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Asymptotic Analysis of an Affine Transformation in the Supply of Missing Data 
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ABSTRACT 

Supply of missing data, also known as inpainting, is an important application of image processing. Wavelets 
are commonly used for inpainting algorithms.  Shearlet transform which is an affine transformation is the 
improvement of the wavelet transform. An asymptotic analysis may help to evaluate the performance of an 
algorithm. In this article we compare the asymptotical analysis for wavelet and shearlet transforms in the 
case of inpainting where the missing data is shaped like a rectangle. 
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1. INTRODUCTION 

Efficient representation of multidimensional data 
is an important issue which is an active research 
area [1-4]. Among these studies, Shearlet 
transform, introduced in 2006 by Guo et al., is a 
mathematical transform obtained as an extension 
of wavelets which is well-known as a good 
representation of one-dimensional data. [5,6] One 
of the most valuable properties of shearlets is that 
in order to control directional selectivity, it has the 
shearing parameter instead of the direction 
parameter in the curvelets. Due to this difference, 
shearlet transform can be represented by only one 
or a finite number of generator functions. That is 
why it presents optimal sparse representation for 
the multidimensional data. Besides, we can use 
shearlets for functions with finite support, and 
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because of this transformation, we can obtain 
fast/superfast and effective algorithms. [10-14] 
 
Inpainting problem is an inverse problem which is 
mainly concerned with finding some missing data 
in a signal or image. Missing data issue is a 
common problem in real life, and inpainting has 
many application areas: removing scratches or 
unwanted overlaid texts and graphics from old 
photos, or in general any image, etc.  

Some of the recent publications are as following: 
In [15], Häuser and Ma uses a shearlet based 
algorithm to recover missing data from seismic 
data. In [16], King et al. studied data separation 
and reconstruction by using clustered sparsity. In 
[17], King, Kutyniok, and Zhuang examined 
inpainting problem via clustered sparsity and 
showed an asymptotic analysis for the issue 
presented in [15]. In [18], King et al. considered 
the inpainting problem with missing data having 
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different shapes except for horizontally positioned 
rectangle shape; but they did not show an 
asymptotic analysis. In this article we consider the 
inpainting problem which has missing data in a 
horizontally positioned rectangle shape and 
presents an asymptotic analysis for wavelet and 
shearlet transforms for this particular case. [19] 

In Section 2 we give brief information on the 
theory of wavelets and shearlets. In Section 3 we 
introduce basic definitions and theorems which 
will be used for asymptotic analysis along with 
reconstruction model. In Section 4 we do the 
asymptotic analysis of the shearlet transform used 
for the particular inpainting problem described in 
Section 3. 

2.  PRELIMINARIES 

2.1. Wavelet Transform 

For 2-D wavelets let � ∈ ��(ℝ�). Let the continuous 
affine systems of ��(ℝ�) be defined as ��,� =

����
�� � = |det �|

�

����(−�)�: (�, �) ∈ � × ℝ�. ���(ℝ) is 
the group of invertible matrices and let � be a 
subset of it. Here �� is the dilation operator on 

��(ℝ�) determined by ���(�)= |det �|�
�

� �(����), � ∈

���(ℝ). �� is the translation operator on ��(ℝ�), 
defined by ���(�) = �(� − �), � ∈ ℝ�. Any � ∈ ��(ℝ�) 
can be recovered from its coefficients �〈�, ��,�〉�

�,�
. 

Therefore, one needs to discover requirements on 
γ. We explain a group structure like (�, �). (� ′, �′) =

(�� ′, � + ��′) to determine this. This group is said 
to be affine group on ℝ�. It is denoted by �� [20]. 
     
Theorem 2.1. Let �� be a left Haar measure of �� 

and �� be a left invariant Haar measure on � ⊂

���(ℝ). Moreover, suppose that � ∈ ��(ℝ�) satisfies 
the admissibility condition 

∫ |��(���)|�|����|
�

��(�) = 1.  Then any function � ∈

��(ℝ�) can be recovered via the reproducing 

formula � = ∫ 〈�, ��,� 〉��,���(�, �)
��

 explained 

weakly.  
 
When the hypothesis of the above theorem are 
satisfied, � ∈ ��(ℝ�) is called a continuous wavelet. 
Thus, ��(ℝ�) ∋ � → ���(�, �) = 〈�, ��,� 〉 is defined 
to be the Continuous Wavelet Transform. 

