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 ABSTRACT  

 

The CALPHAD methodology models the physical, mechanical, and thermodynamic 

properties of materials based on specified alloy compositions using phase equilibrium 

calculations and thermodynamic databases. With the CALPHAD approach, millions of material-

property data can be obtained for each alloy composition over various temperature ranges. 

However, finding an alloy with the desired properties often requires lengthy trial-and-error 

processes that involve manually adjusting the composition. In this study, the goal is to inverse 

this approach using artificial intelligence to predict alloy compositions that yield the desired 

properties. Accordingly, in the JMatPro software based on the CALPHAD methodology, the 

physical properties (density, thermal conductivity, linear expansion, Young's modulus, bulk 

modulus, shear modulus, and Poisson's ratio) of 250 different Ni-Cr-Fe-based superalloys in the 

temperature range of 540–920 °C were modeled. A dataset with 5000 rows was created from the 

generated data, of which 80% was used to train the artificial intelligence model, while 20% was 

reserved for validation and testing. Through analyses using Explainable Artificial Intelligence 

(XAI) and Artificial Neural Networks (ANN), alloy compositions with the desired physical 

properties at a given temperature were predicted with a high accuracy rate of 98.03%. In 

conclusion, beyond obtaining material properties from alloy compositions through the 

CALPHAD approach, artificial intelligence techniques make it possible to accurately inverse 

predict alloy compositions that yield specified physical properties at a particular temperature. 
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1 INTRODUCTION 

The design and development of high-performance alloys, particularly superalloys, 

require precise control of their physical and mechanical properties at elevated temperatures. 

Traditional alloy design relies heavily on the CALPHAD (Calculation of Phase Diagrams) 

methodology, which utilizes phase equilibrium calculations and thermodynamic databases to 

model material properties based on specific alloy compositions [1]. By inputting alloy 

composition parameters, researchers can obtain extensive property data across temperature 

ranges, offering invaluable insights into alloy behavior under various conditions [2]. However, 

identifying compositions that achieve the target properties often necessitates labor-intensive 

adjustments and trial-and-error iterations, particularly for superalloys with complex 

requirements [3].  

Artificial intelligence (AI) holds promise in material design because it can make rapid 

predictions from large datasets and perform inverse predictions of targeted properties [4] [5]. 

For instance, recent studies have demonstrated that Explainable Artificial Intelligence (XAI) 

and Artificial Neural Networks (ANNs) can effectively predict material properties and 

composition relationships, enhancing the efficiency of alloy design [6]. Unlike traditional 

methods, these AI-driven approaches leverage existing data to predict alloy compositions that 

satisfy specific mechanical and thermophysical requirements, thus reducing the experimental 

workload [7].  

This study aims to address the limitations of the traditional CALPHAD approach by 

implementing an inverse prediction model. By using JMatPro software to model the physical 

properties of Ni-Cr-Fe-based superalloys within a targeted temperature range (540–920 °C), 

this work leverages AI to predict the alloy compositions necessary to achieve the desired 

properties. Our method expands on previous work by combining CALPHAD with artificial 

intelligence to improve prediction accuracy and the interpretability of results [8] [9]. This 

hybrid approach enables high-accuracy prediction of alloy compositions that exhibit specific 

physical characteristics, achieving a prediction accuracy of 98.03% in our experiments. Thus, 

our study provides a novel solution for inverse alloy design that complements existing 

computational tools in materials science [10].  
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2 MATERIALS AND METHODS 

In this study, the JMatPro software, based on the CALPHAD methodology, was utilized 

to model the physical properties (density, thermal conductivity, linear expansion coefficient, 

Young’s modulus, bulk modulus, shear modulus, and Poisson’s ratio) of Ni-Cr-Fe-based 

superalloys (Inconel, Incoloy). A dataset of 5000 rows was generated from the obtained data, 

with 80% allocated to training the artificial intelligence (AI) model and 20% reserved for 

validation and testing. The AI model was developed using Explainable Artificial Intelligence 

(XAI) and Artificial Neural Networks (ANNs). 

