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 The utilisation of Unmanned Aerial Vehicles (UAV) mounted with non-metric consumer-grade 
digital cameras is on the rise globally due to their affordability and ease of operation. For high-
accuracy UAV products, accurate camera parameters must be determined through camera 
calibration. Camera calibration can be performed before (pre-calibration) or during the 
bundle block adjustment (self-calibration). This study aims to analyse the effect of camera 
calibration parameters on the accuracy of UAV products, namely the Digital Elevation Model 
(DEM) and orthoimage. Camera calibration parameters are estimated using self-calibration, 
which deploys 3D image information of the scene in a bundle adjustment, and a 2D reference 
object-based approach known as Zhang's technique, which requires image information of a 
planar pattern. This study deployed a DJI FC220 camera mounted on a DJI Mavic Pro UAV. Self-
calibration was deployed in Agisoft Metashape software based on Brown's method, and 
Zhang's technique was deployed in MATLAB and OpenCV. Based on internal accuracy 
measures, OpenCV yields a minor reprojection error of 0.14, followed by MATLAB (0.79) and 
self-calibration (1.21). Processing without calibration yields the highest reprojection error of 
2.18. Based on external measures of accuracy, that is, the geometric accuracy of UAV products, 
self-calibration yields the least RMSE of 8.2 and 1.4 cm for the horizontal and vertical, 
respectively, followed by Zhang's technique with 9.6 and 2.3 cm in MATLAB and 13.5 and 4.3 
cm in OpenCV. Processing without calibration yields the highest vertical RMSE of 20.0 and 22.9 
cm for the horizontal and vertical, respectively. Comparison of the accuracy of UAV mapping 
products computed with and without calibration emphasises the need for camera calibration 
to optimise the accuracy of UAV products. This study recommends assessing other 
photogrammetric mapping software and camera calibration approaches and the effect of 
flying heights on calibration parameters and mapping accuracy.  
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1. Introduction  
 

Unmanned Aerial Vehicle (UAV) technology has 
become a commonly used tool for data acquisition in 
geospatial applications due to its ability to produce high 
spatial resolution images which facilitate the production 
of high-accuracy photogrammetric products such as 
maps, orthoimages, 3D models, Digital Elevation Models 
(DEMs) and point cloud [1-5]. In addition, UAV 
technology provides a low-cost and flexible alternative to 
other remote sensing platforms, such as classical aerial 
photogrammetry and satellite platforms [1, 6, 7]. UAVs 
are small in size, have autonomous vertical take-off and 
landing characteristics, have low site requirements, and 
have high flight safety performance [8]. The utilisation of 

UAVs mounted with modern non-metric consumer-grade 
digital cameras is rising globally due to their affordability 
and ease of operation [8-10]. A camera consists of an 
image plane and a lens, which provide a transformation 
between object space and image space [11]. This 
transformation is affected by the characteristics of the 
camera. The commonly used non-metric consumer-
grade cameras are characterised by adjustable camera 
parameters such as principal distance and principal 
point, and their lenses have relatively large distortions 
compared to metric and survey-grade cameras [1, 5, 9]. 
Low-quality lenses in non-metric cameras cause 
inconsistencies in the camera system, leading to 
systematic errors that impact UAV product quality [9]. 
Other aspects that influence the accuracy of UAV-derived 
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products include the flight parameters (flight height, 
direction, speed, and image overlaps) and Ground 
Control Points (GCPs) geometry [12]. Whereas the user 
has flexibility over the flight parameters used during 
flight planning, limited UAV/camera options may be 
available. Optimising the user's available UAV/camera 
system is essential to achieving optimal accuracy. 
Applying precise camera calibration parameters for 
photogrammetric processing with non-metric cameras 
can help achieve this [13, 14]. Accurate camera 
parameters and lens distortions compensate for 
systematic errors in transforming points from object to 
image space, ensuring quality photogrammetric 
products [5, 8, 15].  

