olusturulmus ve tiim Urinler igin, 6zellikle de ayni fenolojik dénemlere sahip
¢ift Urlnler igin karsilastirilmistir. Bitki 6rtUsi indekslerine ek olarak, her bir spektral bandin zaman serisi
yansima degerlerinin degisimi de tim Urilnler icin gozlemlenmis ve farkh indeks ve bantlarin siniflandirma
sonucu lzerindeki etkisi arastiriimistir. Calismada geleneksel vejetasyon indeksleri, NDVI, SAVI, EVI ve NDRE
vejetasyon indeksleri ve Sentinel-2 uydusunun 60m bantlari harig¢ diger tim bantlari kullanilarak 16 farkli veri
seti olusturulmustur. Farkli zaman serilerine sahip tek Grinler (misir, pamuk, mercimek, bugday) her veri
setinde %90'in tizerinde dogruluga sahipken, DS-5 (R-G-B-NIR) veri setinde cift trlnler birbirleriyle karistirilarak
%81 dogrulugu gecememistir. DS-1 (NDVI zaman serisi) veri setinde, ¢ift mahsuller i¢in genel dogruluk %84-85
araligindadir. DS-2 (NDRE zaman serisi) ile siniflandirma, ¢ift mahsuller igin genel dogrulugu %90'a ¢ikarmistir.
Uriin indeksleri hari¢ tiim Griin tirleri icin her bir spektral bandin zaman serisi yansima degerleri
karsilastirildiginda, B6 (Red Edge-2) ve B11 (SWIR-1) bantlarinin diger bantlardan ayristig1 ve veri setine dabhil
edildiginde siniflandirma sonucunu %2 oraninda artirdigi gériilmistir. Ozellikle fenolojik dénemleri yakin olan
Uranler Gzerinde yapilan siniflandirma calismalarinda Red Edge bandi (6zellikle Red Edge-2) ve bu bantlardan
uretilen indekslerin (NDRE) siniflar arasi karisikligi onleyerek siniflandirma sonucunu iyilestirecegi, B11 (SWIR-
1) bandinin da siniflandirma tizerinde olumlu etkisi oldugu gorilmustir. Bu galisma, kirmizi kenar bantlarinin ve
bunlardan olusturulan indekslerin uygulama potansiyelini tam olarak ortaya koymustur. Ayrica, kirmizi kenar
bantl optik uydu verilerinin tarimsal uzaktan algilamada kullanimini tesvik etmektedir.

Anahtar kelimeler: bitki, siniflandirma, sentinel-2, spektral bant, rastgele orman, vejetasyon indeksi

INTRODUCTION

Remote sensing has a wide range of applications, from environmental monitoring and climate change
studies to agricultural and geological applications. It has the advantage of providing data at different temporal,
spatial and spectral resolutions. Recent technological developments in Earth observation satellites and the
increasing number of satellites have made access to information on land cover/use, agricultural crop patterns
and changes at local and global scales faster, cheaper and more accessible (Khatami et al. 2016). A notable
example of this progress is the Copernicus programme, which includes Sentinel satellites with different
characteristics. Among these, the Sentinel-2 satellite stands out as a passive sensor satellite. Its wide range of
bands, its ability to provide images with different spatial resolutions and its frequent acquisition intervals are a
significant advantage for monitoring areas with a continuous dynamic structure, such as agriculture.

Satellite imagery allows the observation, identification, mapping and evaluation of dynamic agricultural
areas with at different temporal and spatial resolutions. The most common method used in agricultural crop type
detection with satellite imagery is image classification. Classification accuracy depends on the classification
method used (pixel or object based) and the characteristics of the satellite image (low, medium or high spatial
resolution; multispectral or hyperspectral), as well as the design and characteristics of the training/test data
(number of pixels, statistical distribution of selected samples, etc.) and the selection of the appropriate number
of images and bands (Lu and Weng 2018;Kavzoglu 2009).

Due to the complexity and diversity of crop types and the small spectral differences between different
crops, crop classification using a single time-phased remote sensing image is prone to the phenomena of "same
object with different spectra" and "different objects with the same spectrum", resulting in misclassification and
mixed classification, and the classification accuracy is difficult to improve (Conese and Maselli 1991;Gomez et al.
2016). Agricultural crops are grown in different phenological periods according to crop variety, topography and
climatic conditions, as well as in similar or very close phenological periods. For this reason, it is necessary to use
multi-temporal images in classification studies to detect crops in close or different phenological periods. Crop
type classification studies can be performed from a single image or multiple images, but when applied to time
series images, they have been shown to perform better than single date mapping methods (Gomez et al. 2016).
Time series remote sensing data are widely used in the field of agricultural remote sensing, as they can reflect
differences in the growth status of different crops, show different phenological characteristics, and improve
separability and classification accuracy (Murty et al. 2003;Zhong et al. 2019).
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Tablel. Literature review of crop type classification