The proposed model (Figure 1) operates on a dataset containing 250 different 

compositions of Ni, Cr, Fe, Co, Mo, Si, Mn, Ti, Al, Nb, and Cu. The physical properties of these 

compositions (density, linear expansion, thermal conductivity, Young’s modulus, bulk modulus, 

shear modulus, and Poisson’s ratio) were calculated using the CALPHAD method. The obtained 

data were subjected to a normalization process before being used as input to the model. The 

normalized data were then fed into an artificial neural network (ANN) model, and the model 

outputs were analyzed using Explainable Artificial Intelligence (XAI) methods. This analysis 

process evaluated the effects of physical properties and temperature by classifying them into 

positive and negative impacts. The accuracy of the model results was validated through 

comparison with JMatPro software. Consequently, in contrast to the conventional approach of 

the CALPHAD methodology, which models the physical properties of materials based on their 

composition, this study successfully performed inverse modeling to determine the compositions 

corresponding to the desired physical properties. 

 
Figure 1. Proposed Model. 
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2.1 Dataset Generation 

This study focuses on Ni-Cr-Fe (Inconel, Incoloy) alloys, which are among the most 

widely used superalloys in industry due to their high mechanical properties and ability to 

undergo precipitation hardening through solution treatment and aging. Ni-Cr-Fe (Inconel and 

Incoloy) alloys can be subjected to heat treatment processes, such as precipitation hardening, 

which helps stabilize the microstructure and maintain mechanical properties over prolonged 

periods at elevated temperatures. Precipitation hardening is a critical process that enhances the 

high-temperature strength of Inconel and Incoloy alloys [11].  

The composition of JMatPro is based on the elements Ni, Cr, Fe, Co, and Mo, which 

constitute Ni-Cr-Fe alloys. Elements such as Nb, Ti, Al, Mn, Si, and Cu [12], which enable 

precipitation hardening and aging processes, are held constant at specific values across all 

alloys. This approach aims to discover a composition with superior mechanical properties due 

to precipitation hardening. The composition includes elements in the following weight 

percentages: Ni (50-75%), Cr (14-21%), Fe (5-15%), Co (1-2%), and Mo (2-3%), in various 

combinations. Additionally, the elements Nb (1 and 5%), Ti (1 and 2.5%), Al (0 and 0.5%), Mn 

(0.5 and 1%), Si (0.5%), and Cu (0.5%) were maintained at fixed values across all 

combinations. For each generated composition, Phase Fraction Diagrams and TTT diagrams 

were developed. 

Table 1. Elemental Composition Ranges of Alloys in the Dataset (values represent wt.%). 

Ni  Cr Fe Co Mo Nb Ti Al Mn Si Cu 

50-75 14-21 5-15 0-2 0-3 1, 5 1, 2.5 0, 0.5 0.5, 1 0.5 0.5 

 

In the above table, 250 distinct compositions were generated from various combinations 

within the specified elemental ranges. For each composition, a total of 20 different temperature 

points were set in the range of 540–920 °C, with increments of 20 °C. For each temperature 

point, the density, thermal conductivity, linear expansion percentage, Young’s modulus, bulk 

modulus, shear modulus, and Poisson's ratio were recorded in the dataset under the 

corresponding temperature entries. Consequently, physical properties corresponding to 20 

temperature values were listed for each composition, resulting in a dataset comprising 5000 

rows out of 250 compositions. 
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Table 2. The First Two Compositions (C1, C2) in the Dataset. 

Composition 

Alloying 

Elements 

(wt%) 

Temperature 

(°C) 

Density 

(g/cm3) 

Linear 

expansion 

(%) 

Thermal 

conductivity 

(W/(m. K)) 

Young's 

modulus 

(GPa) 

Bulk 

modulus 

(GPa) 

Shear 

modulus 

(GPa) 

