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ABSTRACT 
 In this study, a classification study was carried out using multi-temporal Sentinel-2 imagery and datasets 
generated from different vegetation and spectral indices, and the effects on the classification result were 
investigated. As the study area has very fertile soils, suitable climate and temperature conditions and irrigated 
land, it is possible to grow more than one crop on the same plot during a production season. Wheat_maize 
(winter_wheat+summer_maize), wheat_cotton (winter_wheat+summer_cotton), lentil_cotton 
(winter_lentil+summer_cotton), lentil_maize (winter_lentil+summer_maize) are the crops included in the 
classification study, except for double crops; maize, cotton, wheat and lentils are also included. Time series of 
vegetation indices can be used to capture information on plant phenology and can be used as reference 
information in crop classification. Time series curves of different vegetation indices were constructed and 
compared for all crops, especially for double crops with the same phenological periods. In addition to the 
vegetation indices, the variation of the time series reflectance values of each spectral band was also observed 
for all crops and the effect of different indices and bands on the classification result was investigated. The study 
generated 16 different data sets using conventional vegetation indices, NDVI, SAVI, EVI and NDRE vegetation 
indices and all other bands of the Sentinel-2 satellite except the 60m bands. While single crops with different 
time series (maize, cotton, lentil, wheat) had an accuracy of over 90% in each dataset, double crops could not 
exceed 81% accuracy by mixing with each other in the DS-5 (R-G-B-NIR) dataset. In the DS-1 (NDVI time series) 
dataset, the overall accuracy for double crops is in the range of 84-85%. Classification with DS-2 (NDRE time 
series) increased the overall accuracy for double crops to 90%. When comparing the time series reflectance 
values of each spectral band for all crop types, except the crop indices, it was observed that the B6 (Red Edge-
2) and B11 (SWIR-1) bands were separated from the other bands and increased the classification result by 2% 
when included in the dataset. Especially in the classification studies carried out on products with close 
phenological periods, the Red Edge band (especially Red Edge-2) and the indices (NDRE) generated from these 
bands will improve the classification result by preventing confusion between classes, and the B11 (SWIR-1) 
band also has a positive effect on classification. This study has fully demonstrated the application potential of 
red edge bands and the indices constructed from them. It also promotes the use of red edge band optical 
satellite data in agricultural remote sensing. 
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Spektral Bantların ve Bitki Örtüsü İndeks Seçiminin Tarımsal Ürün Sınıflandırmasına 

Etkisinin Araştırılması (Özellikle Çift Ekim Yapılan Alanlarda) 
  

ÖZ 
 Bu çalışmada, çok zamanlı Sentinel-2 görüntüleri ile farklı bitki örtüsü ve spektral indekslerden 
oluşturulan veri setleri kullanılarak bir sınıflandırma çalışması gerçekleştirilmiş ve sınıflandırma sonucu 
üzerindeki etkileri araştırılmıştır. Çalışma alanı çok verimli topraklara, uygun iklim ve sıcaklık koşullarına ve 
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sulanan arazilere sahip olduğundan, bir üretim sezonu boyunca aynı parselde birden fazla ürün yetiştirmek 
mümkündür. Buğday_mısır (kışlık_buğday+ yazlık_mısır), buğday_pamuk (kışlık_buğday+yazlık_pamuk), 
mercimek_pamuk (kışlık_mercimek+yazlık_pamuk), mercimek_mısır (kışlık_mercimek+yazlık_mısır) 
sınıflandırma çalışmasına dâhil edilen ürünlerdir, çift ürünler dışında; mısır, pamuk, buğday ve mercimek de 
dahil edilmiştir. Bitki örtüsü indekslerinin zaman serileri, bitki fenolojisi hakkında bilgi yakalamak için 
kullanılmakta olup ve ürün sınıflandırmasında referans bilgi olarak kullanılmaktadır. Farklı bitki örtüsü 
indekslerinin zaman serisi eğrileri oluşturulmuş ve tüm ürünler için, özellikle de aynı fenolojik dönemlere sahip 
çift ürünler için karşılaştırılmıştır. Bitki örtüsü indekslerine ek olarak, her bir spektral bandın zaman serisi 
yansıma değerlerinin değişimi de tüm ürünler için gözlemlenmiş ve farklı indeks ve bantların sınıflandırma 
sonucu üzerindeki etkisi araştırılmıştır. Çalışmada geleneksel vejetasyon indeksleri, NDVI, SAVI, EVI ve NDRE 
vejetasyon indeksleri ve Sentinel-2 uydusunun 60m bantları hariç diğer tüm bantları kullanılarak 16 farklı veri 
seti oluşturulmuştur. Farklı zaman serilerine sahip tek ürünler (mısır, pamuk, mercimek, buğday) her veri 
setinde %90'ın üzerinde doğruluğa sahipken, DS-5 (R-G-B-NIR) veri setinde çift ürünler birbirleriyle karıştırılarak 
%81 doğruluğu geçememiştir. DS-1 (NDVI zaman serisi) veri setinde, çift mahsuller için genel doğruluk %84-85 
aralığındadır. DS-2 (NDRE zaman serisi) ile sınıflandırma, çift mahsuller için genel doğruluğu %90'a çıkarmıştır. 
Ürün indeksleri hariç tüm ürün türleri için her bir spektral bandın zaman serisi yansıma değerleri 
karşılaştırıldığında, B6 (Red Edge-2) ve B11 (SWIR-1) bantlarının diğer bantlardan ayrıştığı ve veri setine dahil 
edildiğinde sınıflandırma sonucunu %2 oranında artırdığı görülmüştür. Özellikle fenolojik dönemleri yakın olan 
ürünler üzerinde yapılan sınıflandırma çalışmalarında Red Edge bandı (özellikle Red Edge-2) ve bu bantlardan 
üretilen indekslerin (NDRE) sınıflar arası karışıklığı önleyerek sınıflandırma sonucunu iyileştireceği, B11 (SWIR-
1) bandının da sınıflandırma üzerinde olumlu etkisi olduğu görülmüştür. Bu çalışma, kırmızı kenar bantlarının ve 
bunlardan oluşturulan indekslerin uygulama potansiyelini tam olarak ortaya koymuştur. Ayrıca, kırmızı kenar 
bantlı optik uydu verilerinin tarımsal uzaktan algılamada kullanımını teşvik etmektedir. 
 