Ref. Study area Satellite Feature Method Classses Subject
Beans, beetroot,grass Crop classification using
Kobayashi et al.  Hokkaido, . Spectral bands ! ! ' spectral indices derived
Sentinel-2 L RF maize,potato, .
2020 Japan 91 Vegetation indices wheat from Sentinel-2A
imagery
Wood, orchard,minor
crop, cotton,spring Land Cover and Crop
Kang et al. Hebei, . . maize, winter wheat-  Classification Based on
2021 China sentinel-2 10 Red edge Indices RF summer maize, Red Edge Indices
greenhouses,water Features
body, cities
Comparison of Five
SVM Spectral Indices and Six
stern et al. lowa, Landsat NDIS,NDI7,NDTI, mIA’\:(?_:ST Corn, soybean, other Image.ry Classification
2023 USA STI,NDSVI » soybean, Techniques for
RANDTR Assessment of Crop
SAM Residue Cover Using
Four Years of Landsat
Lower Beetrooot,maize,whe
Pasternak and o . 12 Vegetation indices at,canola The Evaluation of
e Silesian, Sentinel-2 RF
Filipiak 2002 Poland PCA sunflower,potato, Spectral Vegetation
rye Indexes Accuracy of
Crop Type Detection
Using of Multi-Source
and Multi-Temporal
Yangzi Sentine-1 NDVIEVI,TVI, ANN Forest,maize,rape Remote Sensing Data
Sun et al. 2019 China ! Sentinel-2 NDWI,NDTI RF urban ,water,whea,t Improves Crop-Type
Landsat-8 Texture SVM ! ! Mapping in the
Subtropical Agriculture
Region
Accessing the temporal
Heilongjiang . NDVI,PMINDSVI SVM Rice,corn,water, and spectral fea'tures in
Zhang et al. 2020 China Sentinel-2 NDRI.NDTI RF soybean,potato, crop type mapping
! CART beet,forest,building using multi-temporal
Sentinel-2 imagery
Corstaeonionslow Tt dos s
Vuolo 2018 lower, Sentinel-2 Spectral bands RF ! ! )
Austria su.garbeet,sunflower, data '|r'npr.ove crop type
winter cereal classification?
The effect of spectral
band and plant index
Ustlner et al. Aydin . Maize, cotton, soil, selection on crop
2015 Turkiye RapidEye Spectral bands, NDRE  SVM water pattern classification
accuracy: Comparative
analysis
Controlling of product
. . declarations of farmers
simsek et al. anrrtan Plain Landsat NDVI Rule Egse(.:i Wheat, maize,cotton  using remote sensing
2016 Turkiye Classification .
techniques: the Harran
Plain case
Teke and Y. Cetin Hf\rrf—,\n Plain Sentinwl-2 NDVI, SAVLEVI VDTW Maize, cotton Multi-Year YDTW Based
2021 Turkiye Crop Mapping

Additional data (such as texture filters, vegetation indices and digital elevation models) are sometimes
used to improve the distinguishability of the products to be classified, and vegetation indices are one of these
additional data (Song et al. 2015;Kim and Yeom 2015). Specifically, Normalized Difference Vegetation Index
(NDVI), Soil-Adjusted Vegetation Index (SAVI), and Enhanced Vegetation Index (EVI) are used to monitor
vegetation systems or ecological responses to environmental change (Song et al. 2015). Normalized Difference
Red Edge (NDRE), The NDRE index includes a red edge band and plays a very important role in vegetation
monitoring, providing valuable information on plant health, species differentiation, stress detection and other
factors. Its sensitivity to chlorophyll content and reduced susceptibility to atmospheric interference make it a key
component in remote sensing applications for agriculture, forestry and ecosystem monitoring. The use of multi-

199



Tiirk Tarim ve Doga Bilimleri Dergisi 12(1): 197-215, 2025

temporal remote sensing data to construct Normalized Difference Vegetation Index (NDVI) and other vegetation
index time series, combined with the seasonal rhythms and phenological differences of different crops, has been
widely used in crop classification, which has improved the accuracy of crop classification (Kang et al. 2021). In
addition to the characteristics of remote sensing data, classification algorithms are important to improve the
classification accuracy of crop maps. Recently, Random Forest (RF) is a widely used machine learning algorithm
consisting of an ensemble of decision trees, and it has been a highly successful machine learning algorithm for
classification and regression methods (Biau and Scornet 2016). Random forest algorithms have been used to map
land cover over large areas using high-resolution satellite imagery time series, with successful results (Pelletier
et al. 2016).

There are many studies in the literature on crop type classification using different satellites, different
indices and bands. In these studies using different algorithms, the effects of different indices and bands on the
classification results have also been investigated and compared Table 1.