A camera is calibrated if its interior (intrinsic) and 
exterior (extrinsic) orientation parameters are 
accurately determined [13, 16]. Intrinsic parameters deal 
with the camera's internal characteristics, such as focal 
length, lens distortion (radial and tangential) and 
coordinates of the image centre [9, 17, 18]. Radial 
distortion occurs as the curvature of the lens moves away 
from the centre of the lens. In contrast, tangential 
distortion is a distortion that occurs when the camera 
lens and image sensor are not levelled in the 
manufacturing process [1]. Extrinsic parameters 
describe the position and orientation of the camera in the 
space [16, 19]. With the advancements in UAV 
technology, airborne Global Navigation Satellite Systems 
(GNSS) and Inertial Navigation System (INS) sensors can 
accurately determine the location and orientation of the 
camera in space during a mission [19]. This leaves the 
question of intrinsic parameters to be addressed since it 
is essential for scene reconstruction [13, 20] and lens 
distortion removal, which may translate to a vertical 
'doming' of a DEM surface in photogrammetric image 
processing [5, 8, 21]. It is impossible to overlook how the 
intrinsic characteristics affect the reconstruction in 
object space [22]. 

Camera calibration accuracy has two distinct parts: 
internal and external accuracy [23]. Internal accuracy 
concerns the accuracy of recovery of the individual 
parameters of the calibration model. External accuracy 
relates to the impact of accuracy on any subsequent 
photogrammetric measurement derived using camera 
products, i.e., the effect of calibration errors on object 
point determination [20]. Internal precision measures 
include statistical measures such as reprojection errors 
or estimates of precision such as standard deviation of 
the estimated parameters. These measures are internal 
to the triangulation or bundle adjustment process [23] 
and do not tell us about the precision in object space. 
Close-range photogrammetry (CRP) focuses on the 
accuracy of photogrammetric products such as object 
coordinates [24]. External accuracy assessment can be 
done by comparing derived object coordinates with the 
known coordinates whose accuracy exceeds the 
potential accuracy of the photogrammetric system [23]. 
Determining coordinates of ground control points (GCPs) 
can be done by traditional positioning techniques such as 
traversing or static or Real Time Kinematic (RTK) GNSS 
observations. In the recent past, smart GCPs, also called 

aeropoints, have been deployed to collect GNSS data and 
post-process to resolve coordinates of the control points. 

Camera calibration techniques are classified into 
two broad categories: photogrammetric (3D reference 
object-based) and self-calibration, with a third in-
between category using 2D metric information [25]. 3D 
reference object-based calibration is performed by 
observing a calibration object whose geometry in 3D 
space is known, while self-calibration techniques do not 
use any calibration object but image information of a 
static scene [13]. Brown's self-calibration model is a 
widely used and accepted model in CRP due to its 
efficiency [17]. The 2D reference object-based method 
requires the camera to observe a planar pattern shown 
at different orientations, and one such approach is 
Zhang's technique, which is considered flexible and 
robust compared to classical techniques [13, 26]. The 
most popular camera calibration approach deployed in 
photogrammetry and Computer Vision (CV) is the self-
calibrating bundle adjustment, which was first 
introduced in the early 1970s by Duane C. Brown [17, 24, 
27]. Camera calibration using bundle adjustment is an 
integral and routinely applied operation within 
photogrammetric triangulation, especially in high-
accuracy close-range measurements [15]. However, with 
the rapid growth in the adoption of off-the-shelf 
consumer-grade digital cameras for 3D measurement 
applications, there are many situations where the 
geometry of the image network will not support the 
robust recovery of camera parameters via self-
calibration [15, 23]. For this reason, standalone camera 
calibration remains a requirement and an essential issue 
in CRP and CV. There is a need to calibrate non-metric 
cameras both pre-mission and post-mission to cater for 
variations in the camera parameters caused by camera 
bumps or vibrations and environments such as 
temperature, humidity and atmospheric pressure [5, 28]. 

Different calibration techniques, including 
laboratory calibration, field calibration, in-situ 
calibration, self-calibration and open-source CV 
calibration, have been employed in photogrammetry [15, 
17, 19, 23, 28-30]. Laboratory calibration is generally 
used for metric cameras. The intrinsic parameters are 
determined in the laboratory using special equipment, so 
consumer-grade cameras hardly perform laboratory 
calibration [19]. Field calibration uses terrestrial 
features that have been precisely surveyed to calibrate 
camera lenses. This can be achieved conveniently using 
traditional positioning or GNSS methods [5]. The 
advantages of field methods are in the accuracy of these 
points, which have typically been surveyed previously, 
and the fact that the camera can be used in conditions 
where it will operate. In-situ or on-the-job calibration 
indicates a field calibration with the combination of 
actual object measurements [19]. Calibration parameters 
are processed by the self-calibrating bundle adjustment 
technique with Ground Control Points (GCPs) involved. 

