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Abstract  

The architectural heritage digital model is important for high-accuracy documentation, archive security, and 
research opportunities. This study focuses on the autonomous documentation of the digital model of Fatih 
Mosque’s facade elements. Fatih Mosque literature focuses on its restoration process, historical importance, and 
architectural values. The literature on the documentation of the mosque with current technological methods is 
limited. This study applies semantic segmentation on point-cloud data to detect facade elements. Point-cloud 
data was produced via photogrammetry from the southwest and northwest facades. The data was labeled with 
masonry wall, main load-bearing wall, column, window, entrance, staircase, arch, and spouts. CANUPO classifier 
in CloudCompare software is used for semantic segmentation. Changing the classification parameters in CANUPO 
increased the accuracy rate in predicting facade elements. This study contributes to the literature by providing 
autonomous documentation of the Fatih Mosque’s facade and a guide for using the CANUPO classifier in digital 
model production. 

Keywords: Heritage digital models, point-cloud, semantic segmentation, photogrammetry, Fatih Mosque.  

İstanbul Fatih Camii'nin Nokta Bulutu Semantik Segmentasyonu  

Öz  

Mimari mirasın sayısal modellerinin üretilmesi, yüksek doğrulukta belgeleme, arşiv güvenliği, güncel yöntemlerle 
araştırma olanakları bakımından önemlidir. Bu çalışma Fatih Cami'nin cephe elemanlarının sayısal modellerinin 
otonom belgelenmesi sürecine odaklanmaktadır. Fatih Cami literatürü, caminin restorasyonu, tarihi önemi ve 
mimari değerleri konularını içermektedir. Caminin güncel teknolojik yöntemlerle belgelenmesi konusundaki 
literatür oldukça kısıtlıdır. Bu çalışmada Fatih Cami yapı elemanlarının otonom tespiti için nokta bulutu verisi ile 
anlamsal segmentasyon uygulanmıştır. Fatih Cami nokta bulutu verisi, caminin güneybatı ve kuzeybatı 
cephelerinden fotogrametri tekniği ile üretilmiştir. Nokta bulutu verisi, yığma duvar, ana taşıyıcı duvar, sütun, 
pencere, giriş kapısı, merdiven, kemer ve yağmur suyu oluğu yapı elemanları ile etiketlenmiştir. Anlamsal 
segmentasyon için CloudCompare yazılımındaki CANUPO sınıflandırıcı aracı kullanılmıştır. CANUPO ile 
sınıflandırma parametreleri düzenlenerek, farklı yapı elemanlarının tahminindeki doğruluk oranı arttırılabilmiştir. 
Bu çalışma hem Fatih Cami’nin cephe elemanlarının otonom belgelenmesi ile, hem de sayısal model üretiminde 
CANUPO sınıflandırıcı kullanımı için bir rehber niteliği oluşturarak literatüre katkı sağlamaktadır. 

Anahtar kelimeler: Sayısal miras modelleri, nokta bulutu, anlamsal bölütleme, fotogrametri, Fatih Cami. 
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1. Introduction 

Heritage building preservation is a universal topic essential for preserving cities’ cultural identities and 
heritage assets. Heritage buildings also referred to as historical buildings, are irreplaceable structures 
that resemble events and stories of past generations (Penjor et al., 2024). Once lost, the portrayed 
identity and stories cannot be recovered (Solla et al., 2020). Therefore, regular assessments of heritage 
buildings are essential for their protection and conservation (Stober et al., 2018).  

Assessing heritage structures requires surveyors' intervention to conduct research and site surveys by 
analyzing the building’s condition through literature, historical records, and archives (Kuban, 2000). 
Hand-drawn survey drawings are produced upon conventional measuring tools such as tape measures, 
compasses, and leveling instruments (Karakus, 2020). With the advances of technology in heritage 
documentation, photographs started to be used for architectural documentation to manually gather 
visual data on the building’s materials, size, and textures (Karakus, 2020; Korumaz & Dülgerler, 2011). 
Because using conventional methods for documentation is a tedious and time-consuming method, 
heritage building documentation is hard to manage manually (Baik, 2017). Recent methodologies 
utilizing digital three-dimensional (3D) representations of heritage buildings are essential to surpass 
the issues in conventional methods (Champion & Rahaman, 2019; Ergin, 2023). Digital heritage models 
represent existing historical buildings, which is a reliable data source that can be edited and shared 
(Grilli & Remondino, 2019; Maiwald et al., 2019). These models can be obtained in the form of meshes 
or point cloud models. Yang et al. (2023), defined point cloud models as 3D space models including 
massive geometric information consisting of points, where each point has its position, color, and 
reflection intensity. As shown in (Figure 1), digital heritage representations play a crucial role in 
heritage preservation, which can be used for documentation, representation, classification of building 
elements, and integration within the heritage building information modeling (HBIM) sector (Baik, 
2017; Costantino et al., 2021; Clini et al., 2024; Martinelli et al., 2023; Nespeca et al., 2024; Shabani et 
al., 2022). 