Most of the studies in the literature are on single crops. In this study, not only were double crops with
very close phenological periods studied, but also the changes in the temporal curves of these crops in different
vegetation and spectral bands were monitored and compared. The changes in the time series curves of these
crops with close phenological periods and the time curves of different vegetation indices were studied and the
effects of the index data causing these changes on the classification result were investigated. In addition to the
index data, the effect of the spectral bands on the classification accuracy was also investigated.

STUDY AREA AND MATERIALS

Study Area

The study area was located in the Harran Plain, Sanhurfa, Turkey (36° 47'-39° 15' E, 36° 40' 37° 41' N) at
an altitude between 350 and 500m (Fig.1). The Harran Plain, with a total area of 225,000 ha, is the third largest
plain in Turkey and has great agricultural potential. The Harran Plain has a continental climate with mild winters
and high summer temperatures. These climate and temperature conditions, together with the increase in
irrigated areas in recent years, have led to the cultivation of double crops (two types of crops: wheat_maize
(winter_wheat + summer_maize), wheat_cotton (winter_wheat + summer_cotton), lentil_cotton (winter_lentil
+ summer_cotton), lentil_maize (winter_lentil+summer_maize), during the production season (Bozkurt and
Aybek 2016). The main crops grown in the region, including wheat, barley, lentil, cotton and maize, cover 95%
of the Harran Plain. As these products are not homogeneously distributed within the boundaries of the plain,
and considering the plain as a whole, the study area includes the boundaries of the plain.
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Fig.1. Study area
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Sentinel-2

Sentinel-2A and Sentinel-2B are constellation satellites launched by the European Space Agency (ESA)
under the European Commission's (EC) Copernicus programme. Each identical satellite is equipped with a
multispectral sensor covering 13 spectral bands with a spatial resolution of 10 m to 60 m and a radiometric
resolution of 12 bits. Sentinel-2A was launched in June 2015, followed by Sentinel-2B in March 2017. Information
on the spectral bands and reflectance values of the Sentinel-2 satellite images is given in Table 2.

Table2. Spectral bands of Sentnel-2 images

Description Bands Wavelength (um) Resolution (m)
Aerosol B1 458-523 60
Blue B2 458-523 10
Green B3 543-578 10
Red B4 650-680 10
Red-Edge-1 B5 698-713 20
Red-Edge-2 B6 733-748 20
Red-Edge-3 B7 773-793 20
NIR B8 785-900 10
Veg. Red Edge B8a 885-875 10
Water Vapour B9 935-955 60
Cirrus B10 1360-1390 60
SWIR-1 B11 1565-1655 20
SWIR-2 B12 2100-2280 20

All bands except B1-B9-B10 were used in this study. However, the three atmospheric bands were not
used in this study as they are mainly used for atmospheric corrections and cloud screening. (Drusch et al. 2012).
The fact that Sentinel-2 imagery contains a large number of spectral bands, and in particular has a temporal
resolution of 5 days, provides a significant advantage for monitoring agricultural areas, detecting crop patterns
and analyzing changes. (Simsek and Durduran 2023). As the study area is predominantly covered by crops with
closely aligned phenological periods, 23 observations were made by Sentinel-2A between March and September
2016. After June, the selected images were cloud-free, while before June, images with a low cloud fraction were
selected and cloudy areas were detected and masked. The acquisition dates of the Sentinel-2 satellite images
are shown in Table 3.

Table 3. Acquisition time of Sentinel-2

Day of Year (DOY) Acquisition Time Day of Year (DOY) Acquisition Time

37 29 March 2022 212 29 March 2022

57 5 April 2022 220 5 April 2022
87 5 May 2022 230 5 May 2022
102 20 May 2022 240 20 May 2022
117 6 June 2022 252 6 June 2022
132 14 July 2022 262 14 July 2022
152 11 August 2022 272 11 August 2022
167 7 September 2022 282 7 September 2022
177 2 October 2022 292 2 October 2022
192 17 October 2022 317 17 October 2022
202 27 October 2022 302 27 October 2022

Ground Truth Data
Two field studies were carried out in April for wheat, barley and lentil crops and in August for maize and
cotton crops. Given the large area of the plain (225,000 ha), the number of samples could not reach the desired
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level due to time and cost constraints. In addition to field data, parcels declared by farmers were used as ground
truth data in the study. 3145 agricultural parcels (cotton: 610, maize: 105, lentil: 340, wheat: 520, lentil_maize:
250, lentil_cotton: 380, wheat_maize: 413, wheat_cotton: 527) were used in the classification study.