2.2. Shearlet Transform 

Shearlets has arisen in late times by various 
powerful applications. [21-24] shows some of the 

associated work. For produce waveforms with 
anisotropic support is required the scaling 
operator. Suppose that dilation operator like in 
wavelets. We will use the dilation operators 
���

, � > 0, related to parabolic scaling matrices 

�� = �
� 0

0 √�
�.  The orientations of the waveforms 

can be changed by an orthogonal transformation. 
We select the shearing operator ���

, � ∈  ℝ, where 

the shearing matrix �� is given by �� = �
1 �
0 1

� for 

orthogonal transformation. The shearing matrix 
uses variable c associated with the slopes. Lastly, 
�� is used for the translation operator. Thus, 
continuous shearlet system ��(�) can be defined 
by combining these 3 operators for � ∈ ��(ℝ�): 
��(�) = ���,�,� = �����

���
�: � > 0, � ∈  ℝ, � ∈  ℝ� �. 

3.  BASIC DEFINITIONS AND THEOREMS 

In this section, we introduce some fundamental 
definitions and theorems which will be used later. 
Meyer wavelet function will be used for wavelet 
transformation. Auxilliary function � ∈ ��(ℝ) 
which satisfies �(∙) + �(1 −∙) = �ℝ(∙) to form Meyer 
wavelet function is defined as 
 

 �(�) = �
0 ,                  � ≤ 0
� ,         0 < � < 1
1,                   � ≥ 1

 .                                            (1) 

 
Indicator function �ℝ(∙) is defined as ��(�) =

�
1,       � ∈ �
0,      � ∈ �� . Meyer wavelet �(�) is defined as 

 

�(�) =

⎩
⎪
⎨

⎪
⎧

1

√2�
sin �

�

�
� �

�|�|

��
− 1�� ��� �⁄  , 2π 3⁄ < |�| < 4π 3⁄

�

√2�
cos �

�

�
� �

�|�|

��
− 1�� ��� �⁄  , 4π 3⁄ < |�| < 8π 3⁄

0,                                                         otherw�se

(2) 

 
Fourier transformation of 1-D Meyer wavelet 
function is then 
  

�(�) =

⎩
⎨

⎧ �����sin �
�

2
�(3|�| − 1)�  , 1 3⁄ ≤ � ≤ 2 3⁄

�����cos �
�

2
� �

3

2
|�| − 1�� , 2 3⁄ ≤ � ≤ 4 3⁄

0,                                              otherw�se

     (3) 

 
1-D Meyer scaling function is 
  

�(�) =

⎩
⎪
⎨

⎪
⎧

�

√2�
 ,                                        |�| < 2π 3⁄

�

√2�
cos �

�

2
� �

3|�|

2�
− 1�� ��� �⁄  , 2π 3⁄ < |�| < 4π 3⁄

0,                                             otherw�se.

(4) 

 
Fourier transformation of 1-D Meyer scaling 
function is  
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��(�)   = �

1,                             |�| ≤
1

3

cos �
�

2
�(3|�| − 1)� ,       

1

3
≤ |�| ≤

2

3
 

     0,                                  otherwise.

                (5) 

 
Fourier transformation for � ∈ ��(ℝ�) is ℱ� ≔ �� =

∫ �(�)�����〈∙,�〉��
ℝ� . Here, 〈∙,∙〉 stands for standard 

Euclidian inner product. Inverse Fourier 
transformation is defined as ℱ��� ≔ �� =

∫ �(�)�����〈∙,�〉��
ℝ� . When ��  stands for wavelet 

function to investigate horizontal mask case, 
function �� ∈ �� ∩ ��(ℝ�) is defined as ��(�) =

�(��)��(��). Orthonormal Meyer wavelet system is 
defined as {��}: � = (�, �, �), � ∈ {ℎ, �, �}, � ∈ ℤ, � ∈ ℤ� 
and function ���(�) is defined as ���(�) =