Anahtar kelimeler: bitki, sınıflandırma, sentinel-2, spektral bant, rastgele orman, vejetasyon indeksi 

 
INTRODUCTION 

 Remote sensing has a wide range of applications, from environmental monitoring and climate change 
studies to agricultural and geological applications. It has the advantage of providing data at different temporal, 
spatial and spectral resolutions. Recent technological developments in Earth observation satellites and the 
increasing number of satellites have made access to information on land cover/use, agricultural crop patterns 
and changes at local and global scales faster, cheaper and more accessible (Khatami et al. 2016). A notable 
example of this progress is the Copernicus programme, which includes Sentinel satellites with different 
characteristics. Among these, the Sentinel-2 satellite stands out as a passive sensor satellite. Its wide range of 
bands, its ability to provide images with different spatial resolutions and its frequent acquisition intervals are a 
significant advantage for monitoring areas with a continuous dynamic structure, such as agriculture. 

 Satellite imagery allows the observation, identification, mapping and evaluation of dynamic agricultural 
areas with at different temporal and spatial resolutions. The most common method used in agricultural crop type 
detection with satellite imagery is image classification. Classification accuracy depends on the classification 
method used (pixel or object based) and the characteristics of the satellite image (low, medium or high spatial 
resolution; multispectral or hyperspectral), as well as the design and characteristics of the training/test data 
(number of pixels, statistical distribution of selected samples, etc.) and the selection of the appropriate number 
of images and bands (Lu and Weng 2018;Kavzoglu 2009). 

 Due to the complexity and diversity of crop types and the small spectral differences between different 
crops, crop classification using a single time-phased remote sensing image is prone to the phenomena of "same 
object with different spectra" and "different objects with the same spectrum", resulting in misclassification and 
mixed classification, and the classification accuracy is difficult to improve (Conese and Maselli 1991;Gomez et al. 
2016). Agricultural crops are grown in different phenological periods according to crop variety, topography and 
climatic conditions, as well as in similar or very close phenological periods. For this reason, it is necessary to use 
multi-temporal images in classification studies to detect crops in close or different phenological periods. Crop 
type classification studies can be performed from a single image or multiple images, but when applied to time 
series images, they have been shown to perform better than single date mapping methods (Gomez et al. 2016).  
Time series remote sensing data are widely used in the field of agricultural remote sensing, as they can reflect 
differences in the growth status of different crops, show different phenological characteristics, and improve 
separability and classification accuracy (Murty et al. 2003;Zhong et al. 2019). 

 



Türk Tarım ve Doğa Bilimleri Dergisi 12(1): 197–215, 2025 
 

199 

 

Table1. Literature review of crop type classification 

 
 Additional data (such as texture filters, vegetation indices and digital elevation models) are sometimes 

used to improve the distinguishability of the products to be classified, and vegetation indices are one of these 
additional data (Song et al. 2015;Kim and Yeom 2015). Specifically, Normalized Difference Vegetation Index 
(NDVI), Soil-Adjusted Vegetation Index (SAVI), and Enhanced Vegetation Index (EVI) are used to monitor 
vegetation systems or ecological responses to environmental change (Song et al. 2015). Normalized Difference 
Red Edge (NDRE), The NDRE index includes a red edge band and plays a very important role in vegetation 
monitoring, providing valuable information on plant health, species differentiation, stress detection and other 
factors. Its sensitivity to chlorophyll content and reduced susceptibility to atmospheric interference make it a key 
component in remote sensing applications for agriculture, forestry and ecosystem monitoring. The use of multi-

Ref. Study area Satellite Feature Method Classses Subject 

Kobayashi et al. 
2020 

Hokkaido,  
Japan 

Sentinel-2 
Spectral bands 
91 Vegetation indices 

RF 
Beans,beetroot,grass,
maize,potato, 
wheat 

Crop classification using 
spectral indices derived 
from Sentinel-2A 
imagery 

Kang et al. 
2021 

Hebei, 
China 

Sentinel-2 10 Red edge Indices RF 

Wood, orchard,minor 
crop, cotton,spring 
maize, winter wheat-
summer maize, 
greenhouses,water 
body, cities 

Land Cover and Crop 
Classification Based on 
Red Edge Indices 
Features 

Stern et al. 
2023 

Iowa, 
USA 

Landsat 
NDI5,NDI7,NDTI, 
STI,NDSVI 

SVM 
MINDIST 
MAXLI 
RANDTR 
SAM 

Corn, soybean, other 

Comparison of Five 
Spectral Indices and Six 
Imagery Classification 
Techniques for 
Assessment of Crop 
Residue  Cover Using 
Four Years of Landsat  