The Farmer Declaration Parcels (FDP) in Turkey, also known as the Farmer Registration System (FRS), is
a government initiative aimed at registering and tracking agricultural activities and farmers in the country
(Aydogdu et al. 2011). This system was introduced to improve the efficiency and transparency of agricultural
practices and to provide various benefits to registered farmers. The FRS requires farmers to register themselves
and their farming activities. This registration process involves providing personal information and details of the
land they farm. The parcels of agricultural activity registered by farmers in the system are called FDPs. In addition
to the geometric information of the parcels, the system also contains information on the province, district, parcel
number, agricultural parcel number, information on the products grown, area, surface, cadastral area, date of
cultivation and date of harvest of each parcel. (Simsek and Durduran 2023). When the FDPs were examined, it
was found that there were systematic and non-systematic differences between the geometry and attribute
information of the parcels and the parcels in the field. Because of these differences, a number of processing steps
were applied to the FDPs, and at the end of these steps, ground truth data were produced from the FDPs and
used in the classification study together with the data collected in the field. The agricultural calendar for the
crops grown in the plain was obtained and is presented graphically (Fig. 3.). The calendar provides information
on the sowing, growing, dense vegetation and harvesting periods of crops grown in the region. The exact dates
of sowing and harvesting vary between plots and farmers. In some cases, there may be a difference of up to 1-3
weeks between the categorized crops; wheat and barley crops are included in the wheat class.

Cotton

Maize
Wheat

Lentil
Wheat_Maize

Lentil_Maize
Wheat_Cotton

Lentil_Cotton

October - December January - March April - June July - September October - December

| Preparation Sowing - Growing - Dense Vegetation - Harvesting

Fig.3. Approximate crop calendar in the region.

Post Harvest

Looking at the phenological period of the crops, it is observed that maize and cotton are separated from
each other with a dense vegetation stage, while wheat and lentil are in close phenological stages. It was observed
that double crops (wheat_maize, lentil_maize, wheat_cotton, lentil_cotton) were in close phenological stages.
The calendar shows that the phenological periods of both single and double crops are very close and different
indices and bands should be used to distinguish these crops in the classification study.

METHODOLOGY

General Architecture Overview

After acquiring 23 Sentinel-2 images, the cloudy areas and the shadow areas caused by the clouds were
masked. The bands were resampled from 20 m to 10 m. Four different spectral indices were calculated for each
Sentinel-2 image, and spectral curves were created for each crop by overlapped these indices with ground truth
data. The spectral index curves and spectral bands were then compared for each crop type. Classification studies
using the RF algorithm were carried out with different datasets generated from different indices and bands, and
the effect of bands and indices on the classification results was compared. Fig. 4. shows the flowchart used in
this study.
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Fig.4. Workflow of study

Satellite Image Processing

In data processing, no further geometric correction of the L1C products is required, only atmospheric
correction and spatial resolution resampling. (Zheng et al. 2007). Sentinel-2 images are provided in Level 1C
format and contain above-atmospheric reflectance values. To calculate the actual reflectance values of plants in
a classification study, top-of-atmosphere (TOA) values should be converted to bottom-of-atmosphere (BOA)
reflectance values (Wilm 2017). Atmospheric effects were eliminated by converting TOA values to BOA values
using the Sen2cor plugin. After Sen2Cor processing, the L1C TOA reflectance values were converted to Level 2A
(L2A) BOA reflectance values (Wilm et al. 2013). The conversion of Sentinel-2 data from L1C to L2A improves the
accuracy of derived vegetation indices such as NDVI by accounting for atmospheric effects, ensuring that
observed changes in NDVI and other indices are more closely related to actual variations in vegetation health.
Clouds and cloud shadows in satellite imagery are the main sources of noise that cause problems in image
analysis (Kalkan and Maktav 2016). Brightness caused by clouds and shadows can affect data analysis and lead
to changes in NDVI and other indices. (Zhu and Woodcook 2012). Cloud-covered areas cause anomalies in the
image bands as well as in the pixel values of the indices created from these bands, which adversely affects the
classification results (Karslen et al. 2021). To eliminate this situation, clouds and shadow areas caused by clouds
have been detected and masked by the Sen2core software (Fig.5.) . The cloud screening and classification part
of Sen2Cor is available as source code in the distributed (Skakun et al. 2022). Potentially cloudy pixels are
subjected to a series of filters based on spectral band thresholds, ratios and index calculations - Normalized
Difference Snow Index (NDSI). After atmospheric correction and cloud masking, B5-B7-B8a-B11-B12 were

resampled from 20m to 10m.
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Fig.5. Cloud detection and masking.