Poisson's 

ratio 

C1 

Ni: 67% 

Cr: 22% 

Fe: 5% 

Co: 0% 

Mo: 0% 

Nb: 1% 

Ti: 2.5% 

Al: 0.5% 

Mn: 1% 

Si: 0.5% 

Cu: 0.5% 

920.0 7.78093 1.71729 26.32702 137.58134 144.72433 51.27665 0.34156 

900.0 7.79575 1.65069 25.87496 140.06745 146.50224 52.23848 0.34065 

880.0 7.80998 1.58694 25.45285 142.4019 148.15905 53.14259 0.33981 

⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ 

580.0 7.97686 0.8564 20.56181 169.22063 165.62852 63.63024 0.32972 

560.0 7.98607 0.81695 20.26687 170.75849 166.52779 64.23843 0.3291 

540.0 7.99514 0.77821 19.97256 172.27884 167.40553 64.84051 0.32848 

C2 

Ni: 66% 

Cr: 22% 

Fe: 5% 

Co: 1% 

Mo: 0% 

Nb: 1% 

Ti: 2.5% 

Al: 0.5% 

Mn: 1% 

Si: 0.5% 

Cu: 0.5% 

920.0 7.78113 1.71474 26.39128 138.42486 145.55014 51.59361 0.34149 

900.0 7.79587 1.64846 25.94167 140.87727 147.30295 52.54247 0.3406 

880.0 7.81003 1.58504 25.52172 143.1844 148.93875 53.43608 0.33977 

⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ 

580.0 7.97642 0.85662 20.6351 169.93475 166.32878 63.8987 0.32972 

560.0 7.98564 0.81714 20.33941 171.47479 167.22758 64.50784 0.3291 

540.0 7.99472 0.77837 20.04428 172.99739 168.10489 65.11089 0.32848 

 

As an example, the dataset created for only two alloy compositions is shown in the table 

above. For each composition, physical property values were recorded at 20 different 

temperatures ranging from 540 °C to 920 °C. In the second alloy (C2), unlike the first alloy 

(C1), an additional 1% Co was included. It was observed that the addition of 1% Co led to an 

increase in density, thermal conductivity, Young's modulus, bulk modulus, and shear modulus, 

while causing a decrease in linear expansion and Poisson's ratio. As demonstrated by these two 

examples, the physical property values for 250 different alloy combinations, modified within 

the ranges specified in Table 1, were added to the dataset under the corresponding temperature 

rows, resulting in a dataset of 5000 rows, as shown in Table 2. 

Completing missing data is crucial to ensuring the integrity of the dataset. In this study, 

missing values were estimated using multiple linear regression based on the available data. 

Additionally, since the data obtained from JMatPro software were in different formats, they 

were converted to international SI units and standardized in terms of density (g/cm³), thermal 

conductivity (W/(m·K)), and expansion (%). To enable the artificial intelligence model to 

effectively learn the data, all physical properties were scaled between 0 and 1 using the Min-

Max Normalization method and transformed into a tensor structure. Following these processes, 

data consistency was verified through statistical analyses by comparing with the original 

JMatPro values, ensuring the dataset's suitability for modeling. 
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2.2 Software Used for the CALPHAD Methodology 

The datasets required to train the AI model were obtained using JMatPro software, 

which operates based on the CALPHAD methodology. In JMatPro, phase-fraction diagrams 

and TTT diagrams were generated by adding alloying elements to nickel at specified ratios. The 

diagrams created for each composition were analyzed to determine the appropriate heat 

treatment temperature that would yield the desired microstructure through precipitation 

hardening. The physical property values that the alloy would attain at this specified heat 

treatment temperature were then organized based on the temperature. 

Each composition was simulated with appropriate heat treatment parameters to achieve 

the formation of the gamma, gamma prime, and gamma'' phases. Phases such as delta, eta, laves, 

MC, M6C, and M3B2 were disregarded because they form only during long precipitation 

periods. Because the simulations were conducted under equilibrium conditions, the model 

prevented the formation of unwanted phases. The grain size of the matrix phase (gamma) was 

set to 100 microns. The grain sizes of the gamma prime and gamma'' phases precipitating within 

the matrix phase were specified as 10 µm and 50 µm, respectively. For each composition, the 

heat treatment temperature and duration parameters were optimized to complete the 

precipitation of the gamma prime and gamma'' phases within the matrix phase. 

The JMatPro software performs Gibbs free-energy calculations, which are fundamental 

to the CALPHAD methodology. Gibbs free energy (G) provides information on a system's 

equilibrium state and phase formation. 

𝐺 = 𝐻 − 𝑇𝑆 (1) 

where: 

H: Enthalpy (total heat content), 

T: Absolute temperature, 

S: Entropy (measure of disorder). 

Enthalpy calculations are performed using standard formation enthalpies of pure 

elements and alloys. The enthalpy expression used in the CALPHAD model can be expanded 

to include the enthalpy changes of a phase as follows: 

𝐻 = 𝐻𝑟𝑒𝑓 + ∫ 𝐶𝑝 𝑑𝑇
𝑇

𝑇𝑟𝑒𝑓

 (2) 
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where: 

Href: Enthalpy at the reference temperature, 

Cp: Heat capacity. 