Similarly, Self-calibration deploys a bundle 
adjustment technique but doesn't require any known 
reference points. OpenCV library has become a prevalent 
tool for camera calibration in CV [23]. The calibration 
models for CV have traditionally employed reference 
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grids; the calibration matrix is determined using images 
of a known object array, such as a checkerboard pattern 
imaged at different orientations from the camera [15]. 
The commonly adopted methods include Tsai [31], 
Heikkila and Silvén [32], Lenz [33] and Zhang [25].  

Existing studies have investigated various 
approaches to computing camera orientation 
parameters and their accuracies; we present a few 
examples below. A study by Duran and Atik [24] 
examined the effect of camera IO parameters obtained 
from different software on the accuracy of 3D models. 
Software used included MATLAB, Agisoft lens, 
Photomodeler and 3D Flow Zephyr. A terrestrial camera 
(Nikon D800) of 24 mm focal length was used to 
manually capture images at 50 cm. A 3D model was 
created using Agisoft photoscan. For the 3D model, the 
highest and lowest accuracy in planimetry and altimeter 
were 0.077 m and 0.909 m, respectively, obtained by 
Agisoft Lens and MATLAB software. Another study by 
Lim, Seo [1] investigated the impact of camera 
calibration on the accuracy of DEMs from low percentage 
overlapping images using an FC300X RBG camera 
onboard a DJI Phantom 3 UAV. The horizontal and 
vertical accuracy achieved was 0.003 m and 0.089 m, 
respectively. Pérez, Agüera [34] investigated the effect of 
camera calibration on different working conditions, 
namely laboratory and field. Md4-200 UAV equipped 
with a non-metric Pentax Optio camera was used at a 
flight height of 50 m, and Photomodeler scanner software 
was used for calibration. Field calibration yielded the 
best results with a reprojection error of 0.282 pix against 
the laboratory calibration with 1.940 pix. Kršák, Blišťan 
[35] used low-cost photogrammetry to analyse the 
accuracy of DEM using a DJI Phantom 2 vision+ UAV at a 
flight height of 35 m. 5 GCPs were used to validate the 
DEM by comparing the heights from both methods; a 
RMSE of 0.048 m was achieved. Different calibration 
approaches yield different results and accuracies, 
however there exists limited knowledge on the effect and 
sensitivity of the computed calibration parameters on 
the accuracies of photogrammetric products such as 
orthoimages and DEMs. 

This study investigates the impact of intrinsic 
parameters on the accuracy of the resulting UAV 
photogrammetric products (orthoimage and DEM. 
Various approaches and software platforms were used to 
compute the intrinsic parameters of a DJI FC220 camera. 
The techniques used include Zhang's 2D reference 
object-based approach, deployed in OpenCV and 
MATLAB software and Brown's self-calibration 
approach, deployed in Agisoft Metashape Professional 
(MP) software. Calibration parameters derived from 
these approaches were deployed for processing 
orthoimages, and the DEM of the study area and the 
derived products' accuracies were compared.  

 

2. Method 
 

2.1. Study area 
 

The study site is in southwest Uganda in Kabale 
district, Kitumba sub-county, Omwirwaniro village, see 
Figure 1. A 30m resolution DEM (Figure 2) extracted 

from the global Shuttle Radar Topography Mission 
(SRTM) 1 Arc-Second DEM was used to calculate the 
slope (Figure 3) across the study area. Slope classes were 
assigned as follows: gentle (0 – 15⁰), steep (16 – 35⁰) and 
very steep (36 – 90⁰). It is shown in Figure 2 and 3 that 
the terrain in the study area is generally steep, with 
elevation ranging from 1819 to 2160 m above mean sea 
level. The study area selection was based on the diverse 
representation of elevation and slope since the study 
evaluates the effect of camera calibration parameters on 
the accuracy of the DEM.  

 

 
Figure 1. Study area 

 

 
Figure 2. DEM, Source: (SRTM 1 arc-second DEM) 
 

 
Figure 3. Slope map 
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2.2. UAV imaging system 
 

A DJI Mavic Pro UAV and DJI FC220 camera were 
used for the study (see Figure 4). The Mavic Pro UAV's 
small size, low weight and foldable design make it easier 
to operate and store, but they also restrict how well it can 
endure and perform in windy environments. With DJI's 
transmission technology, the Mavic Pro UAV can reach up 
to 7 km in open areas. The Mavic Pro can fly for up to 27 
minutes, which may or may not be sufficient for the 
project's needs and may require more than one battery 
for longer flights. A 12-megapixel camera with a 3-axis 
gimbal comes with the Mavic Pro UAV. Detailed 
specifications of the aircraft and camera/sensor are 
given in Table 1 and 2, respectively. 