Vegetation Indices and Spectral Band Analysis

As can be seen from the phenological calendar in Figure 3, the single and double crops in the study area
have very close phenological periods. The seasonal rhythm and phenological characteristics of different crops
can be reflected by the difference in the spectrum or vegetation index of multi-temporal remote sensing data
(Gomez et al. 2016). NDVI is widely used for crop type identification (Gumma et al. 2020). The NDVI index
provides information on plant health and development (Morsy and Hadi 2022). In order to see this phenological
closeness on a crop by crop basis, time series NDVI plots were first created. Each plot was overlapped with multi-
temporal NDVI images and the median NDVI values of each plot in the time series were calculated. After this
process, the vegetative development and change of each plot was determined and the characteristics of the
NDVI curves showing the variability over time were revealed. The characteristic NDVI curves for each crop were
checked against the phenological calendar and the spectral reflectance values of each crop collected during the
field study. When analysing the NDVI time series curves of each crop, it can be seen that lentils and wheat, which
are winter crops, are separated from each other, while maize and cotton, which are summer crops, show new
different time curves (Fig. 6). With the NDVI index, these four crops (lentil, wheat, maize, cotton) have different
reflectance values on the same dates and their temporal curves are separated from each other. Therefore, no
studies have been carried out with different vegetation indices in single crops.
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Fig.6. NDVI times series of single crops

When analyzing the NDVI time series curves, wheat_maize-wheat_cotton crops and lentil_maize-
lentil_cotton crops differ from each other between day 57. and day 132. However due to the later sowing of
lentil, but it can be seen that the reflectance values for all crop types are very close to each other between day
220. and day 317. Fig 7.
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Fig.7. NDVI time series of double crops
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It was observed that the NDVI time series curves were similar for both crops, especially in the second
period of the year. The effect of different vegetation indices on the time series curves of the crops and the
classification results were investigated in this study. There are nearly 100 vegetation indices in the literature. In
this study, NDVI, NDRE, SAVI and NDRE indices, which are traditional vegetation indices, were used Table 4.

Table 4. Acquisition time of Sentinel-2

Spectral Full Name Formula Description Reference
Index
Normalized Commonly used for assessing Tucker
NDVI Difference (NIR - R)/(NIR +R) overall vegetation health and
) . 1979
Vegetation Index density
Similar to NDVI but designed to
L ' heri
Enhanced 25%(NIR-R)/(NIR + 6¥R-  mmize atmOspREriC ), ete et
EVI L * influences and improve
vegetation index 7.5*%B+1) o . . . al. 2002
sensitivity in high biomass
regions
. . Designed to minimize soil
Soil-Adjusted N . . Huete
SAVI Vegetation Index (NIR-R)/(NIR+R+L)*(1+L) backgrqunc! influences in the 1988
vegetation index
Normalized Particularly sensitive to changes
. (NIR —Redge2)/(NIR + in chlorophyll content, making it ~ Barnes
NDRE Difference Red .
Edge Redge2) valuable for detecting early 2000

signs of stress

Comparing the NDVI, SAVI and NDRE time series curves of lentil_maize and lentil_cotton, it is observed
that the curves are close to each other as in the case of NDVI, this is also the case for wheat_maize and
wheat_cotton. It was observed that the SAVI index did not change in relation to the NDVI index. As a result of
the EVIindex, the time series curves for four crops show some separation compared to the SAVI and NDVI indices.
When analyzing the time series curves of the NDRE index, it can be seen that the curves for the two crops
wheat_maize-wheat_cotton and lentil_maize-lentil_cotton are more separated compared to the other indices
Fig. 8. In summary, the NDRE index values performed better than other indices in separating the time series
curves of crops.

In addition to observing the changes in the time series curves of crops with different vegetation indices,
the study also analysed the time series reflectance values of each spectral band for all crop types. Comparing the
time series reflectance values of each spectral band for all crop types, it is seen that the B6 (Red Edge-2) and B11
(SWIR-1) bands are separated from the other bands Fig 9.
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Fig.8. NDVI-EVI-SAVI-NDRE time series also were analyzed for double crops
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Fig.9. Reflectance values of different spectral bands for double crop type as time series.

Different datasets were generated using 4 different vegetation indices and 10 spectral bands Table 5.
Classification studies were performed on these datasets and the results were compared. It was also investigated
if the indices and bands that create time series curve differences in the generated datasets affect the
classification result.
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Table 5. Data sets and number of bands

Number Number

Data Set Features of bands Data Set Features of bands
Data Set (DS-1) NDVI 21 Data Set (DS-9) (4BAND)-EVI 105
Data Set (DS-2) NDRE 21 Data Set (DS-10) (4 BAND)-B6-B11 126
Data Set (DS-3) SAVI 21 Data Set (DS-11) (4 BAND)-B6-B11-NDRE 147

B2-B3-B4-B5-B6-B7-B8-
Data Set (DS-4) EVI 21 Data Set (DS-12) B8A-B11-B12 (10 BAND) 210
B2-B3-B4-B8

Data Set (DS-5) (4BAND) 84 Data Set (DS-13) (10 BAND)-NDVI 231
Data Set (DS-6) (4BAND)-NDVI 105 Data Set (DS-14) (10 BAND)-NDRE 231
Data Set (DS-7) (4BAND)-SAVI 105 Data Set (DS-15) (10 BAND)-SAVI 231
Data Set (DS-8) (4BAND)-NDRE 105 Data Set (DS-16) (10 BAND)-EVI 231