2����(� 2�⁄ )������� ��⁄ ,     � = (�, �, �). Parabolic 
scaling matrix ��

�  and shear matrix ��
� are defined 

as  ��
� = �

� 0
0 √�

� and ��
� = �

1 �
0 1

�. Shearlet function 

��� is defined as ���(��, ��) = �(��)� �
��

��
�. Function 

� ∈ ��(ℝ) satisfies �� ∈ ��(ℝ), ������ ⊆ [−1,1] and 
∑ ���(� + ��)�

��
���� = 1, � ∈ [−1,1]. Notation ��� is 

defined as ��� = 2�� �⁄ ����ℓ
��

��
� ∙ −��, � =

(�, �, �, ℓ). Here, � ∈ {ℎ, �}, � ∈ ℤ, � ∈ ℤ�, ℓ ∈ ℤ. In this 
case shearlet system can be defined as  {�(∙ −�): � ∈

ℤ�} ∪ ���: � ∈ {ℎ, �}, � ∈ ℤ, � ≥ 0, � ∈ ��, and ℓ ∈ ℤ, |ℓ| ≤

�2� �⁄ � �. Here, ⌈�⌉ stands for an integer larger than or 
equal to �. 

3.1. Reconstruction Model 

Modeling the reconstruction stage is highly 
important. To do so, let ℋ stand for Hilbert space, 
ℋ� stand for the lost part and ℋ� stand for the 
known part. Then we can write  ℋ = ℋ�⨁ℋ�. For 
a given signal �� ∈ ℋ,  the unknown part of �� will 
be in the subspace ℋ� and the known part of �� 
will be in the subspace ℋ�. �� and �� show 
corresponding orthogonal projection 
transformations for these subspaces. In this case 
recovery problem is formulated as recovering �� 
from the known ����. To do so, iterative 
thresholding will be used. During inpainting 
applications, recovered image sequences ����

�
 will 

be obtained by ����
�

= ���� ℳ�⁄ �ℒ��
�
. Thresholding 

determination stage is done as follows: For 
thresholding value �� at level �, we consider the set  
�� = ��: �〈��, ��〉� ≥ ��� and apply iterative 
thresholding. In this case, recovered image at level 
� is obtained as �� = Φ���

Φ∗�ℒ�. Vectors Φ = {��}�∈� 

in ℋ generates a Parseval frame for ℋ if for every 
� ∈ ℋ,   ∑ |〈�, ��〉|�

�∈� = ‖�‖�.  
 

Definition 3.1. [17] If Φ is a Parseval frame and Λ 
is an index set of coefficients, then the 
concentration is defined on ℋ� via � = �(Λ, ℋ�) =

sup
�∈ℋ�

‖���∗�‖�

‖�∗�‖�
.  

 
Definition 3.2. [17] Let Φ� = {���}�∈� and Φ� =

�����
�∈�

 be in ℋ. Let  Λ ⊆ �. Then the cluster 

coherence ��(Λ, Φ�; Φ�) of Φ� and Φ� with respect 
to Λ can be defined by ��(Λ, Φ�; Φ�) =

 ���
�∈�

∑ �〈���, ���〉��∈Λ . 

 

Lemma 3.1. [17] The relation between the 
concentration �(Λ, ℋ�) and cluster coherence �� 
can be obtained like that �(Λ, ℋ�) ≤
��(Λ, ��Φ ; ��Φ ) = ��(Λ, ��Φ ; Φ ). 
 

Lemma 3.2. [17] Let x∗ and � be computed by the 
horizontal mask algorithm when δ > 0. Consider 
that x� is relatively sparse in Φ with respect to �. 
Then ‖�∗ − ��‖� ≤ �[� + ‖���∗����‖�].   
 
Let �: ℝ → [0,1] be a smooth function having finite 
support in [−ρ,ρ]. Let � show the real image and 
�ℒ show the recovered image. We can use the 
following relation to see the effect of  �ℒ on the 
recovery model: 〈�ℒ, �〉 = ∫ �(��)�(0, ��)���

�

��
. 

Here, 2� corresponds to the height of the horizontal 
rectangle (See Figure 4.1). Fourier transformation 
of �ℒ is defined as 〈�ℒ� , �〉 = 〈�ℒ, ��〉 =

∫ �(��) ∫ �(��, ��)���ℝ
���ℝ

. Let ��� be the filter 

corresponding to 2-D Meyer wavelet function and 
shearlet function at level �. Fourier transformation 
of this filter is defined as �� = ∑ ��(2���)�∈{�,�,�} . The 
filter of �ℒ is denoted as �ℒ�. Thus, we obtain 

�ℒ� = �ℒ ⋆ ��� = ∫ �ℒ(∙ −�) ���(�)��
�� . This equation 

corresponds to cros-correlation. The lemma below 
lets us to evaluate norm of �ℒ�. 