 

 
Figure 4. DJI Mavic 2 Pro UAV 

 

Table 1. UAV system specifications 
Aircraft DJI Mavic Pro 
Folded size H83mm x W83mm x L198mm 
Diagonal Size  335 mm 
Weight (Battery & 
Propellers Included) 

743 g (including gimbal cover) 

Max Ascent Speed 5 m/s 
Max Descent Speed 3 m/s 
Max Speed 40 mph in Sport mode without 

wind 
Maximum Take-off 
Altitude 

5000 m 

Max Flight Time 27 minutes  
Max Hovering Time 24 minutes 
Overall, Flight Time 21 minutes  
Max  Travel Distance  13 km, no wind 
Operating Temperature  32° to 104° F (0° to 40° C) 
Satellite Positioning 
Systems 

GPS / GLONASS 

Hover Accuracy Range Vertical: +/- 0.1 m to +/-0.5 m 
Horizontal: +/- 0.3 m to +/-1.5 m 

 

Table 2. Camera/sensor specifications 
Sensor (CMOS), 1/2.3"  

Effective pixels:12.35 MP  
Camera DJI FC220 
Lens FOV 78.8° 26 mm  

(35 mm format equivalent) f/2.2 
Distortion < 1.5% Focus from 0.5 m 
to ∞ 

ISO Range photo: 100-1600 
Electronic Shutter Speed 8s -1/8000 s 
Image Size 4000×3000 
Supported Photo format JPEG, DNG 
Operating Temperature  32° to 104° F (0° to 40° C) 

 

2.3. Image acquisition 
 

This study acquired two image data sets: a 2D 
reference object-based dataset for Zhang's approach and 
images of the scene for self-calibration. The 2D reference 
object-based dataset consisted of images of a 

checkerboard (Figure 5) used for pre-calibration. The 
second dataset consisted of images of the scene. The 
second dataset was also used to map the study site. The 
datasets are described in detail below. 

Data for pre-calibration consisted of images of a 9 by 
6, 80 mm square size checkerboard calibration pattern 
printed on A1 paper captured in manual mode in the field 
with a DJI FC220 camera mounted on a DJI Mavic Pro 
UAV. Sixty images of the calibration pattern were taken, 
and forty-nine images for the calibration exercise were 
selected. The images were captured with a fixed focus at 
a distance from the camera, and the calibration pattern 
covered at least 20% of the image. The images of the 
calibration pattern were captured at different 
orientations to the camera (Figure 5). Various images of 
the pattern were captured to account for the image 
frame. Including areas near the edges of the pattern 
ensures accurate estimation of lens distortion, which 
increases radially away from the centre of the image. 

 

    
Figure 5. Sample checkerboard images 

 

Data for self-calibration consisted of 280 images of 
the study area, which were acquired on 17th September 
2022 at noon using a DJI FC220 camera mounted on a DJI 
Mavic Pro UAV. The images were acquired in 
autonomous flight mode at a flying height of 140 m with 
75% front overlap and 65% side lap. Figure 6 shows the 
UAV flight path defined by camera exposure stations and 
the distribution of control points and checkpoints. The 
GCP network constituted 7 GCPs and 3 Check Points 
(CPs). Coordinates of GCPs and CPs were obtained prior, 
using triple frequency GNSS receiver (Trimble R8s) in 
conventional RTK mode. The coordinates of GCPs 
deployed for RTK bases were determined using 3–5 
hours of static GNSS observations with horizontal and 
vertical accuracy of 1 and 3 cm, respectively. These GCPs 
were used to validate the 3D and 2D models. During 
photogrammetric processing, images outside the ground 
control network were excluded.  