Classification Using Random Forest

Random Forest (RF) is a combinatorial ensemble learning classification technique. RF is an improved
algorithm based on an ensemble learning technique that builds multiple CARTs. (Breiman 2001) In fact, RF has
been very successful as a general purpose classification and regression method (Biau and Scornet 2016). RF fits
many classification trees to training data sets and then combines the predictions of all the trees to make a final
decision. RF is an ensemble classifier that is currently widely used in remote sensing studies due to its
classification accuracy (Belgiu and Dragut 2016). Higher accuracies have been achieved with RF compared to
other machine learning algorithms in many crop mapping studies (Tatsumi et al. 2015). RF is known to work
efficiently on large datasets with a large number of input variables to estimate which variables are significant in
the classification process, and is relatively robust to noise and outliers. 44 many examples of the use of this
algorithm can be found in the literature (Feng et al. 2019).

Hyperparameter optimization is the process of finding the optimal combination of parameters for a
machine-learning algorithm according to specified success criteria. Hyperparameter optimization aims to achieve
a balance between overlearning and under learning by balancing high model success and model complexity. The
original RF has two hyperparameters including the number of trees (ntree) and the number of variables used to
partition the nodes (mtry). Several studies have shown that satisfactory results can be achieved with the default
parameters (Zhang and Roy 2017). In this study, to find the optimal RF model for classification, a range of values
for both parameters were tested and evaluated using the grid search method for each dataset: ntree = 100, 200,
400, 600,800,1000; mtry = 1:20 Table 6.

After determining the optimal parameters of the algorithm to be used in the classification process, the
k-fold cross-validation method is used. K-fold cross-validation allows to see whether the high performance of the
model is random or not. In this method, the data set is divided into k parts and k-1 subset is used to train the
model and the remaining subset is used to calculate the accuracy of the model. The process is repeated k times,
each time using different pieces of training and test data. The average of the accuracy values obtained represents
the accuracy of the model, and in this study the k value is taken as 5 (Kohavi 1995).

Table 6. Hyper parameter values for different data sets

Number of

Data Set bands Ntree Mtry
Data Set (DS: 1-4) 21 100

Data Set (DS-5) 84 200

Data Set (DS: 6-9) 105 200 10
Data Set (DS-10) 126 400 11
Data Set (DS-11) 147 400 12
Data Set (DS-12) 210 800 14
Data Set (DS: 13-16) 231 800 15
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Fig.10. Classification result produced with DS-16 dataset
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RESULTS AND DISCUSSION

In order to assess the accuracy of classification performance, a number of metrics are available in the
literature. In this study, the following metrics were employed for the assessment of classification accuracy:
precision (PA), recall (UA), accuracy (OA), and the F1 score. These results are presented in Table 7.

PA (Producer Accuracy): The ratio of correctly predicted positive observations to the total predicted positives. It
measures the model's ability to correctly identify positive instances among the instances it predicted as positive.
) PA: TP/(TP+FN). ) .

UA (User Accuracy): The ratio of correctly predicted positive observations to the total actual positives. It
measures the model's ability to correctly identify positive instances.

UA: TP/(TP+FP)
OA (Overall Accuracy): The ratio of correctly predicted instances (both positive and negative) to the total
instances. It provides a general measure of the model's correctness.

OA: (TP+TN)/N
F1 Score: The harmonic mean of precision and recall. It provides a balance between precision and recall,
especially useful when dealing with imbalanced datasets.

F1:2xUAXPA / (UA+PA)

These classification accuracy indicators can be used to reflect the overall classification accuracy and

specific type identification accuracy of remote sensing images from different perspectives. (Congatol, 1991).