 
Lemma 3.3. [17] For any � > 0,  ��ℒ��

�
≥ �2� �⁄  is 

obtained as � → ∞. 

4. ASYMPTOTIC ANALYSIS OF 
HORIZONTAL MASK APPLICATION 

To get precise error analysis, we first apply a mask 
function to an image so that some parts of the data 
is missing. 
Let the function ℳ�(��, ��) = �{|��|��} be horizontal 
mask function with height 2ℎ. The mask function 
ℳ� is shown in Figure 4.1.   
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Figure 4.1 The image of horizontal mask function ℳ� 

Lemma 4.1. Fourier transformation ℳ�
� of the 

horizontal mask function ℳ� can be written as 
ℳ�

� = 2ℎsinc(2ℎ��)�(��).   
 
Proof. The horizontal mask function ℳ� can be 
described by the Heaviside function as ℳ� =

��(��, ��) + (0, ℎ)� − ��(��, ��) − (0, ℎ)�. From this 
equality, Fourier transformation ℳ�

� of the 
horizontal mask function ℳ� can be written as 
explicitly 

ℳ�
� = �������� − ���������(2����)�� � ������������

�

��

 

                                = 2 sin(2�ℎ��) (2���)⁄ � ������������

�

��

= 2ℎsinc(2ℎ��) � ������������

�

��

        

                             = 2ℎsinc(2ℎ��)�(��).                         (6) 
 
We can represent the optimal �-clustered sparsity 
by �� for filtered coefficients. Thresholding 
schemes will analyzed by �� = ∑ �〈�ℒ�, Ψ�〉��∈��

�  

where the �� coefficients are obtained in the 
thresholding algorithm. The inpainting achieved 
on the filtered levels � will be denoted by ��. Here, 
we will denote the real filtered image by �ℒ�; that 
is, �ℒ ⋆ ���, where we will denote the original image 
by ℒ. Thus, the basic theorems will show that 
�����ℒ��

�

��ℒ��
�

→ 0, � → ∞. Here, the asymptotic behavior 

of the gap ℎ� is important for these results. 
 
Lemma 4.2. [17] For � → ∞ and ℎ� = �(2��), 
thresholding values ����

�
 exist such that for � ≥ ��,  

��: |��| ≤ �2�(����), |��| ≤ �2���� ⊆ ��  holds. 
 
Lemma 4.3. [17] For  � → ∞ we obtain �� =

 ∑ �〈�ℒ�, Ψ�〉� �∈��
� = � ���ℒ��

�
�. 

 
Lemma 4.4. For � → ∞ and ℎ� = �(2��) we obtain 

∑ �〈ℳ��
�ℒ�, Ψ�〉��∈��

= ��2� �⁄ �. 

 

Proof. First let us evaluate the term 
�〈ℳ��

�ℒ�, Ψ�〉�.  Let   �� be the inverse Fourier 

transformation of ��. From the cross-correlation 
theorem and the property ��(�) = ��(−�), we have 
〈ℳ�

� ⋆ ��ℒ�, Ψ��〉 = 〈ℳ��ℒ�, Ψ�〉. Thus we obtain 
〈ℳ��ℒ�, Ψ�〉 = 〈ℳ��� ⋆ �ℒ, Ψ�〉 = 〈ℳ��ℒ, �� ⋆ Ψ�〉 =

〈ℳ�
� ⋆ ��ℒ, ��Ψ��〉.  For filter functions we get 

��ℒ�(�) = ��ℒ(�)��(�) = ��ℒ(�) �(� 2�⁄ ). 