Pasternak and 
Filipiak 2002 

Lower 
Silesian,  
Poland 

Sentinel-2 
12 Vegetation indices 
PCA 

RF 

Beetrooot,maize,whe
at,canola 
sunflower,potato, 
rye 

The Evaluation of 
Spectral Vegetation 
Indexes Accuracy of 
Crop Type Detection 

Sun et al. 2019 
Yangzi,  
China 

Sentine-1 
Sentinel-2 
Landsat-8 

NDVI,EVI,TVI, 
NDWI,NDTI 
Texture 

ANN 
RF 
SVM 

Forest,maize,rape, 
urban,water,wheat 

Using of Multi-Source 
and Multi-Temporal 
Remote Sensing Data 
Improves Crop-Type 
Mapping in the 
Subtropical Agriculture 
Region 

Zhang et al. 2020 
Heilongjiang 
China 

Sentinel-2 
NDVI,PMI,NDSVI 
NDRI,NDTI 

SVM 
RF 
CART 

Rice,corn,water, 
soybean,potato, 
beet,forest,building 

Accessing the temporal 
and spectral features in 
crop type mapping 
using multi-temporal 
Sentinel-2 imagery 

Vuolo 2018 
Marchfeld 
lower,  
Austria 

Sentinel-2 Spectral bands RF 

Carrot,maize,onion,p
umpkin,soybean, 
sugarbeet,sunflower, 
winter cereal 

How much does multi-
temporal Sentinel-2 
data improve crop type 
classification? 

Üstüner et al. 
2015 

Aydın 
Türkiye 

RapidEye Spectral bands, NDRE SVM 
Maize, cotton, soil, 
water 

The effect of spectral 
band and plant index 
selection on crop 
pattern classification 
accuracy: Comparative 
analysis 

Şimşek et al. 
2016 

Harran Plain 
Türkiye 

Landsat NDVI 
Rule Based 
Classification 

Wheat, maize,cotton 

Controlling of product 
declarations of farmers 
using remote sensing 
techniques: the Harran 
Plain case 

Teke and Y. Çetin 
2021 

Harran Plain 
Türkiye 

Sentinwl-2 NDVI, SAVI,EVI VDTW Maize, cotton 
Multi-Year VDTW Based 
Crop Mapping 
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temporal remote sensing data to construct Normalized Difference Vegetation Index (NDVI) and other vegetation 
index time series, combined with the seasonal rhythms and phenological differences of different crops, has been 
widely used in crop classification, which has improved the accuracy of crop classification (Kang et al. 2021). In 
addition to the characteristics of remote sensing data, classification algorithms are important to improve the 
classification accuracy of crop maps. Recently, Random Forest (RF) is a widely used machine learning algorithm 
consisting of an ensemble of decision trees, and it has been a highly successful machine learning algorithm for 
classification and regression methods (Biau and Scornet 2016). Random forest algorithms have been used to map 
land cover over large areas using high-resolution satellite imagery time series, with successful results (Pelletier 
et al. 2016). 

There are many studies in the literature on crop type classification using different satellites, different 
indices and bands. In these studies using different algorithms, the effects of different indices and bands on the 
classification results have also been investigated and compared Table 1. 

 
Most of the studies in the literature are on single crops. In this study, not only were double crops with 

very close phenological periods studied, but also the changes in the temporal curves of these crops in different 
vegetation and spectral bands were monitored and compared. The changes in the time series curves of these 
crops with close phenological periods and the time curves of different vegetation indices were studied and the 
effects of the index data causing these changes on the classification result were investigated. In addition to the 
index data, the effect of the spectral bands on the classification accuracy was also investigated. 

 

STUDY AREA AND MATERIALS 
 
Study Area 

 The study area was located in the Harran Plain, Şanlıurfa, Turkey (36° 47'-39° 15' E, 36° 40' 37° 41' N) at 
an altitude between 350 and 500m (Fig.1). The Harran Plain, with a total area of 225,000 ha, is the third largest 
plain in Turkey and has great agricultural potential. The Harran Plain has a continental climate with mild winters 
and high summer temperatures. These climate and temperature conditions, together with the increase in 
irrigated areas in recent years, have led to the cultivation of double crops (two types of crops: wheat_maize 
(winter_wheat + summer_maize), wheat_cotton (winter_wheat + summer_cotton), lentil_cotton (winter_lentil 
+ summer_cotton), lentil_maize (winter_lentil+summer_maize), during the production season (Bozkurt and 
Aybek 2016).  The main crops grown in the region, including wheat, barley, lentil, cotton and maize, cover 95% 
of the Harran Plain. As these products are not homogeneously distributed within the boundaries of the plain, 
and considering the plain as a whole, the study area includes the boundaries of the plain. 

 

Fig.1. Study area 
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Sentinel-2 
 Sentinel-2A and Sentinel-2B are constellation satellites launched by the European Space Agency (ESA) 

under the European Commission's (EC) Copernicus programme. Each identical satellite is equipped with a 
multispectral sensor covering 13 spectral bands with a spatial resolution of 10 m to 60 m and a radiometric 
resolution of 12 bits. Sentinel-2A was launched in June 2015, followed by Sentinel-2B in March 2017. Information 
on the spectral bands and reflectance values of the Sentinel-2 satellite images is given in Table 2. 

Table2. Spectral bands of Sentnel-2 images 

Description Bands Wavelength  (μm) Resolution (m) 

Aerosol B1 458-523 60 

Blue B2 458-523 10 

Green B3 543-578 10 

Red B4 650-680 10 

Red-Edge-1 B5 698-713 20 

Red-Edge-2 B6 733-748 20 

Red-Edge-3 B7 773-793 20 

NIR B8 785-900 10 

Veg. Red Edge B8a 885-875 10 

Water Vapour B9 935-955 60 

Cirrus B10 1360-1390 60 

SWIR-1 B11 1565-1655 20 

SWIR-2 B12 2100-2280 20 

 
 All bands except B1-B9-B10 were used in this study. However, the three atmospheric bands were not 

used in this study as they are mainly used for atmospheric corrections and cloud screening. (Drusch et al. 2012). 
The fact that Sentinel-2 imagery contains a large number of spectral bands, and in particular has a temporal 
resolution of 5 days, provides a significant advantage for monitoring agricultural areas, detecting crop patterns 
and analyzing changes. (Şimşek and Durduran 2023). As the study area is predominantly covered by crops with 
closely aligned phenological periods, 23 observations were made by Sentinel-2A between March and September 
2016. After June, the selected images were cloud-free, while before June, images with a low cloud fraction were 
selected and cloudy areas were detected and masked. The acquisition dates of the Sentinel-2 satellite images 
are shown in Table 3. 
 