Table 7. Accuracy assessment for all data sets

Crop Type

PA UAF1 DS-1 DS-2 DS-3 DS-4 DS-5 DS-6 DS-7 DS-8 DS-9 DS-10 DS-11 DS-12 DS-13 DS-14 DS-15 DS-16
93.3 93.6 92.8 94.8 93.2 925 93.1 959 93.8 91.2 931 928 942 946 925 9338
Cotton 90.9 934 91.8 92.7 94.2 93.8 939 906 93.2 950 93.0 934 934 93.7 939 939
92.1 93.5 93.8 93.7 92.2 93.1 935 935 935 931 93.0 93.1 938 941 932 939
93.3 934 914 95.1 93.1 93,5 95.0 93.0 944 922 957 933 940 946 944 945
Maize 93.4 93.0 91.8 929 91.2 93.0 93.1 934 940 937 924 931 941 940 951 949
93.3 93.2 91.6 940 92.1 934 94.1 93.2 942 929 94.0 932 941 0943 94.7 947
89.9 91.8 88.6 90.7 87.6 925 924 948 928 899 913 906 935 924 929 926
Wheat 95.2 93.6 93.8 939 91.0 929 93.7 90.1 929 886 935 89.7 934 0934 920 934
924 92.7 91.1 923 89.3 92.7 93.1 924 928 89.2 924 902 929 929 924 9238
90.3 92.6 90.5 919 88.1 92.3 923 943 928 89.0 935 909 925 938 929 93.0
Lentil 95.2 93.2 93.2 91.8 92.2 929 939 909 92.7 894 924 905 93.3 93.0 925 936
92.7 929 91.8 919 90.1 92.6 93.1 925 928 89.2 929 90.7 929 934 92.7 933
88.1 89.2 824 86.6 77.2 86.2 91.0 846 879 837 920 835 874 937 893 90.2
Wheat_ 81.0 90.1 86.1 86.0 85.7 84.0 90.2 8.9 875 844 932 847 870 933 88.2 90.0
Cotton 84.3 89.6 84.2 86.3 81.2 85.1 90.6 852 87.7 84.0 926 841 87.2 935 887 90.1
82.2 89.3 82.0 8.9 78.7 85.0 92.1 88.1 883 838 92.7 851 895 927 875 910
Wheat_ 88.1 90.5 87.1 87.6 829 87.0 89.3 837 881 855 913 856 86.7 933 90.0 89.0
Maize 85.0 89.9 84.5 86.7 80.7 86.0 90.7 858 88.2 84.6 92.0 853 881 93.0 88.7 90.0
87.1 91.1 86.5 85.1 859 86.5 909 831 871 84.1 899 851 885 929 88.1 887
Lentil_ 824 89.0 859 874 784 86.1 89.8 844 877 856 913 857 879 928 87.7 90.8
Cotton 84.7 90.1 86.2 86.2 82.0 86.3 92.1 8.2 874 848 906 854 882 929 879 89.6
86.1 89.2 81.3 85.1 859 854 90.5 878 872 843 913 86.1 89.1 93.1 86.5 894
Lentil_ 82.0 89.6 86.1 85.0 779 850 913 823 873 853 918 839 872 928 873 8938
Maize 84.0 89.4 83.6 85.0 81.7 852 909 8.0 872 848 915 850 881 929 86.9 89.6
Non- 96.3 95.8 964 96.4 95.8 95.2 97.2 968 964 959 972 949 950 97.1 98.2 95.0
Agriculture 96.5 95.0 959 95.6 959 984 958 96.2 96.0 945 970 953 954 97.0 948 978
96.4 954 96.1 96.0 959 96.8 96.5 96.5 96.2 951 97.1 951 952 97.1 96.5 965
Overall Accuracy 887 90.0 87.0 89.0 864 89.2 912 882 90.0 90.5 934 908 921 948 912 929

PA (%): Procuder Accuracy UA (%): User Accuracy F1 Score

In the analysis of wheat and lentil crops, an accuracy of 90% or higher was observed across 16 datasets.
The DS-3 dataset yielded the lowest accuracy, while the highest accuracies were obtained with the DS-7 and DS-
14 datasets. Notably, the classification results for DS-5 and DS-10 were indistinguishable. The distinct spectral
separation curves of wheat and lentil facilitated high classification accuracy across all datasets. Similarly, for
maize and cotton crops, an accuracy of 90% or higher was achieved in 16 datasets. The DS-5 dataset produced
the lowest accuracy for cotton, whereas the DS-14 dataset had the highest accuracy for both cotton and maize.
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The unique time series curves of maize and cotton, akin to those of wheat and lentil, resulted in high accuracy
across all datasets. However, it was observed that increasing the number of spectral bands did not significantly
enhance accuracy for these crop classes

The DS-5 dataset, with an accuracy range of 81-82%, provides the lowest accuracy for all double crops,
while the DS-14 dataset achieves the highest accuracy at 94.8%. It is notable that the DS-2 dataset, which
incorporates NDRE values, offers higher accuracy compared to datasets utilizing other indices (DS-1, DS-3, DS-4).
This increased accuracy is attributed to the superior performance of the NDRE index in distinguishing the time
series curves of the crops. Despite this, double crops remained with low accuracy in the DS-5 dataset (81-82%),
and in the DS-12 dataset (84-85%), where accuracy improved by approximately 3%, but still remained
inadequate, as depicted in Fig. 11.