In the CALPHAD methodology, phase equilibria are determined by equalizing the 

chemical potentials of the components. The chemical potential (μi) for each component is 

calculated from the derivatives of the Gibbs free energy: 

𝜇𝑖 =
𝜕𝐺

𝜕𝑛𝑖
 (3) 

where ni represents the mole quantity of the component. 

To determine phase equilibrium, the chemical potentials of each component must be 

equalized as follows: 

𝜇𝑖
𝛼 = 𝜇𝑖

𝛽
 (4) 

where α and β represent two different phases in equilibrium. 

The heat capacity (Cp), which varies with temperature, is calculated and often expressed 

in polynomial form: 

𝐶𝑝 = 𝑎 + 𝑏𝑇 + 𝑐𝑇2 + 𝑑𝑇3 + ⋯ (5) 

The coefficients (a,b,c,d) in this equation are determined based on experimental data or 

theoretical models. 

JMatPro performs these calculations in the background to process the material data in 

its database. As a result of these processes, the phase structure of the input composition can be 

modeled and the thermodynamic, physical, or mechanical properties of this phase structure can 

be simulated with high accuracy. 

In this study, JMatPro software was selected due to its superior features. One of the 

advantages of JMatPro over software like Thermo-Calc is its ability not only to perform 

thermodynamic calculations but also to predict mechanical and physical properties. JMatPro 

has the capacity to calculate properties of metal alloys such as phase transformations, elastic 

and plastic deformation characteristics, fatigue, and creep. In this regard, it offers a broader 

scope compared to Thermo-Calc, which mainly focuses on phase diagrams and equilibria [13]. 
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Another significant advantage of JMatPro over Thermo-Calc is its ability to integrate 

engineering approaches into alloy development processes. This provides researchers with 

greater flexibility and accuracy in the design and optimization of new materials. Thus, it offers 

a solution that focuses not only on phase diagrams but also on the detailed prediction of 

mechanical properties [14]. 

With these superior features, JMatPro can create a model that approximates the 

mechanical properties of the generated composition. Consequently, in this project, the 

mechanical property data required to train artificial intelligence can be modeled in the software 

without the need for time-consuming experimental studies. 

2.3 Development of the Artificial Intelligence Model 

The artificial intelligence (AI) model developed in this study combines Explainable 

Artificial Intelligence (XAI) techniques with Artificial Neural Networks (ANNs) to facilitate 

the inverse prediction of physical properties in Ni-Cr-Fe-based superalloys. This model aims to 

overcome the limitations of traditional CALPHAD approaches by predicting alloy 

compositions with specified mechanical and thermal properties, thus optimizing the design 

process and reducing the reliance on trial and error. 

2.3.1 Data Preparation and Model Architecture 

A comprehensive training dataset was created, including data on density, thermal 

conductivity, linear expansion, Young’s modulus, bulk modulus, shear modulus, and Poisson's 

ratio. The data were divided into training (80%) and validation/testing (20%) sets using a 

method widely applied to ensure robust model performance.[15]. 

ANNs were chosen for their capacity to model nonlinear, high-dimensional 

relationships, which are typical in complex alloy systems. Recent studies have demonstrated 

that ANNs can handle multivariable datasets and accurately model the dependencies in alloy 

properties when integrated with domain knowledge from materials science [16]. The model 

architecture includes several hidden layers optimized for neuron count and activation functions, 

enabling efficient learning of complex patterns while maintaining computational efficiency 

[17]. 

Ensuring the completeness of missing data is crucial for maintaining the integrity of the 

dataset. In this study, missing values were estimated using multiple linear regression based on 
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the available data. Additionally, since the data obtained from JMatPro software were provided 

in various formats, they were converted into international SI units and standardized into metrics 

such as density (g/cm³), thermal conductivity (W/(m·K)), and expansion (%). To allow the 

artificial intelligence model to effectively learn the data, all physical properties were scaled 

between 0 and 1 using the Min-Max Normalization method and then transformed into a tensor 

structure. Following these processes, data consistency was verified through statistical analyses 

by comparing the results with the original JMatPro values, ensuring the dataset's readiness for 

modeling. 

2.3.2 Training and Optimization 

The model was trained over 500 epochs, utilizing Mean Absolute Error (MAE) as the 

loss metric to minimize the error between the predicted and actual values. Figure 3(a) shows 

the rapid decrease in both training and validation losses in the initial epochs, followed by 

stabilization at epoch 100, indicating the model’s learning plateau. This training approach, 

which is supported by backpropagation and gradient descent, is common in materials 

informatics applications where data complexity is high [18]. 