Function Ψ�� can be written as Ψ�� =

2����(� 2�⁄ )�����〈�,� ��⁄ 〉. 
We then obtain 
 
〈ℳ��

�ℒ�, Ψ�〉 = 〈ℳ�
��

⋆ ��ℒ�, Ψ��〉   

= 2ℎ� � sinc�2ℎ���� � ��(��)

ℝ�

�Ψ������(0, ��)

ℝ�

+ (��, ��)������  

= 2ℎ� � ���(��) � sinc�2ℎ�����(��, (�� + ��) 2�⁄ )

ℝℝ

×  ��(��, (�� + ��) 2�⁄ ) �����〈��,(�����) ��⁄ 〉������� 

� �����〈��,��〉���.                                                                         (7) 

 
From here, we get 
 
��(��) =

∫ ��(��)2ℎ� ∫ sinc�2ℎ�����(��, (�� + ��) 2�⁄ )
ℝℝ

×

 �����, (�� + ��) 2�⁄ ������〈��/��,(�����)〉������ =

∫ ��(��)����
(��)�����〈��/��,��〉���ℝ

                                  (8) 
 

and 

����
(��) = 2ℎ� � sinc�2ℎ��������, (�� + ��) 2�⁄ �

ℝ

  

× �����, (�� + ��) 2�⁄ ������〈��,(�����) ��⁄ 〉���.               (9) 

 
Finite support of function �� will be the set [1 2⁄ , 2]. 

From this, we obtain �〈ℳ��
�ℒ�, Ψ�〉� ≤

�������
�

〈|��|〉��� . By Plancherel theorem and � 

having finite support, we obtain  
 
�∫ ��(��)

�
����

(��)�����〈��/��,��〉���� = ��������
�

�
� �−�� 2�⁄ � =

��� ⋆ ���
��−�� 2�⁄ �� = �∫ ��−�� 2�⁄ − �����

(�) ��� ≈

� �∫ ���
(�)��

��� ��⁄ ��

��� ��⁄ ��
�              (10) 

 
By using basic properties of Fourier 
transformation and cross-correlation theorem, we 
can write ���

 as follows: 

���
(�) = ��2ℎ�sinc�2ℎ� ∙�������� ��⁄ ∙�

⋆ �������, ∙ 2�⁄ ���
�

(−�) 

1547Sakarya University Journal of Science, 22 (6), 1544-1551, 2018.



"Hülya Kodal Sevindir, Cüneyt Yazıcı, Süleyman Çetinkaya
Asymptotic analysis of shearlet transfom for inpainting…"

 

= �2ℎ�sinc(2ℎ� ∙)������� ��∙⁄ �
�

(−�)          

�(���)���, ∙ 2�⁄ ��
�

(−�) 

= �����,����−� − �� 2�⁄ � �(���)���, ∙ 2�⁄ ��
�

(−�)     (11) 

 

From here, when ℎ� < �, we obtain 
 

�∫ ���
(�)��

��� ��⁄ ��

��� ��⁄ ��
� =

� �∫ �(���)���, ∙ 2�⁄ ��
�

(�)��
�� ��⁄ ���

�� ��⁄ ���
� =

� �∫ �(���)�(��,∙)��
�

(�)��
�������

�������
�.                (12) 

 
Thus by considering |(���)(|(∙,∙)|)�(�)| ≤ �〈|�|〉���, 
we obtain  
 
����

�
≤ � 〈min���� − 2�ℎ��, ��� + 2�ℎ���〉���.          (13) 

 
Combining all these considerations, we obtain 

�〈ℳ��
�ℒ�, Ψ�〉� ≤ �〈|��|〉��� 〈min���� − 2�ℎ��, ��� +

2�ℎ���〉��� . By using Lemma 4.2, as a result we 
obtain 
 
∑ �〈ℳ��

�ℒ�, Ψ�〉��∈��
≤ � ∑ 〈|��|〉��� 〈min���� −�∈��

2�ℎ��, ��� + 2�ℎ���〉��� ≤ �             (14) 

 
Expected convergence for normalized error ℓ� of 
reconstructed filter �� can be obtained using 
iterative method via wavelet transformation by the 
following theorem. 
 
Theorem 4.1. Consider 2-D Meyer orthonormal 
system Φ with the filter �� for ℎ� = �(2��). Then  
�����ℒ��

�

��ℒ��
�

→ 0, � → ∞ holds. 