 

Figure 1. The importance and applications of digital heritage models within the heritage sector (by authors).  
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Moreover, it increases the efficiency of the decision-making process concerning renovation, 
maintenance, and evaluation (Croce et al., 2021; Macher et al., 2017; Pocobelli et al., 2018). Many 
literatures emphasize the importance and need of digital heritage models. Baik (2017) produced a 
digital model of a heritage house in Saudi Arabia, so it can be used in the database where information 
on heritage buildings and what should be restored or removed. Psomadaki et al. (2019), with the help 
of other professionals, focused on producing and documenting multiple heritage structures. Most 
studies on digital heritage are associated with BIM, referred to as Heritage BIM (HBIM). HBIM is a 
branch specialized in replicating heritage buildings and employing these models BIM software 
(Themistocleous et al., 2022).  

More research is needed to represent heritage assets focusing on different architectural languages. 
For historical buildings in Turkey, multiple literature utilized the digitalization of historical buildings. 
Bianchini (2020) analyzed and surveyed the dome of Hagia Sophia by producing a digital point cloud 
model. Kan et al. (2019) used a laser scanner with a panoramic camera to capture the Suleymaniye 
mosque and utilized it in VR tours. For the main gate of Sehzade, Suleymaniye, and Atik Valide 
Mosques, Agirbas et al. (2022) captured the muqarnas ornaments for analysis and semantic 
segmentation. Regarding this literature, the Fatih mosque has received little attention on its 
preservation and digital documentation, even though it is one of Istanbul’s important landmarks. 
Therefore, this study aims to produce a digital record of the Fatih Mosque, built between 1462 and 
1470 and designed by the Architect Atik Sinan. By developing a point cloud model and semantically 
segmenting the Fatih mosque’s façade elements. 

1.1.  Fatih Mosque Historical Significance 

Fatih mosque as shown in (Figure 2), is a UNESCO World Heritage site located in the historical Fatih 
district in Istanbul/ Turkey which was part of a large complex that included schools, kitchens, and 
hospitals, built on a high hill. It was named after the conqueror Fatih Sultan Mehmet II, who conquered 
Istanbul in 1462 making it a remarkable historical monument within the city (Kunter & Ülgen, 1939, p. 
5). 

 
Figure 2. Fatih mosque in Istanbul / Turkey (by authors).   

The historical significance of the Fatih Mosque lies in its original structure, which had distinct Ottoman 
architectural design principles, with the integration of elements suited to evolving styles (Eyice, 1995). 
Unfortunately, multiple devastating earthquakes occurred in Istanbul which resulted in the loss of the 
original mosque. In 1509, an earthquake named the "Little Apocalypse" destroyed big parts of the 
mosque’s main domes and columns’ capitals.  Also, other parts were damaged in the 1557 and 1754 
earthquakes. The biggest damage happened in 1765 when the mosque completely collapsed beyond 
alteration or repair (Kunter & Ülgen, 1939). This led to the rebuilding of the existing mosque which 
started in 1767 and ended in 1771.  

Before, the mosque had an unsymmetrical plan design with a 26-meter-diameter dome and a semi-
dome on one side, with two main spaces an open courtyard, and a prayer hall (Bal et al., 2015). 
According to Vatan (2018), the cause of the original mosque’s collapse is the unsymmetric plan design. 
Now, the current mosque has a symmetrical plan design and exterior layout, with a 19 m dome 
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surrounded by semi-domes on four sides resting on four arches, supported by four pillars which 
provide an equal load distribution system.  