To enhance the model’s generalizability and prevent overfitting, regularization 

techniques, such as dropout layers, were implemented. Studies have shown that such 

regularization methods are effective for improving the robustness of models in predictive 

material science, allowing models to generalize beyond the training dataset [19]. 

2.3.3 Explainable AI for Feature Analysis 

To enhance interpretability, SHAP (SHapley Additive exPlanations) values were applied 

to assess feature importance in the ANN model. The XAI analysis revealed that linear 

expansion, temperature, and Poisson's ratio were the most influential predictors of alloy 

properties (Figure 2). The application of XAI techniques is essential in materials science, where 

understanding the relationship between compositional variables and property outcomes is 

critical for effective alloy design [20]. 

2.3.4 Model Performance Evaluation 

The ANN model achieved an accuracy rate of 98.03%, closely approximating the 

JMatPro-generated values for key physical properties (Table 3). The high accuracy of the 

proposed model aligns with recent advancements in ANN-based alloy prediction models, which 
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demonstrate that machine learning models can provide reliable predictions that are comparable 

to traditional simulation methods [21]. This model’s successful application validates the 

potential of integrating CALPHAD and AI approaches, paving the way for future AI-enhanced 

alloy design frameworks. 

This work contributes to a growing body of research that uses machine learning to 

facilitate alloy design and property prediction, demonstrating the potential of AI to advance 

materials science beyond traditional methods [22] [23] [24]. 

3 RESULTS AND DISCUSSION 

The artificial intelligence (AI) model developed for predicting the physical properties 

of Ni-Cr-Fe-based superalloys has demonstrated notable accuracy, achieving an overall 

prediction accuracy rate of 98.03%. This success is indicative of the model’s potential to 

effectively aid alloy design by accurately predicting compositions that meet the target property 

requirements. The accuracy analysis shown in Table 3 reveals that the AI model's predictions 

closely align with the values obtained from JMatPro simulations, with minor deviations 

observed across different properties. This alignment underscores the reliability of the AI 

approach as a complementary tool to CALPHAD-based methodologies. 

Table 3. Comparison of Desired Physical Properties with Values Obtained by Modeling the 

AI-Suggested Compositions in JMatPro and Their Accuracy Rates. 

Composition 

Suggested by 

AI 

Physical Properties at 920°C 

Suggested 

Values of 

Composition to 

be Offered by 

AI 

Values Obtained by 

Modeling the 

Composition 

Suggested by the AI 

Model in JMatPro 

Accuracy (%) 

Ni: 69.23 % 

Cr: 15.05 % 

Fe: 9.45 % 

Co: 1.33 % 

Mo: 0.54 % 

Nb: 0.39 % 

Ti: 1.46 % 

Al: 0.51 % 

Mn: 1.02 % 

Si: 0.51 % 

Cu: 0.51 % 

Density (g/cm3) 7.9 7.91415 99.820886 

Linear expansion (%) 1.59 1.65911 95.653459 

Thermal conductivity (W/(m. K)) 27.7 28.34599 97.667906 

Young's modulus (GPa) 146 142.92744 97.895506 

Bulk modulus (GPa) 157.5 153.9451 97.742920 

Shear modulus (GPa) 54.4 53.1225 97.651654 

Poisson's ratio 0.346 0.34526 99.786127 

Overall Accuracy (%):  98.03 
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In Table 3, the comparison between the target values of the suggested composition and 

the actual values obtained via JMatPro modeling illustrates a high level of congruency across 

key properties such as density, linear expansion, thermal conductivity, Young's modulus, bulk 

modulus, shear modulus, and Poisson’s ratio. Each of these properties was predicted with an 

accuracy rate close to or exceeding 97%, with density and Poisson’s ratio achieving 

exceptionally high accuracy rates of 99.82% and 99.79%, respectively. This high accuracy rate 

reflects the AI model’s proficiency in capturing the intricate relationships between elemental 

composition and physical properties at elevated temperatures, specifically at 920 °C. 