 
Proof. By letting �∗ = �� and �� = �ℒ� in the 
Lemma 3.2, we obtain 
 
��� − �ℒ��

�
= �Φ���Φ∗ ���ℒ� − Φ��Φ∗ ���ℒ��

�
=

�∑ �〈�ℒ�, Ψ�〉� �∈��
� − ∑ �〈ℳ��

�ℒ�, Ψ�〉��∈��
�

�
≤

�∑ �〈�ℒ�, Ψ�〉� �∈��
� �

�
+ �∑ �〈ℳ��

�ℒ�, Ψ�〉��∈��
�

�
<

� ���ℒ��
�

��������
Lemma 4.3

+ �2� �⁄���
Lemma 4.4

          (15) 

 
From Lemma 3.3, we obtain 
  
�����ℒ��

�

��ℒ��
�

<
����ℒ��

�
�

��ℒ��
�

+ ��2�� �⁄ → 0, � → ∞              (16) 

 
Similar to the wavelet transformation case above, 
expected convergence for normalized error ℓ� of 

reconstructed filter �� can be obtained by the 
following steps: We consider the set �� ≔ �� =

(�; �, ℓ, �): �〈�ℒ�, ��〉� ≥ ��� of coefficients of 
thresholding values for �� > 0. 
 
Lemma 4.5. [17] For all � ≥ �� and for some values 
��,  �� and �� < 1 4⁄ , thresholding coefficients ����

�
 

exist as follows: �(�; �, ℓ, �): |��| ≤ �2�(����), |��| ≤

�2���, ℓ = 0; � = �� ⊆ ��. For ℎ� = �(2�� �⁄ )  when � →

∞.  
 
Lemma 4.6. [17]  When � → ∞, we obtain  
∑ �〈�ℒ�, ��〉��∈��

� = ��2� �⁄ � 

 
Lemma 4.7. When � → ∞ for ℎ� = ��2�� �⁄ �, we 

obtain ∑ �〈ℳ��
�ℒ�, ��〉��∈��

� = ��2� �⁄ �, � → ∞. 

 

Proof. First, evaluation of �〈ℳ��
�ℒ�, ��,ℓ,�

� 〉� is 

needed. Similar to the proof of Lemma 4.4, by 
using definitions of ℳ��

, �ℒ�, ��,ℓ,�
� , and cross-

correlation theorem, we obtain  
 
〈ℳ��

�ℒ�, ��,ℓ,�
� 〉

= 2� �⁄ � �� ��(��)2ℎ� � sinc�2ℎ���� � ���,
��

2�
�

× ����, �� 2�⁄ �� �ℓ + 2�� �⁄ �� + ��

��

� 

× �������(�����)������� 

× �����〈��,����〉���                                                          (17) 
 
The function �� is defined as 
   

��(��) = ∫ ��(��)2ℎ� ∫ sinc�2ℎ���� � ���,
��

2�� ����, �� 2�⁄ �  

� �ℓ + 2�� �⁄ �����

��
� × �����〈��,�����〉������                 (18) 

 
This function has finite support on the set [1 2⁄ , 2].  

From here, we obtain �〈ℳ��
�ℒ�, ��,ℓ,�

� 〉� ≤

���
2� �⁄ ����

�
〈|��|〉���. The function ����

 is defined as 

 
����

(��) = 2ℎ� ∫ sinc�2ℎ���� ����, ��/

2������, �� 2�⁄ � � �ℓ + 2�� �⁄ �����

��
� × �����〈��,�����〉���               

   (19) 
 
Let us investigate the norm ����

�
: 

 
 ����

�
= �∫ ��(��)����

(��)�����〈��,��〉����                 (20) 

 
By using Plancherel theorem and � having finite 
support, we obtain  
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�∫ ��(��)����
(��)�����〈��,��〉���� = ��������

�
�

(−��)� ≈

� �∫ ���
(�)��

�����

�����
�                                                       (21) 

 
From here, we obtain 
 

���
(�) = ��2ℎ� sinc�2ℎ� ∙� �������� ⋆

�����, ∙ 2�⁄ �����, ∙ 2�⁄ �� �ℓ + 2�� �⁄ (∙ ��⁄ )���

�

(−�) =

�2ℎ� sinc�2ℎ� ∙� ��������
�

(−�) ×

�����, ∙ 2�⁄ �����, ∙ 2�⁄ �� �+2�� �⁄ (∙ ��⁄ )��
�

(−�) =

�����,���(−� − ��) × �����, ∙ 2�⁄ �����, ∙ 2�⁄ �� �ℓ +

2�� �⁄ (∙ ��⁄ )��
�

(−�)               (22) 