The essence of the classical Ottoman style remained in the mosque’s current style, particularly shown 
in its domes and two minarets, each with three balconies, built from stone and marble. The exterior 
façade element features several wooden entrances, three leading into the open courtyard and another 
three leading to the prayer hall. The design also incorporates a main dome elevated on a higher level, 
rectangular lower windows, pointed arched upper windows, and open courtyards surrounded by 
corridors shaded by small domes. These elements are found in many other mosques across Istanbul, 
highlighting the need to have digital records of the mosque’s building elements for analysis and 
observations.  

Originally, the mosque represented early Ottoman architecture also in its minarets and domes design. 
But it had rectangular and pointed arch windows, along with columns and doorways all arranged in a 
regular layout and harmony. However, the current mosque adopts a simpler and more static style 
influenced by Baroque architecture (Kunter & Ülgen, 1939, p. 9). According to limited literature, the 
mosque was built on the remaining foundations of the ancient Havarion Church from the Byzantine 
era (Ceylan & Ocakcan, 2013; Eyice, 1995). Despite this, the Fatih Mosque had distinct Ottoman 
architectural design elements where no trace of Byzantine art was evident, unlike other mosques in 
Istanbul (Eyice, 1995). 

The main northwestern façade of the current mosque, measured from Google Earth, spans 60 meters. 
It features six lower rectangular windows, six upper pointed arch windows, and a marble entrance that 
leads directly to the courtyard which remained because it wasn’t affected by earthquakes (Kunter & 
Ülgen, 1939, p. 1). The longer facades, the southwest and northeast, each measure 95 meters and 
feature a total of 28 rectangular windows, 17 pointed arch windows, and two wooden entrances that 
lead to the courtyard and prayer hall. On the other hand, the northeastern side has 19 rectangular 
windows and 24 pointed arch windows, but no entrances. This side is inaccessible due to its proximity 
to a graveyard that has the tombs of Sultan Mehmed II and his consort, Gülbahar Hatun. Additionally, 
it faces the domed Carullah Efendi Library. 

Given the historical significance of the mosque, there is limited literature addressing the reasons 
behind its multiple collapses and the methods used for its preservation. (Table 1) highlights key aspects 
from previous studies on the conservation efforts for the Fatih Mosque. 

Table 1. Comparison between the literature conducted on the preservation of the Fatih mosque (by authors) 

Referenced 
Literature  

Year Focus Methodology Findings 

(Vatan, 2018) 2018 
Examined the structural 
system of the domes. 

-Studied construction 
techniques. 
-Analyzed past damages 
records. 

Structural issues were 
reported regarding to 
the asymmetrical design 
of the original plan and 
the thin exterior walls. 

(Akyuz et al., 2015) 2015 
Analyzed the type of 
plaster and mortar used in 
the wall painting. 

Used EDXRF micro-Raman and 
FTIR analyzing techniques. 

Concluded that the 
plaster mortars belong 
to the mixed lime–
gypsum mortar group. 

(Beyen, 2008) 2008 
Identified structural 
problems after the 
earthquake.  

Utilized a digital converter, 
DT-2827 A/D board with 16-
bit A/D converter at a high 
speed of 100 kHz 
accommodating. 

Graphs and records 
were produced on the 
mosque's past, present, 
and future structural 
behavior. 

(Berilgen, 2007) 2007 

Studied the local soil 
condition. 

Predicted the site’s future 
behavior for future 
earthquakes.  

Employed horizontal/vertical 
FAS ratios and bedrock input 
motion to test future 
behaviors. 

Concluded that the soil 
had a significant impact 
on the structural 
damage experienced 
during previous 
earthquakes. 
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Table 1. (Continued) Comparison between the literature conducted on the preservation of the Fatih mosque (by 
authors) 

(Yastıklı & Alkıs, 
2003) 

2003 
Documented the existing 
mosque using close-range 
photogrammetry.  

Took 230 photographs with 
a semi-metric Rolleiflex 6008 
tool. 

A 3D model of the Fatih 
Mosque was created, 
using vector and raster 
data. 

(Kunter & Ülgen, 
1939) 

1939 
Studied the history of the 
mosque and gathered 
valuable information. 

-Analyzed visual and written 
records including drawings 
and manuscripts.  

Found valuable 
information on the old 
mosque structure before 
it collapsed. 