To gain a deeper understanding of how different input features influence AI model 

predictions, we employed Explainable Artificial Intelligence (XAI) techniques. The XAI 

analysis, as illustrated in the feature importance graph, indicates that linear expansion, 

temperature, and Poisson’s ratio are among the most influential factors affecting the AI model’s 

predictions. The SHAP (SHapley Additive exPlanations) values highlight that a higher linear 

expansion and temperature exert a positive impact on the prediction output, whereas parameters 

like density, bulk modulus, Young’s modulus, and shear modulus have a more negative 

influence. 

 

Figure 2. Effect of Physical Properties on Prediction. 

Figure 2 presents the feature importance and impact analysis performed using SHAP 

(SHapley Additive exPlanations) values with Explainable Artificial Intelligence (XAI) 

techniques. Each feature's contribution to the model's prediction is shown on a scale ranging 

from negative to positive impact, with orange bars representing positive contributions and blue 

bars indicating negative contributions. The model’s predicted value (63.78) falls within the 

possible range of 0–109.95. 

Features such as linear expansion (%) and temperature (°C) exhibited positive impacts 

on the prediction outcome, with linear expansion contributing the highest positive value (23.20) 
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and temperature following closely (20.55). This suggests that an increase in these parameters 

tends to raise the predicted value, likely due to their direct relationship with the thermal 

behavior of alloys. 

In contrast, features such as density (g/cm³), bulk modulus (GPa), shear modulus (GPa), 

Young’s modulus (GPa), and thermal conductivity (W/(m. K)) exert negative influences. 

Among these, the bulk modulus has the most substantial negative effect (-10.75), followed by 

Young’s modulus (-5.73). This negative impact indicates that higher values for these properties 

might correlate with a reduction in the model’s target prediction, likely reflecting the 

mechanical rigidity of the alloy. 

Poisson's ratio, while having a minor impact compared to the other features, shows a 

slightly negative influence, which is consistent with the mechanical and deformation behavior 

characteristics at various temperatures. 

This insight into feature importance aligns with the underlying physics of Ni-Cr-Fe 

superalloys, where thermal expansion and mechanical stability at high temperatures are crucial 

factors in determining material performance. The model's ability to prioritize features that are 

inherently critical to alloy behavior demonstrates the model's interpretability and the potential 

of XAI to enhance trust in AI-driven alloy design. 

The model’s learning process over 500 epochs is visualized in the training and validation 

loss graphs, which show a significant decline in both training and validation losses as epochs 

progress. By the end of training, the losses converged, indicating that the model effectively 

minimized the errors without overfitting to the training data. Additionally, the Mean Absolute 

Error (MAE) graph reinforces this finding, as both the training and validation MAE values 

stabilize around low values, confirming the model's generalizability. 

 

Figure 3. Model Loss and Mean Error Graphs Over Epochs: (a) Model Loss Graph, (b) 

Model Mean Absolute Error (MAE) Graph. 
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Figure 3(a) shows the loss of the machine learning model over 500 training epochs. The 

loss values for both the training and validation data decreased rapidly in the initial epochs and 

stabilized around epoch 100. This indicates that model performance has reached a plateau. 

Figure 3(b) shows the Mean Absolute Error (MAE) of the model for training and validation 

data over 500 epochs. The MAE values initially decreased rapidly and then stabilized, similar 

to the loss curve. The consistency between the training and validation MAEs indicates that the 

model achieves good generalizability without overfitting. 

 

Figure 4. Training and Validation Loss Graph. 

 

The rapid decrease in training and validation losses in early epochs (Figure 4) 

demonstrates the model’s ability to quickly learn the relationships within the dataset. As training 

continued, the loss reduction became more gradual, suggesting that the model was fine-tuning 

its predictions. The convergence of training and validation losses at lower error rates reflects a 

balanced model that can maintain accuracy across unseen data. 

Table 4 summarizes the error metrics used to evaluate the performance of the artificial 

neural network model. MSE (0.2245) and MAE (0.2742) numerically demonstrate the 

proximity of the model's predicted physical properties to the actual values. MSE is particularly 

important for understanding the magnitude of prediction errors, as it penalizes larger errors 

more heavily. The R² score (0.5504) indicates that the model can explain approximately 55% 

of the total variance. These results suggest that the model demonstrates reasonable performance 

but requires additional optimizations for improved outcomes. 
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Table 4. Evaluation of Model Performance Based on Error Metrics. 

Error Metrics Value Description 

Mean Squared Error  

(MSE) 
0.2245 

The mean of the squared differences between 

predicted and actual values. Larger errors are 

penalized more heavily. 