 
Thus when ℎ� < �, we obtain 
  

�∫ ���
(�)��

�����

�����
�  =

�∫ �����, ∙ 2�⁄ �����, ∙ 2� �⁄⁄ �� �ℓ +
�����

�����

2�� �⁄ (∙ ��⁄ )��
�

(−�)��� =

�∫ �����, ∙ 2� �⁄⁄ �����, ∙ 2� �⁄⁄ � × ��ℓ +
�� �⁄ �������

�� �⁄ �������

(∙ ��⁄ )��
�

(−�)���                     (23) 

 
and when (�, ℓ) ∈ ��, we obtain 
 

�∫ ���
(�)��

�����

�����
� =

�∫ �����, ∙ 2� �⁄⁄ �����, ∙ 2� �⁄⁄ � × ��ℓ +
����� �⁄ ��

����� �⁄ ��

(∙ ��⁄ )��
�

(−�)���                   (24) 

 
From here considering the evaluation 
 

������, ∙ 2� �⁄⁄ ����
1
, ∙ 2� 2⁄⁄ ���ℓ + (∙ ��⁄ )��

�
(−�)� ≤

�〈|�|〉���                                                                         (25) 
 
from previous calculations, we obtain 
 
����

�
≤ � 〈m�n���� − 2� �⁄ ℎ��, ��� + 2� �⁄ ℎ���〉���       (26) 

 
By combining all these evaluations, we obtain 
 
�〈ℳ��

�ℒ�, ��,ℓ,�
� 〉� ≤ c2� �⁄

〈|��|〉��� 〈m�n ���� − 2� �⁄
ℎ�� , ��� +

2� �⁄
ℎ���〉���                                                                              (27) 

 
Thus finally when �� < 1 4⁄  from Lemma 4.5, we 
obtain 
 

1

�
� �〈ℳ��

�ℒ�, ��〉�

�∈��

 

≤ 2� �⁄
∑ 〈|��|〉��� 〈m�n ���� − 2� �⁄

ℎ�� , ��� +�∈��

2� �⁄
ℎ���〉��� ≤ 2�(� �⁄ ���)

                                               (28)  

 
As in the wavelet transformation case above, 
expected convergence for normalized error ℓ� of 
reconstructed filter �� can be obtained using 
iterative method via shearlet transformation by the 
following theorem.  
 
Teorem 4.2. Consider filter �� for ℎ� = �(2�� �⁄ )  
with 2-D shearlet system Φ. Then  
 
�����ℒ��

�

��ℒ��
�

→ 0, � → ∞ holds. 

 
Proof. Similarly by letting �∗ = �� and �� = �ℒ� in 
the Lemma 3.2, we obtain  
 
��� − �ℒ��

�
  = �Φ���Φ∗ ���ℒ� − Φ��Φ∗ ���ℒ��

�
=

�∑ �〈�ℒ�, ��〉��∈��
� − ∑ �〈ℳ��

�ℒ�, ��〉��∈��
� �

�
≤

�∑ �〈�ℒ�, ��〉��∈��
� �

�
+ �∑ �〈ℳ��

�ℒ�, ��〉��∈��
� �

�
<

��2� �⁄ ������
����� �.�

+ ��2� �⁄ ������
����� �.�

                    (29) 

 
From Lemma 3.3, we obtain 
 
�����ℒ��

�

��ℒ��
�

<
��2� �⁄

�

��ℒ��
�

+
��2� �⁄

�

��ℒ��
�

→ 0,    � → ∞                      (30) 

 
Thus, we prove that the image can be reconstructed 
well asymptotically, when the height of the 
horizontal mask decays faster than 2�� �⁄ .  

5. CONCLUSION 

In this paper, we show the asymptotic analysis of 
wavelet and shearlet transforms used for the 
inpainting where the missing data have a 
horizontal rectangle shape. As a conclusion, we 
found out that the shearlet transformation is more 
effective for the problem discussed than the 
wavelet transform. If the height of the horizontal 
mask decays faster than 2�� �⁄ , we proved that the 
image can be reconstructed asymptotically.  
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