Despite the literature highlighting the Fatih Mosque’s exposure to severe damage over the years, there 
remains a significant gap in the utilization of advanced technologies and research focused on its digital 
documentation and preservation. This gap is due to the loss of the mosque’s original structure, which 
was not properly documented during the rebuilding phase. Therefore, this research aims to address 
two objectives: first, creating a point cloud model for two of the Fatih mosque’s facades, and second, 
semantically segmenting these models to extract facade elements. 

By achieving these objectives, the study will contribute to: 

1. Establishing the first step of a long-term heritage conservation strategy, using digital 
documentation. 

2. Generating data trained on the Fatih Mosque that can be used for the segmentation of similar 
architectural elements in other mosques with an Ottoman architectural style. 

3. Providing a shareable digital model that can be utilized by various professionals. 
4. Streamlining the workflow for data acquisition and building element detection through 

digitalization. 

To tackle the digitalization of the mosque, employing point cloud semantic segmentation for the 
mosque’s elements offers an innovative solution for a large structure.  

1.2 Role of Point Cloud Semantic Segmentation in Heritage Analysis 

Point cloud semantic segmentation (PCSS) is a widely researched topic that simplifies heritage digital 
documentation. PCSS is a supervised learning process in which the trained algorithm decides the 
semantic labels of each point in the point cloud with the training labels. Machine learning (ML) and 
deep learning (DL) methods can be used in PCSS problems. While ML classifies observations using 
manually selected features, DL automatically extracts and classifies features. For PCSS, several DL 
algorithms can be listed, such as PointNet (Qi et al., 2017), PointNet++ (Qi et al., 2017), and DGCNN 
(Pierdicca et al., 2020). On the other hand, in addition to the supervised methods, ML algorithms 
include unsupervised methods (without labels training) such as region-growing (Nurunnabi, Belton & 
West, 2012), clustering-based segmentation (Galantucci & Fatiguso, 2019), and edge-based classifier 
(Rabbani et al., 2006).  

Semantic segmentation for heritage buildings refers to interpreting digital heritage data by segmenting 
building elements as separate objects that can be developed, analyzed, and imported into modeling 
software (Rocha et al., 2020). It involves classifying unstructured points into meaningful groups and 
assigning a label to describe each group (Xie et al., 2020). These labels represent different building 
elements, such as walls, columns, and doors. In this study's case, semantic labels are the facade 
elements of the Fatih Mosque. 

PCSS offers advantages, including detailed interpretation of raw point cloud models by classifying 
elements within the captured scene (Macher et al., 2017). Moyano et al. (2021) applied PCSS to extract 
structural elements and conduct a structural analysis of La Anunciación church. Also, PCSS Groups 
unstructured data into labeled clusters, enabling the development of parametric objects that can be 
imported into BIM programs (Moyano et al., 2021). Barrile and Fotia (2022) experimented with the 
PCSS of a church in Italy captured using UAVs and laser scanners to extract different elements into 
editable parametric objects. Moreover, PCSS and digital models minimize the risk of data loss or 
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misrepresentation caused by human interventions by ensuring that heritage treasures are preserved 
and passed on to future generations.  

Some classification algorithms are deployed as tools for ease of classification algorithm use. CANUPO 
is one such tool, a plugin within the CloudCompare software. CANUPO will be further elaborated in 
this research using the Fatih Mosque as a case for PCSS. In CANUPO, one can quickly train classification 
algorithms without hypertuning the training parameters to get accurate results. Therefore, the 
CANUPO tool was selected for the PCSS task of this study for ease of use.  

The following chapter explains the methodology employed for the semantic segmentation of the Fatih 
Mosque's building elements. 

2. Material and Method 

This section describes the workflow used for the semantic segmentation of the point cloud model of 
the Fatih mosque. Despite the steps illustrated in (Figure 3), It is important to note that this workflow 
is not strictly linear, some steps may be repeated, skipped, or tested several times. 

 

Figure 3.  Workflow for the semantic segmentation of the Fatih mosque’s point cloud model (by authors).  

The first step is data collection, which requires site visits and equipment to capture the existing 
structure. For this study, photogrammetry was employed by using a smartphone camera to capture 
the Southwestern (SW) and Northwestern (NW) facades. In the second step, the captured images were 
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processed using Agisoft Metashape Pro software to generate a 3D point cloud model. After data 
processing, data cleaning was applied using manual techniques and commands within CloudCompare. 
Fourth, is data training on the SW side through manual identification of areas representing the 
mosque’s elements. Last comes the classifier testing, by assessing the CANUPO plugin’s ability to 
segment the elements from the NW facade, based on the trained data on the SW facade.  