Table 3. Acquisition time of Sentinel-2 

Day of Year (DOY) Acquisition Time Day of Year (DOY) Acquisition Time 

37 29 March 2022 212 29 March 2022 

57 5 April 2022 220 5 April 2022 

87 5 May 2022 230 5 May 2022 

102 20 May 2022 240 20 May 2022 

117 6 June 2022 252 6 June 2022 

132 14 July 2022 262 14 July 2022 

152 11 August 2022 272 11 August 2022 

167 7 September 2022 282 7 September 2022 

177 2 October 2022 292 2 October 2022 

192 17 October 2022 317 17 October 2022 

202 27 October 2022 302 27 October 2022 

 

 Ground Truth Data 
 Two field studies were carried out in April for wheat, barley and lentil crops and in August for maize and 
cotton crops. Given the large area of the plain (225,000 ha), the number of samples could not reach the desired 
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level due to time and cost constraints. In addition to field data, parcels declared by farmers were used as ground 
truth data in the study. 3145 agricultural parcels (cotton: 610, maize: 105, lentil: 340, wheat: 520, lentil_maize: 
250, lentil_cotton: 380, wheat_maize: 413, wheat_cotton: 527) were used in the classification study. 
 The Farmer Declaration Parcels (FDP) in Turkey, also known as the Farmer Registration System (FRS), is 
a government initiative aimed at registering and tracking agricultural activities and farmers in the country 
(Aydoğdu et al. 2011). This system was introduced to improve the efficiency and transparency of agricultural 
practices and to provide various benefits to registered farmers. The FRS requires farmers to register themselves 
and their farming activities. This registration process involves providing personal information and details of the 
land they farm. The parcels of agricultural activity registered by farmers in the system are called FDPs. In addition 
to the geometric information of the parcels, the system also contains information on the province, district, parcel 
number, agricultural parcel number, information on the products grown, area, surface, cadastral area, date of 
cultivation and date of harvest of each parcel. (Şimşek and Durduran 2023). When the FDPs were examined, it 
was found that there were systematic and non-systematic differences between the geometry and attribute 
information of the parcels and the parcels in the field. Because of these differences, a number of processing steps 
were applied to the FDPs, and at the end of these steps, ground truth data were produced from the FDPs and 
used in the classification study together with the data collected in the field. The agricultural calendar for the 
crops grown in the plain was obtained and is presented graphically (Fig. 3.). The calendar provides information 
on the sowing, growing, dense vegetation and harvesting periods of crops grown in the region. The exact dates 
of sowing and harvesting vary between plots and farmers. In some cases, there may be a difference of up to 1-3 
weeks between the categorized crops; wheat and barley crops are included in the wheat class.  
 

Fig.3. Approximate crop calendar in the region. 

      Looking at the phenological period of the crops, it is observed that maize and cotton are separated from 
each other with a dense vegetation stage, while wheat and lentil are in close phenological stages. It was observed 
that double crops (wheat_maize, lentil_maize, wheat_cotton, lentil_cotton) were in close phenological stages. 
The calendar shows that the phenological periods of both single and double crops are very close and different 
indices and bands should be used to distinguish these crops in the classification study. 

 

METHODOLOGY 
General Architecture Overview 
     After acquiring 23 Sentinel-2 images, the cloudy areas and the shadow areas caused by the clouds were 
masked. The bands were resampled from 20 m to 10 m. Four different spectral indices were calculated for each 
Sentinel-2 image, and spectral curves were created for each crop by overlapped these indices with ground truth 
data. The spectral index curves and spectral bands were then compared for each crop type. Classification studies 
using the RF algorithm were carried out with different datasets generated from different indices and bands, and 
the effect of bands and indices on the classification results was compared. Fig. 4. shows the flowchart used in 
this study. 
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Fig.4. Workflow of study 

Satellite Image Processing  
 In data processing, no further geometric correction of the L1C products is required, only atmospheric 

correction and spatial resolution resampling. (Zheng et al. 2007). Sentinel-2 images are provided in Level 1C 
format and contain above-atmospheric reflectance values. To calculate the actual reflectance values of plants in 
a classification study, top-of-atmosphere (TOA) values should be converted to bottom-of-atmosphere (BOA) 
reflectance values (Wilm 2017).  Atmospheric effects were eliminated by converting TOA values to BOA values 
using the Sen2cor plugin. After Sen2Cor processing, the L1C TOA reflectance values were converted to Level 2A 
(L2A) BOA reflectance values (Wilm et al. 2013).  The conversion of Sentinel-2 data from L1C to L2A improves the 
accuracy of derived vegetation indices such as NDVI by accounting for atmospheric effects, ensuring that 
observed changes in NDVI and other indices are more closely related to actual variations in vegetation health. 
Clouds and cloud shadows in satellite imagery are the main sources of noise that cause problems in image 
analysis (Kalkan and Maktav 2016).  Brightness caused by clouds and shadows can affect data analysis and lead 
to changes in NDVI and other indices. (Zhu and Woodcook 2012).  Cloud-covered areas cause anomalies in the 
image bands as well as in the pixel values of the indices created from these bands, which adversely affects the 
classification results (Karslen et al. 2021).  To eliminate this situation, clouds and shadow areas caused by clouds 
have been detected and masked by the Sen2core software (Fig.5.) . The cloud screening and classification part 
of Sen2Cor is available as source code in the distributed (Skakun et al. 2022).  Potentially cloudy pixels are 
subjected to a series of filters based on spectral band thresholds, ratios and index calculations - Normalized 
Difference Snow Index (NDSI). After atmospheric correction and cloud masking, B5-B7-B8a-B11-B12 were 

resampled from 20m to 10m. 
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Fig.5. Cloud detection and masking. 