 

 
Figure 6. UAV flight path and GCPs 
 

2.4. Estimation of camera parameters 
 

Camera calibration involves determining the 
relationship between a 3D point in space (𝑋𝑤 , 𝑌𝑤 , 𝑍𝑤),  

and its image projection (𝑥, 𝑦) [13], represented by 
Equation 1 [25]. 
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 [
𝑥
𝑦
1

] = [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

    

𝑡1

𝑡2

𝑡3

] [

𝑋𝑤

𝑌𝑤

𝑍𝑤

1

] 

 

             

(1) 

𝑓𝑥, 𝑓𝑦 represent the focal length in x and y direction 

respectively,  𝑐𝑥 , 𝑐𝑦 , principal point coordinates [𝑟𝑖𝑗𝑡𝑖], 

the rotation matrix and translation vector, respectively, 
are also called extrinsic parameters.  

Extrinsic parameters define the position and 
orientation of the camera in space. The radial (𝑘1 , 𝑘2, 𝑘3) 
 and tangential (𝑝1 , 𝑝2) distortions are modelled by 

Equations 2 and 3 [36]. 
 

𝑥 = 𝑥𝑑 + 𝑥(𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟8)
+ [𝑝1(𝑟2 + 2𝑥2) + 2𝑝2𝑥𝑦]                    (2) 

 
𝑦 = 𝑦𝑑 + 𝑦(𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟8) + [2𝑝1𝑥𝑦

+ 𝑝2(𝑟2 + 2𝑦2)                                      (3) 
 

𝑥𝑑 , 𝑦𝑑  represent image point coordinates biased by 
distortions. 𝑟2 = (𝑥2 + 𝑦2).  
 

This study deploys two approaches to recover 
intrinsics from the model equations above. Zhang's 
model was deployed in MATLAB and OpenCV, while 
Brown's model was deployed in a bundle adjustment in 
Agisoft MP. Brown's model [37] is one of the most 
classical physical self-calibration models deployed for 
camera calibration [8]. Zhang's calibration method is a 
flexible technique suited for use without specialised 
knowledge of 3D geometry or CV [25]. Zhang's method is 
a flexible technique that uses inexpensive equipment 
compared to classical techniques, advancing 3D CV from 
a laboratory environment to real-world use [25]. 

Zhang's calibration method requires a planar 
checkerboard grid from which the coordinates of the 
corner points of at least two images with different 
shooting angles are extracted [15, 25].  İt lies between 
photogrammetric calibration and self-calibration. The 
algorithm uses extracted corner points of the 
checkerboard pattern to compute a projective 
transformation between the image points of different 
images [13]. Afterwards, the camera parameters are 
recovered using a closed-form solution, while radial 
distortion terms are retrieved within a linear least 
squares solution [15, 38]. A final non-linear minimisation 
of the reprojection error, solved using a Levenberg-
Marquardt method, refines all the recovered parameters 
[15, 39].  

Using the bundle adjustment approach, Brown's 
self-calibration model simultaneously determines the 
intrinsic and extrinsic camera parameters and target 
coordinates [29, 40]. Self-calibration doesn't require any 
calibration object. By moving the camera in a static scene, 
the rigidity of the scene provides two constraints on the 
cameras' internal parameters from one camera 
displacement by using image information [25]. 
Therefore, if the same camera takes images, 
correspondences between three images are sufficient to 
recover both the internal and external parameters [16, 
13]. In doing so, the self-calibration algorithms make no 

or few assumptions about the particular structure of the 
scene [41]. Using multiple feature points from the scene 
images, as opposed to a limited number of discrete object 
points or predefined targets, is beneficial for self-
calibration. 

This study estimates the camera parameters using 
Zhang's and Brown's self-calibration approaches. The 
parameters assessed include the focal length (𝑓𝑥, 𝑓𝑦), 

principal point coordinates (𝑐𝑥 , 𝑐𝑦), 3 radial distortion 

parameters (𝑘1 , 𝑘2, 𝑘3), 2 tangential distortions (𝑝1, 𝑝2). 
The subsections below briefly describe the software 
platforms used. 

 
2.4.1. OpenCV 

 

Open CV is an open-source computer vision and 
machine learning software library with various 
interfaces, including Python, C++, Java, and MATLAB. It 
supports Windows, Linux, Android, and Mac operating 
systems. In this study, the Python interface was used to 
estimate calibration parameters. The Python code used 
to calculate calibration parameters employs Zhang's 
calibration method, extracted from 
https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibr
ation.html and modified to suit the project data. 