Mean Absolute Error  

(MAE) 
0.2742 

The average of the absolute differences 

between predicted and actual values. 

Coefficient of Determination 

(R²) 
0.5504 

A measure that indicates the proportion of the 

variance in the dependent variable explained 

by the model (%55 in this case). 

 

The AI model’s predictions were validated against the JMatPro outputs, which follow 

the CALPHAD methodology. As shown in the graphical and tabular data, the AI model 

consistently approximated JMatPro’s physical property values with high accuracy. This 

demonstrates the potential of AI for efficient and reliable inverse alloy design. Unlike 

CALPHAD, which requires intensive calculations and adjustments, the AI model rapidly 

processes large datasets to deliver accurate predictions, offering a significant time-saving 

advantage. 

Moreover, the use of Explainable AI provides a transparent view into the AI model’s 

decision-making process, which is traditionally seen as a "black box" in neural network-based 

models. This transparency adds value by allowing researchers to understand the weight and 

impact of each feature, thus enhancing the model’s applicability in real-world alloy design. 

The results obtained from this study reveal that integrating CALPHAD-generated data 

with artificial intelligence, specifically with the support of XAI, offers a transformative 

approach to alloy design. This AI-driven framework not only enhances prediction accuracy and 

provides insights into the compositional dependencies of physical properties at high 

temperatures. This capability is especially valuable in designing high-performance superalloys 

for demanding applications such as aerospace and power generation, where precise control over 

properties like thermal conductivity, modulus, and expansion is crucial. 

In conclusion, the AI model, validated using CALPHAD data, was found to be effective 

in predicting the physical properties of Ni-Cr-Fe-based superalloys with high accuracy. The use 

of XAI further strengthens the model’s reliability and interpretability, making it a valuable tool 

for future alloy development. This study demonstrates a significant advancement in materials 

science, paving the way for more efficient and accurate alloy design processes driven by AI, 

which can be extended to other alloy systems in future research. 
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4 CONCLUSION AND SUGGESTIONS 

In this study, a novel approach integrating the CALPHAD methodology with artificial 

intelligence, specifically Explainable Artificial Intelligence (XAI) and Artificial Neural 

Networks (ANN), was demonstrated to predict alloy compositions with desired physical 

properties for Ni-Cr-Fe-based superalloys. The AI model achieved a high prediction accuracy 

of 98.03%, thereby validating the efficacy of this inverse prediction approach in alloy design. 

By using JMatPro software to generate comprehensive datasets and applying XAI to interpret 

model outputs, this study provides a reliable and transparent method for optimizing superalloy 

compositions. 

The results indicate that this AI-driven framework can significantly reduce the trial-and-

error processes traditionally required for alloy design, thus saving time and resources. The 

integration of XAI also enhances the model’s interpretability, allowing researchers to 

understand the influence of individual elements on alloy properties. This interpretability is 

crucial for practical applications because it helps identify optimal compositional ranges that 

meet specific mechanical and thermal requirements. 

Suggestions for Future Work: 

Expansion to Other Alloy Systems: Future research could extend this methodology to 

other alloy systems, such as Ti-based or Al-based alloys, to explore its generalizability and 

applicability across diverse materials. 

Incorporation of Additional Properties: Including additional properties, such as creep 

resistance, fatigue strength, and corrosion resistance, could improve the model’s relevance for 

specific industrial applications, particularly in aerospace and energy sectors where such 

properties are critical. 

Real-World Validation: The experimental validation of AI-predicted compositions in 

real-world manufacturing and testing environments will provide further insights into the 

model’s accuracy and practical feasibility. 

Optimization of Model Architecture: Exploring different neural network architectures 

or hybrid machine learning models, such as ensemble learning techniques, may yield further 

improvements in prediction accuracy and computational efficiency. 
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Development of an Automated Alloy Design Platform: Combining CALPHAD and 

AI methods into an automated platform for alloy design could streamline the process for 

materials scientists, enabling rapid prototyping of alloys tailored to meet specific engineering 

requirements. 

In conclusion, the integration of CALPHAD-generated data with advanced AI 

techniques represents a transformative approach to alloy design. This study demonstrates the 

potential of AI to complement traditional materials science methods, paving the way for 

efficient, data-driven alloy development. Future advancements in this field are expected to 

enhance the capabilities of AI in alloy design, enabling more sophisticated and customizable 

solutions in materials engineering. 
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