Vegetation Indices and Spectral Band Analysis  
 As can be seen from the phenological calendar in Figure 3, the single and double crops in the study area 
have very close phenological periods. The seasonal rhythm and phenological characteristics of different crops 
can be reflected by the difference in the spectrum or vegetation index of multi-temporal remote sensing data 
(Gomez et al. 2016). NDVI is widely used for crop type identification (Gumma et al. 2020). The NDVI index 
provides information on plant health and development (Morsy and Hadı 2022). In order to see this phenological 
closeness on a crop by crop basis, time series NDVI plots were first created. Each plot was overlapped with multi-
temporal NDVI images and the median NDVI values of each plot in the time series were calculated. After this 
process, the vegetative development and change of each plot was determined and the characteristics of the 
NDVI curves showing the variability over time were revealed. The characteristic NDVI curves for each crop were 
checked against the phenological calendar and the spectral reflectance values of each crop collected during the 
field study. When analysing the NDVI time series curves of each crop, it can be seen that lentils and wheat, which 
are winter crops, are separated from each other, while maize and cotton, which are summer crops, show new 
different time curves (Fig. 6). With the NDVI index, these four crops (lentil, wheat, maize, cotton) have different 
reflectance values on the same dates and their temporal curves are separated from each other. Therefore, no 
studies have been carried out with different vegetation indices in single crops. 
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Fig.6. NDVI  times series of single crops 

When analyzing the NDVI time series curves, wheat_maize-wheat_cotton crops and lentil_maize-
lentil_cotton crops differ from each other between day 57. and day 132. However due to the later sowing of 
lentil, but it can be seen that the reflectance values for all crop types are very close to each other between day 
220. and day 317. Fig 7. 

 

 

Fig.7. NDVI time series of double crops 
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 It was observed that the NDVI time series curves were similar for both crops, especially in the second 
period of the year. The effect of different vegetation indices on the time series curves of the crops and the 
classification results were investigated in this study. There are nearly 100 vegetation indices in the literature. In 
this study, NDVI, NDRE, SAVI and NDRE indices, which are traditional vegetation indices, were used Table 4. 

Table 4. Acquisition time of Sentinel-2 

 

 Comparing the NDVI, SAVI and NDRE time series curves of lentil_maize and lentil_cotton, it is observed 
that the curves are close to each other as in the case of NDVI, this is also the case for wheat_maize and 
wheat_cotton. It was observed that the SAVI index did not change in relation to the NDVI index. As a result of 
the EVI index, the time series curves for four crops show some separation compared to the SAVI and NDVI indices. 
When analyzing the time series curves of the NDRE index, it can be seen that the curves for the two crops 
wheat_maize-wheat_cotton and lentil_maize-lentil_cotton are more separated compared to the other indices 
Fig. 8. In summary, the NDRE index values performed better than other indices in separating the time series 
curves of crops.  
 In addition to observing the changes in the time series curves of crops with different vegetation indices, 
the study also analysed the time series reflectance values of each spectral band for all crop types. Comparing the 
time series reflectance values of each spectral band for all crop types, it is seen that the B6 (Red Edge-2) and B11 
(SWIR-1) bands are separated from the other bands Fig 9. 

Spectral 
Index 

Full Name Formula Description Reference 

NDVI 
Normalized 
Difference 

Vegetation Index 
(NIR - R)/(NIR + R) 

Commonly used for assessing 
overall vegetation health and 
density 

Tucker 
1979 

EVI 
Enhanced 

vegetation index 
2.5*(NIR - R)/(NIR + 6*R-

7.5*B+1) 

Similar to NDVI but designed to 
minimize atmospheric 
influences and improve 
sensitivity in high biomass 
regions 

Huete et 
al. 2002 

SAVI 
Soil-Adjusted 

Vegetation Index 
(NIR - R)/(NIR + R + L)*(1 + L) 

Designed to minimize soil 
background influences in the 
vegetation index 

Huete 
1988 

NDRE 
Normalized 

Difference Red 
Edge 

(NIR – Redge2)/(NIR + 
Redge2) 

Particularly sensitive to changes 
in chlorophyll content, making it 
valuable for detecting early 
signs of stress 

Barnes 
2000 



Türk Tarım ve Doğa Bilimleri Dergisi 12(1): 197–215, 2025 
 

207 

 

 

 

Fig.8. NDVI-EVI-SAVI-NDRE time series also were analyzed for double crops 
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Fig.9. Reflectance values of different spectral bands for double crop type as time series. 