 

2.4.2. MATLAB 
 

The camera calibration tool in MATLAB was used 
to estimate the camera intrinsic and lens distortion 
parameters using checkerboard images. The accuracy of 
estimated camera parameters was evaluated, and 
modifications (such as eliminating images with poor 
image qualities) were made to improve the accuracy. 
MATLAB camera calibration deploys Zhang's calibration 
method.  

 

2.4.3. Agisoft Metashape Professional 
 

Agisoft Metashape software was used to compute 
camera calibration parameters. Agisoft Metashape 
deploys the self-calibration approach (Brown's 
approach) using the bundle block adjustment to estimate 
the camera calibration matrix, lens distortion coefficients 
and target coordinates. Agisoft is among the most 
common commercial tools used to process UAV data and 
can handle various data types, including different image 
file formats, point clouds, and meshes [42].  
 

2.5. Orthoimage and DEM generation 
 

Three sets of camera calibration parameters 
estimated using the approaches discussed in Section 2.4 
are deployed in Agisoft MP for orthoimage and DEM 
production. The fourth set of parameters was generated 
assuming a perfect lens without any distortions and that 
the image coordinate system's geometric centre 
coincides with the sensor's centre; this category is called 
"no calibration". Agisoft MP is a robust software package 
widely used to process digital images and 3D spatial data 
using the Structure from Motion (SfM) approach.  

7 GCPs were used to georeference the images during 
photogrammetric processing. An accuracy assessment of 
the photogrammetric products (orthoimage, DEM) was 

https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
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performed using 3 Check Points (CPs). The horizontal 
and vertical Root Mean Square Error (RMSE) gives the 
difference between the 3D UAV photogrammetry and 
reference (GNSS) coordinates of the CPs using Equations 
4 to 7 [2]. The other external accuracy measure is the 
spatial resolution. 

𝑅𝑀𝑆𝐸𝑋 = {
1

𝑛
∑ [𝑋𝑈𝐴𝑉 − 𝑋𝐺𝑁𝑆𝑆]2𝑛

𝑖=1 }

1

2
                                             (4)  

 

𝑅𝑀𝑆𝐸𝑌 = {
1

𝑛
∑ [𝑌𝑈𝐴𝑉 − 𝑌𝐺𝑁𝑆𝑆]2𝑛

𝑖=1 }

1

2
                                               (5)  

 

𝑅𝑀𝑆𝐸𝑍 = {
1

𝑛
∑ [𝑍𝑈𝐴𝑉 − 𝑍𝐺𝑁𝑆𝑆]2𝑛

𝑖=1 }

1

2
                                              (6)  

 

𝑅𝑀𝑆𝐸𝑋𝑌 = √𝑅𝑀𝑆𝐸𝑋
2 + 𝑅𝑀𝑆𝐸𝑌

2                                                       (7)  
 

n is the number of compared pairs, 𝑅𝑀𝑆𝐸𝑋 is the 
error in the X direction, 𝑅𝑀𝑆𝐸𝑌  is the error in the Y 
direction, 𝑅𝑀𝑆𝐸𝑍 , is the error in the elevation, and 
𝑅𝑀𝑆𝐸𝑋𝑌 , is the horizontal error. The RMSE is calculated 
independently at each check point and averaged across 
all check points in the horizontal and vertical directions 
[2]. 
 

3. Results and discussion 
 

3.1. Camera calibration parameters 
 

Camera calibration parameters were estimated using 
the three software platforms (MATLAB, OpenCV and 
Agisoft MP). The parameters are tabulated in Table 3. For 
visualisation and comparison, graphs were prepared  
(see Figure 7, 8 and 9). For each estimated set of camera 
calibration parameters, the Reprojected Error (RE) is 
computed as the internal measure of accuracy. The RE 
(measured in pixels) defines the distance between the 
reprojection of a model estimation (points reprojected 
using camera parameters) and its corresponding true 
projection (points detected from the image). The closer 
the reprojection error is to zero, the more accurate the 
parameters determined are. The MATLAB manual 
indicates an acceptable mean reprojection error of less 
than one pixel.  