OVERALL ACCURACY
10BAND+EVI (DS-16) 92.88 ]
10BAND+SAVI (DS-15) 91.24]
10BAND+NDRE (DS-14) 94.77 ]
10BAND+NDVI (DS-13) 92.14]
10 BAND (DS-12) 90.78 |
4BAND+B6+B11+NDRE (DS-11) 93.39
4BAND+B6+B11 (DS-10) 90.67
4BAND+NDRE (DS-7) 91.24]
4BAND+EVI (DS-9) 89.97 |
4BAND+NDVI (DS-6) 89.16 |
4BAND+SAVI (DS-8) 88.21]
4BAND (DS-5) 86.43
NDRE (DS-2) 90.04]
EVI (DS-4) 89.01]
NDVI (DS-1) 88.75 |
SAVI (DS-3) 87.02 |
80.00 82.00 84.00 86.00 88.00 90.00 92.00 94.00 96.00

Fig.11. Overall accuracy for all data sets

Figure 11 reveals that the lowest overall accuracy values are observed in the DS-5 (86.4%) and DS-3
(87.02%) datasets, while the highest accuracy is recorded in the DS-14 dataset (94.77%). A comparison between
the DS-7 (91.24%) and DS-14 (94.77%) datasets shows an approximate 3% increase in accuracy. Similarly,
comparing DS-7 (91.24%) with DS-11 (93.39%) indicates that bands 6 and 11, which are distinct from other bands
across all products, contribute to a 2% increase in accuracy. The results of DS-11 (93.39%) and DS-14 (94.77%)
are also closely aligned. Datasets containing the NDRE index (DS-2, DS-7, DS-11, DS-14) and those with 10 bands
(DS-12, DS-13, DS-14, DS-15, DS-16) consistently achieve accuracy values above 90%. Comparing the DS-5 (81-
82%) dataset with the DS-2 (89-90%) dataset reveals an 8% improvement in accuracy for double crops,
highlighting the NDRE index's ability to enhance classification results for crops with similar phenological stages.
When DS-2 is compared with DS-7, it is evident that the addition of the +4 band in the NDRE dataset does not
significantly impact classification accuracy for either double crops or overall accuracy. Further, a comparison of
DS-7 (91%) with DS-11 (92%) demonstrates that bands 6 and 11 marginally improve the classification accuracy
of double crops. For crops with similar time series, datasets with only 4 bands (DS-5) and those with only 10
bands (DS-12) did not achieve high classification accuracy for crops with close phenological stages.It is observed
that datasets containing the NDRE index, which outperforms other indices in distinguishing the time series curves
of crops, improve overall accuracy by 2-3% compared to other datasets. Additionally, the inclusion of the 6th and
11th bands in these datasets further increases accuracy by 2%. The most significant contributor to this accuracy
improvement is Band 6 (Red Edge-2), which is also integral to the NDRE index.

When analyzing the classification results, the impact of appropriate spectral band selection—a key
parameter influencing classification accuracy—is clearly evident, with accuracy varying depending on the dataset
used. Datasets incorporating the B6 band and NDRE indices notably enhance classification outcomes. Ustiiner et
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al. (2014) utilized RapidEye imagery to classify maize and cotton crops with NDVI, GNDVI, and NDRE indices,
finding that the highest accuracy was achieved with the dataset containing the NDRE index, which uses the Red
Edge and NIR bands. These findings align closely with the results of this study. Similarly, Kobayashi et al. (2020)
conducted a classification study using Sentinel-2 imagery for potato, wheat, maize, grass, beans, and beetroot
crops. They generated spectral curves for the reflectance values of each crop across 10 bands (excluding the 60m
bands) in the B2-B12 range. Analysis of these curves revealed that crops were distinctly separated in B6, B7, BS,
and B8a, with Band 11 particularly effective in differentiating wheat from other crops. This study further
underscores that including the B11 (SWIR-1) band, despite its 60m resolution, improves classification accuracy.
These findings collectively emphasize the critical importance of selecting appropriate spectral bands and indices
in the classification process.

CONCLUSION

This study investigated the effect of vegetation indices and spectral bands on the classification of
agricultural crops. Time series curves of classes with different vegetation indices were generated and compared,
and time series reflectance values of each spectral band were also observed for all crops. The study shows the
importance of time series curves (phenological period) generated from multi-temporal images of crops. In the
time series curves generated with different vegetation indices, it was found that the crops that differ (with a
unique curve) have a high accuracy value with optimal data sets, while increasing the number of features and
bands in the input data set has almost no effect on the accuracy value of these crops. For crops with very close
phenological periods, indices that reveal the difference between the time series curves (NDRE-EVI) were found
to increase the classification result. When comparing the time series reflectance values of each spectral band for
all crop types, except the crop indices, it was observed that the B6 (Red Edge-2) and B11 (SWIR-1) bands were
separated from the other bands and increased the classification result by 2% when included in the dataset. This
result showed that B6 (Red Edge-2) and B11 (SWIR-1) bands should be used in agricultural crop type classification
studies, especially for crops covering close phenological stages. In particular, for classification studies carried out
in large working areas such as this one, by determining the bands with indices that separate the time series
curves of the crops, the bands and indices that will give the highest accuracy as a result of the classification can
be determined and time can be saved by obtaining maximum accuracy with minimum data in classification
studies. Future studies will extend the scope of the study by using different algorithms for different crop indices,
different crop types and different study areas.
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