 Different datasets were generated using 4 different vegetation indices and 10 spectral bands Table 5. 
Classification studies were performed on these datasets and the results were compared. It was also investigated 
if the indices and bands that create time series curve differences in the generated datasets affect the 
classification result. 
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Table 5. Data sets and number of bands 

Data Set Features 
Number 
of bands 

Data Set Features 
Number 
of bands 

Data Set (DS-1) NDVI 21 Data Set (DS-9) (4BAND)-EVI 105 

Data Set (DS-2) NDRE 21 Data Set (DS-10) (4 BAND)-B6-B11 126 

Data Set (DS-3) SAVI 21 Data Set (DS-11) (4 BAND)-B6-B11-NDRE 147 

Data Set (DS-4) EVI 21 Data Set (DS-12) 
B2-B3-B4-B5-B6-B7-B8- 
B8A-B11-B12 (10 BAND) 

210 

Data Set (DS-5) 
B2-B3-B4-B8  

(4BAND) 
84 Data Set (DS-13) (10 BAND)-NDVI 231 

Data Set (DS-6) (4BAND)-NDVI 105 Data Set (DS-14) (10 BAND)-NDRE 231 

Data Set (DS-7) (4BAND)-SAVI 105 Data Set (DS-15) (10 BAND)-SAVI 231 

Data Set (DS-8) (4BAND)-NDRE 105 Data Set (DS-16) (10 BAND)-EVI 231 

 
Classification Using Random Forest 
     Random Forest (RF) is a combinatorial ensemble learning classification technique. RF is an improved 
algorithm based on an ensemble learning technique that builds multiple CARTs. (Breiman 2001) In fact, RF has 
been very successful as a general purpose classification and regression method (Biau and Scornet 2016). RF fits 
many classification trees to training data sets and then combines the predictions of all the trees to make a final 
decision. RF is an ensemble classifier that is currently widely used in remote sensing studies due to its 
classification accuracy (Belgiu and Dragut 2016). Higher accuracies have been achieved with RF compared to 
other machine learning algorithms in many crop mapping studies (Tatsumi et al. 2015). RF is known to work 
efficiently on large datasets with a large number of input variables to estimate which variables are significant in 
the classification process, and is relatively robust to noise and outliers. 44 many examples of the use of this 
algorithm can be found in the literature (Feng et al. 2019). 
     Hyperparameter optimization is the process of finding the optimal combination of parameters for a 
machine-learning algorithm according to specified success criteria. Hyperparameter optimization aims to achieve 
a balance between overlearning and under learning by balancing high model success and model complexity. The 
original RF has two hyperparameters including the number of trees (ntree) and the number of variables used to 
partition the nodes (mtry). Several studies have shown that satisfactory results can be achieved with the default 
parameters (Zhang and Roy 2017). In this study, to find the optimal RF model for classification, a range of values 
for both parameters were tested and evaluated using the grid search method for each dataset: ntree = 100, 200, 
400, 600,800,1000; mtry = 1:20 Table 6.     
 After determining the optimal parameters of the algorithm to be used in the classification process, the 
k-fold cross-validation method is used. K-fold cross-validation allows to see whether the high performance of the 
model is random or not. In this method, the data set is divided into k parts and k-1 subset is used to train the 
model and the remaining subset is used to calculate the accuracy of the model. The process is repeated k times, 
each time using different pieces of training and test data. The average of the accuracy values obtained represents 
the accuracy of the model, and in this study the k value is taken as 5 (Kohavi 1995). 
 
Table 6. Hyper parameter values for different data sets 

Data Set 
Number of  

bands 
Ntree Mtry 

Data Set (DS: 1-4) 21 100 4 

Data Set (DS-5) 84 200 9 

Data Set (DS: 6-9) 105 200 10 

Data Set (DS-10) 126 400 11 

Data Set (DS-11) 147 400 12 

Data Set (DS-12) 210 800 14 

Data Set (DS: 13-16) 231 800 15 
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Fig.10. Classification result produced with DS-16 dataset 
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RESULTS AND DISCUSSION 
 
 In order to assess the accuracy of classification performance, a number of metrics are available in the 
literature. In this study, the following metrics were employed for the assessment of classification accuracy: 
precision (PA), recall (UA), accuracy (OA), and the F1 score. These results are presented in Table 7.  
PA (Producer Accuracy): The ratio of correctly predicted positive observations to the total predicted positives. It 
measures the model's ability to correctly identify positive instances among the instances it predicted as positive. 

 
UA (User Accuracy): The ratio of correctly predicted positive observations to the total actual positives. It 
measures the model's ability to correctly identify positive instances. 

 
OA (Overall Accuracy): The ratio of correctly predicted instances (both positive and negative) to the total 
instances. It provides a general measure of the model's correctness. 

 
F1 Score: The harmonic mean of precision and recall. It provides a balance between precision and recall, 
especially useful when dealing with imbalanced datasets. 
 
 These classification accuracy indicators can be used to reflect the overall classification accuracy and 
specific type identification accuracy of remote sensing images from different perspectives. (Congatol, 1991). 
 
Table 7. Accuracy assessment for all data sets 

PA (%): Procuder Accuracy  UA (%): User Accuracy          F1 Score  
  

In the analysis of wheat and lentil crops, an accuracy of 90% or higher was observed across 16 datasets. 
The DS-3 dataset yielded the lowest accuracy, while the highest accuracies were obtained with the DS-7 and DS-
14 datasets. Notably, the classification results for DS-5 and DS-10 were indistinguishable. The distinct spectral 
separation curves of wheat and lentil facilitated high classification accuracy across all datasets. Similarly, for 
maize and cotton crops, an accuracy of 90% or higher was achieved in 16 datasets. The DS-5 dataset produced 
the lowest accuracy for cotton, whereas the DS-14 dataset had the highest accuracy for both cotton and maize. 