 

Table 3. Camera calibration parameters 
 MATLAB OpenCV Agisoft MP No 

calibration 
F (mm) 4.72 4.72 4.66 4.73 
𝐂𝐱 (pix) 1971.50 1967.80 1965.33 0 
𝐂𝐲 (pix) 1554.71 1532.43 1536.82 0 

𝐤𝟏 0.35619 0.35951 0.06091 0 
𝒌𝟐 -2.28662 -2.32179 -0.12754 0 
𝒌𝟑 4.49235  4.77628 0.10784 0 
𝒑𝟏 -0.00236 -0.00383 5.06613 0 
𝒑𝟐 -0.00161 -0.00146 0.00011 0 

RE (pix) 0.79 0.14 1.21 2.18 
 

Figure 7 demonstrates that the estimated focal length 
calculated using Zhang's approach in MATLAB and 
OpenCV is similar and closer to the known (priori) value, 
with a difference of 0.01 mm. The discrepancy between 
the focal length estimated using Brown's self-calibration 
approach and the known value is 0.07 mm. 

 

 
Figure 7. Comparison of estimated and priori focal 
length 

 

Figure 8 shows the radial distortion parameters 
(𝑘1 , 𝑘2, 𝑘3), computed using the three approaches. 
Agisoft MP yieled the smallest tangential distortions, 
close to zero. The tangential and radial distortions of 
MATLAB and OpenCV are comparable and higher than 
those of Agisoft MP, see Figure 8. 
 

 
Figure 8. Comparison of radial distortion parameters 
 

As shown in Figure 9, the tangential distortion is near 
zero for MATLAB and OpenCV, but increases for Agisoft 
MP. Zhang's calibration approach is used in MATLAB and 
OpenCV, which may explain why the distortion 
parameters are comparable yet different from those 
computed using Brown's approach in Agisoft MP. 

 

 
Figure 9. Comparison of tangential distortion 
parameters 

 

The principal point coordinates vary slightly between 
the three approaches. Figure 10 shows that OpenCV 
performs best with a reprojection error of 0.14 pix, 
followed by MATLAB with 0.79 pix,self-calibration with 
1.21 pix and "no calibration" with 2.18 pix.  
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Figure 10. Reprojection error       

 

Other precision measures of the computed 
parameters for self-calibration in Agisoft MP include 
standard deviations for each estimated parameter, 
provided in the covariance matrix produced by bundle 
adjustment (see Figure 11).  
 

 
Figure 11. Calibration coefficients and covariance 
matrix 

 

The covariance matrix (Figure 11) computed during 
the bundle adjustment in Agisoft MP captures the 
uncertainty of the object/image transformation. Column 
2 represents the adjusted calibration parameters, and 
column 3 the respective standard deviations. The focal 
length units are pixels, while the principal point 
coordinates are offsets from the image centre. Off-
diagonal elements are covariances, 𝜎𝑖𝑖 , which reflect the 
degree of correlation between the corresponding 
parameters. Internal measures of precision focus on the 
accuracy with which the camera parameters are 
determined rather than the accuracy of the 
photogrammetric products derived using these 
calibration parameters. As a result, additional testing 
was conducted to assess the impact of the estimated 
camera calibration parameters on computed 
photogrammetric products; the findings are presented in 
Section 3.2. 

 
3.2. Orthoimage and DEM generation 

 

The photogrammetric products generated using the 
interior orientation parameters provided in Table 3 are 
shown in Figure 12 and 13. The external accuracy 
assessment results of the orthoimage and DEM are 

presented in Table 4. The RMSE represents the difference 
between the UAV photogrammetry and reference 3D 
coordinates of the checkpoints. A lower RSME indicates a 
reduced disparity between the two data sets. The Ground 
Sample Distance (GSD) represents the spatial resolution 
of the orthoimage. A lower GSD value signifies higher 
spatial resolution and more visible details. The DEM 
resolution denotes the area on the ground being 
represented by one image pixel; a lower resolution value 
indicates higher accuracy. 

 

Table 4. Precision measures 
 MATLAB OpenCV Agisoft 

MP 
No 
calibration 

𝐑𝐌𝐒𝐄 𝐱𝐲 (m) 0.0964 0.1346 0.0818 0.2004 
𝐑𝐌𝐒𝐄 𝐳 (m) 0.0230 0.0428 0.0142 0.2290 
Reprojection 
error (pix) 

0.79 0.14 1.21 2.18 

Orthoimage 
resolution 
(GSD)(cm/pix) 

4.74 4.74 4.72 4.74 

DEM resolution 
(cm/pix) 

9.48 9.48 9.69 9.48 

 