Crop Type 
PA UA F1 DS-1 DS-2 DS-3 DS-4 DS-5 DS-6 DS-7 DS-8 DS-9 DS-10 DS-11 DS-12 DS-13 DS-14 DS-15 DS-16 

Cotton 
93.3 
90.9 
92.1 

93.6 
93.4 
93.5 

92.8 
91.8 
93.8 

94.8 
92.7 
93.7 

93.2 
94.2 
92.2 

92.5 
93.8 
93.1 

93.1 
93.9 
93.5 

95.9 
90.6 
93.5 

93.8 
93.2 
93.5 

91.2 
95.0 
93.1 

93.1 
93.0 
93.0 

92.8 
93.4 
93.1 

94.2 
93.4 
93.8 

94.6 
93.7 
94.1 

92.5 
93.9 
93.2 

93.8 
93.9 
93.9 

Maize 
93.3 
93.4 
93.3 

93.4 
93.0 
93.2 

91.4 
91.8 
91.6 

95.1 
92.9 
94.0 

93.1 
91.2 
92.1 

93.5 
93.0 
93.4 

95.0 
93.1 
94.1 

93.0 
93.4 
93.2 

94.4 
94.0 
94.2 

92.2 
93.7 
92.9 

95.7 
92.4 
94.0 

93.3 
93.1 
93.2 

94.0 
94.1 
94.1 

94.6 
94.0 
94.3 

94.4 
95.1 
94.7 

94.5 
94.9 
94.7 

Wheat 
89.9 
95.2 
92.4 

91.8 
93.6 
92.7 

88.6 
93.8 
91.1 

90.7 
93.9 
92.3 

87.6 
91.0 
89.3 

92.5 
92.9 
92.7 

92.4 
93.7 
93.1 

94.8 
90.1 
92.4 

92.8 
92.9 
92.8 

89.9 
88.6 
89.2 

91.3 
93.5 
92.4 

90.6 
89.7 
90.2 

93.5 
93.4 
92.9 

92.4 
93.4 
92.9 

92.9 
92.0 
92.4 

92.6 
93.4 
92.8 

Lentil 
90.3 
95.2 
92.7 

92.6 
93.2 
92.9 

90.5 
93.2 
91.8 

91.9 
91.8 
91.9 

88.1 
92.2 
90.1 

92.3 
92.9 
92.6 

92.3 
93.9 
93.1 

94.3 
90.9 
92.5 

92.8 
92.7 
92.8 

89.0 
89.4 
89.2 

93.5 
92.4 
92.9 

90.9 
90.5 
90.7 

92.5 
93.3 
92.9 

93.8 
93.0 
93.4 

92.9 
92.5 
92.7 

93.0 
93.6 
93.3 

Wheat_ 
Cotton 

88.1 
81.0 
84.3 

89.2 
90.1 
89.6 

82.4 
86.1 
84.2 

86.6 
86.0 
86.3 

77.2 
85.7 
81.2 

86.2 
84.0 
85.1 

91.0 
90.2 
90.6 

84.6 
85.9 
85.2 

87.9 
87.5 
87.7 

83.7 
84.4 
84.0 

92.0 
93.2 
92.6 

83.5 
84.7 
84.1 

87.4 
87.0 
87.2 

93.7 
93.3 
93.5 

89.3 
88.2 
88.7 

90.2 
90.0 
90.1 

Wheat_ 
Maize 

82.2 
88.1 
85.0 

89.3 
90.5 
89.9 

82.0 
87.1 
84.5 

85.9 
87.6 
86.7 

78.7 
82.9 
80.7 

85.0 
87.0 
86.0 

92.1 
89.3 
90.7 

88.1 
83.7 
85.8 

88.3 
88.1 
88.2 

83.8 
85.5 
84.6 

92.7 
91.3 
92.0 

85.1 
85.6 
85.3 

89.5 
86.7 
88.1 

92.7 
93.3 
93.0 

87.5 
90.0 
88.7 

91.0 
89.0 
90.0 

Lentil_ 
Cotton 

87.1 
82.4 
84.7 

91.1 
89.0 
90.1 

86.5 
85.9 
86.2 

85.1 
87.4 
86.2 

85.9 
78.4 
82.0 

86.5 
86.1 
86.3 

90.9 
89.8 
92.1 

88.1 
84.4 
86.2 

87.1 
87.7 
87.4 

84.1 
85.6 
84.8 

89.9 
91.3 
90.6 

85.1 
85.7 
85.4 

88.5 
87.9 
88.2 

92.9 
92.8 
92.9 

88.1 
87.7 
87.9 

88.7 
90.8 
89.6 

Lentil_ 
Maize 

86.1 
82.0 
84.0 

89.2 
89.6 
89.4 

81.3 
86.1 
83.6 

85.1 
85.0 
85.0 

85.9 
77.9 
81.7 

85.4 
85.0 
85.2 

90.5 
91.3 
90.9 

87.8 
82.3 
85.0 

87.2 
87.3 
87.2 

84.3 
85.3 
84.8 

91.3 
91.8 
91.5 

86.1 
83.9 
85.0 

89.1 
87.2 
88.1 

93.1 
92.8 
92.9 

86.5 
87.3 
86.9 

89.4 
89.8 
89.6 

Non- 
Agriculture 

96.3 
96.5 
96.4 

95.8 
95.0 
95.4 

96.4 
95.9 
96.1 

96.4 
95.6 
96.0 

95.8 
95.9 
95.9 

95.2 
98.4 
96.8 

97.2 
95.8 
96.5 

96.8 
96.2 
96.5 

96.4 
96.0 
96.2 

95.9 
94.5 
95.1 

97.2 
97.0 
97.1 

94.9 
95.3 
95.1 

95.0 
95.4 
95.2 

97.1 
97.0 
97.1 

98.2 
94.8 
96.5 

95.0 
97.8 
96.5 

Overall Accuracy 88.7 90.0 87.0 89.0 86.4 89.2 91.2 88.2 90.0 90.5 93.4 90.8 92.1 94.8 91.2 92.9 

OA:  (TP+TN)/N 

PA:  TP/(TP+FN) 

UA:  TP/(TP+FP) 

F1 : 2×UA×PA / (UA+PA) 
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The unique time series curves of maize and cotton, akin to those of wheat and lentil, resulted in high accuracy 
across all datasets. However, it was observed that increasing the number of spectral bands did not significantly 
enhance accuracy for these crop classes 
 The DS-5 dataset, with an accuracy range of 81-82%, provides the lowest accuracy for all double crops, 
while the DS-14 dataset achieves the highest accuracy at 94.8%. It is notable that the DS-2 dataset, which 
incorporates NDRE values, offers higher accuracy compared to datasets utilizing other indices (DS-1, DS-3, DS-4). 
This increased accuracy is attributed to the superior performance of the NDRE index in distinguishing the time 
series curves of the crops. Despite this, double crops remained with low accuracy in the DS-5 dataset (81-82%), 
and in the DS-12 dataset (84-85%), where accuracy improved by approximately 3%, but still remained 
inadequate, as depicted in Fig. 11. 

 

Fig.11. Overall accuracy for all data sets 

 Figure 11 reveals that the lowest overall accuracy values are observed in the DS-5 (86.4%) and DS-3 
(87.02%) datasets, while the highest accuracy is recorded in the DS-14 dataset (94.77%). A comparison between 
the DS-7 (91.24%) and DS-14 (94.77%) datasets shows an approximate 3% increase in accuracy. Similarly, 
comparing DS-7 (91.24%) with DS-11 (93.39%) indicates that bands 6 and 11, which are distinct from other bands 
across all products, contribute to a 2% increase in accuracy. The results of DS-11 (93.39%) and DS-14 (94.77%) 
are also closely aligned. Datasets containing the NDRE index (DS-2, DS-7, DS-11, DS-14) and those with 10 bands 
(DS-12, DS-13, DS-14, DS-15, DS-16) consistently achieve accuracy values above 90%. Comparing the DS-5 (81-
82%) dataset with the DS-2 (89-90%) dataset reveals an 8% improvement in accuracy for double crops, 
highlighting the NDRE index's ability to enhance classification results for crops with similar phenological stages. 
When DS-2 is compared with DS-7, it is evident that the addition of the +4 band in the NDRE dataset does not 
significantly impact classification accuracy for either double crops or overall accuracy. Further, a comparison of 
DS-7 (91%) with DS-11 (92%) demonstrates that bands 6 and 11 marginally improve the classification accuracy 
of double crops. For crops with similar time series, datasets with only 4 bands (DS-5) and those with only 10 
bands (DS-12) did not achieve high classification accuracy for crops with close phenological stages.It is observed 
that datasets containing the NDRE index, which outperforms other indices in distinguishing the time series curves 
of crops, improve overall accuracy by 2-3% compared to other datasets. Additionally, the inclusion of the 6th and 
11th bands in these datasets further increases accuracy by 2%. The most significant contributor to this accuracy 
improvement is Band 6 (Red Edge-2), which is also integral to the NDRE index. 
 When analyzing the classification results, the impact of appropriate spectral band selection—a key 
parameter influencing classification accuracy—is clearly evident, with accuracy varying depending on the dataset 
used. Datasets incorporating the B6 band and NDRE indices notably enhance classification outcomes. Üstüner et 
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al. (2014) utilized RapidEye imagery to classify maize and cotton crops with NDVI, GNDVI, and NDRE indices, 
finding that the highest accuracy was achieved with the dataset containing the NDRE index, which uses the Red 
Edge and NIR bands. These findings align closely with the results of this study. Similarly, Kobayashi et al. (2020) 
conducted a classification study using Sentinel-2 imagery for potato, wheat, maize, grass, beans, and beetroot 
crops. They generated spectral curves for the reflectance values of each crop across 10 bands (excluding the 60m 
bands) in the B2-B12 range. Analysis of these curves revealed that crops were distinctly separated in B6, B7, B8, 
and B8a, with Band 11 particularly effective in differentiating wheat from other crops. This study further 
underscores that including the B11 (SWIR-1) band, despite its 60m resolution, improves classification accuracy. 
These findings collectively emphasize the critical importance of selecting appropriate spectral bands and indices 
in the classification process. 

 
CONCLUSION 
 This study investigated the effect of vegetation indices and spectral bands on the classification of 
agricultural crops. Time series curves of classes with different vegetation indices were generated and compared, 
and time series reflectance values of each spectral band were also observed for all crops. The study shows the 
importance of time series curves (phenological period) generated from multi-temporal images of crops. In the 
time series curves generated with different vegetation indices, it was found that the crops that differ (with a 
unique curve) have a high accuracy value with optimal data sets, while increasing the number of features and 
bands in the input data set has almost no effect on the accuracy value of these crops. For crops with very close 
phenological periods, indices that reveal the difference between the time series curves (NDRE-EVI) were found 
to increase the classification result. When comparing the time series reflectance values of each spectral band for 
all crop types, except the crop indices, it was observed that the B6 (Red Edge-2) and B11 (SWIR-1) bands were 
separated from the other bands and increased the classification result by 2% when included in the dataset. This 
result showed that B6 (Red Edge-2) and B11 (SWIR-1) bands should be used in agricultural crop type classification 
studies, especially for crops covering close phenological stages. In particular, for classification studies carried out 
in large working areas such as this one, by determining the bands with indices that separate the time series 
curves of the crops, the bands and indices that will give the highest accuracy as a result of the classification can 
be determined and time can be saved by obtaining maximum accuracy with minimum data in classification 
studies. Future studies will extend the scope of the study by using different algorithms for different crop indices, 
different crop types and different study areas. 
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