The accuracy measure (RMSE) of the 
photogrammetric products is an external measure of the 
accuracy of the estimated calibration parameters. Self-
calibration (Agisoft MP) produces the least horizontal 
RMSE of 8.2 cm, followed by MATLAB with 9.6 cm, 
OpenCV with 13.5 cm, and the highest is 20 cm for "No 
calibration". The vertical RMSE is 1.4 cm for self-
calibration, 2.3 cm for MATLAB, 4.3 for OpenCV and 22.9 
for "No calibration". Based on RMSE, self-calibration 
gives the best results, followed by MATLAB and OpenCV. 
This demonstrates that different calibration techniques 
impact photogrammetric processing results differently. 
"No calibration", that is, assuming that the lens and 
sensor are in perfect condition, yields the highest RMSE.  
To acquire the best results, the calibration technique 
should be selected carefully.  The results of this study are 
comparable to the results of existing research conducted 
by Duran and Atik [24]. Duran's study compared camera 
calibration results using various photogrammetric 
software, namely Agisoft Lens, Photomodeler, 3D Flow 
Zephyr and MATLAB. Data was collected using a Nikon 
D800 camera.  Agisoft Lens was then used to generate a 
3D model using the computed interior orientation 
parameters. The RMSE (3D) was computed at 7 check 
points as 7.7 cm, 41.2 cm, 45 cm and 90.9 cm for Agisoft 
Lens, Photomodeler, 3D F Zephyr and MATLAB. The 3D RMSE 
obtained using interior orientation parameters 
computed using Agisoft MP and Agisoft Lens are 
comparable. 

The spatial resolution of the orthoimage and DEM is 
4.7 cm and 9–10 cm, respectively, suggesting that the 
deviation in the camera calibration parameters has no 
significant effect on the spatial resolution (GSD) of the 
photogrammetric products, but the geometric accuracy 
(RMSE). In addition to camera focal length, which varies 
slightly for this study, spatial resolution depends on the 
flight height and sensor width, which are constant for this 
study. This may explain the resulting minimal variation 
in the spatial resolution of the photogrammetric 
products. We note that various parameters affect the 
accuracy of photogrammetric products, including front 
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and side overlaps, GCPs and image processing software. 
This investigation used the same dataset for 
photogrammetric processing; therefore, these 
parameters remained consistent. 

Zhang's technique demonstrates higher performance 
based on the internal accuracy measure (RE), while self-
calibration performs better based on the external 
measures (RMSE) of accuracy. The cause of this 
discrepancy was not investigated in this study. 

 

 
Figure 12. Orthoimage 
 

 
Figure 13. Digital elevation model 

 
4. Conclusion and recommendation 

 

This study was done to determine the effect of various 
camera calibration approaches on the accuracy of 
photogrammetric products, specifically orthophoto and 
DEM.  Two calibration approaches (Zhang's and 
Brown's) were used to estimate calibration parameters 
in MATLAB, OpenCV and Agisoft MP software packages. 
The study's findings show that the calibration 
approaches and software produced different outcomes. 
Brown's self-calibration approach, implemented in 
Agisoft MP, achieved the best horizontal (8.2 cm) and 
vertical (1.4 cm) RMSE. The results show that camera 
calibration parameters substantially affect the geometric 
accuracy of photogrammetric products. Horizontal 
accuracy improved by 12 cm, and vertical accuracy 
increased by 22 cm. This means that camera calibration 
improved the geometric accuracy of the 
photogrammetric products by 60% horizontally and 
96% vertically. The comparison of accuracy between 
self-calibration and "no calibration" derived camera 
parameters emphasises the need for camera calibration 
to optimise the accuracy of derived photogrammetric 
products. This underscores the importance of camera 
calibration in executing UAV surveys using non-metric 
consumer-grade cameras.  The results achieved in this 

study are confined to the DJI FC220 camera and the scope of 
this study. 

The study deployed Zhang's and brown's calibration 
models to compute calibration parameters and Agisoft 
MP software to generate the photogrammetric mapping 
products. It is recommended that various calibration 
models, photogrammetric software, and other non-
metric UAV cameras be examined, as they are routinely 
used for geospatial data acquisition. Further examination 
of the mathematical models is necessary to determine 
the cause of variances in MATLAB and OpenCV's 
reprojection errors. Brown's self-calibration approach 
produced a lower RMSE than Zhang's approach, and the 
vice versa is true for the reprojection error; future 
research may study the reasons behind this. The 
influence of varying flying heights on calibration 
parameters and mapping accuracy was not in the scope 
of this study, but it may be worth investigating. 
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