2.1. Dataset 

The dataset consists of two-point cloud models. The SW façade model is used for training, and the NW 
façade is used for testing, as illustrated in (Figure 4). The study was limited to the SW and the NW 
facades because the remaining sides couldn’t be accessed and captured. The Northeastern facade has 
a tomb in front of it, and the southeastern facade was covered for renovation. 

 

Figure 4. Indication of the facades used for training and testing for semantic segmentation (by authors). 

The segmentation classifier was trained on the SW facade which has more of the targeted elements 
for segmentation. The training procedure helped the classifier learn the Faith Mosque’s features. After 
training, the NW facade was used for testing the plugin’s performance. This process helps conduct 
a deeper analysis of each element while understanding the overall structure.  

2.2. Data Collection and Point Cloud Processing for Fatih Mosque 

To prepare the dataset for semantic segmentation, data collection, processing, and cleaning were 
performed. 

2.2.1. Data collection 

Data collection was conducted using a photogrammetric approach of an iPhone 14 ProMax 
smartphone camera. This limited the study to be conducted at eye-level height excluding higher 
elements like the minarets and domes. The site was visited several times ensuring that the area wasn’t 
crowded, and the sun wasn’t harsh. All visits were at 7 a.m. when the sun wasn’t strong creating harsh 
shadows. Another consideration was image alignments, to ensure better point cloud generation, 
sequential images were captured following a horizontal pace taken at different distances. (Table 2) 
displays sample images captured at different distances from both facades. 
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Table 2. Sample images captured at different distances from the Fatih mosque’s Southwest and Northwest 
facades (by authors) 
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The farthest distance was captured 13 to 20 meters away, the closest distance was 3 to 8 meters away 
to capture clearer details and textures. In total, 261 images were taken, 135 images from the SW 
facade and 126 images from the NW facade.  

2.2.2. Data processing 

For point cloud generation, Agisoft Metashape Pro software was used. Agisoft Metashape, is a 
photogrammetry processing software (Agisoft, 2019). It aligns photos taken from different angles, then 
finds sharable points (tie points) and aligns them to create a continuous scene. Then, it creates a sparse 
point cloud model which can be converted into a dense model. To perform semantic segmentation, it 
is necessary to build a dense point cloud model because it portrays in-depth information and textures. 

In this study, 135 images of the SW facade were imported within Agisoft Metashape. After importing, 
the align photos command was applied. This command automatically detected common points and 
aligned them according to shared features. 135/ 135 images were successfully aligned. After 
alignment, the build dense cloud feature was employed to generate a rich model displaying all the 
elements, as shown in (Figure 5).  
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Figure 5. A 2 267 690 point cloud model of the SW facade, captured from Agisoft Metashape (by authors).   

The model was exported in medium resolution, to have a manageable dataset because this study 
focuses on capturing the main building elements rather than ornaments and smaller details. The 
consideration reduced the training and segmentation time significantly. The same process was 
employed for generating the NW model, as portrayed in (Figure 6).  

 

Figure 6. A 993 501 point cloud model of the NW facade, captured from Agisoft Metashape (by authors).   

A partial part of the NW facade failed to be represented because it comes behind balustrades which 
affected the generated model. To have manageable models, data-cleaning techniques were applied.  

2.2.3. Data cleaning 

Data cleaning using Agisoft Metashape software in addition to techniques within the CloudCompare 
software was applied. CloudCompare is open-source software used for processing and classifying point 
cloud models which doesn’t require professionals to operate it, and it is compatible with data collected 
from both laser scanners and photogrammetry.  

First, the SW model was manually cleaned in Agisoft Metashape using the rectangular selection tool, 
to delete unnecessary points like points of the sky. The cleaned model was exported in .las format into 
the CloudCompare software. In CloudCompare, the Statistical Outlier Removal (SOR) filters out noise 
points by calculating the average distance between each point and its neighbors, where points far from 
the average distance are deleted. Before the SOR, the model had 2 615 530 points, then it had 2 520 
140 points. The third technique is subsampling. This feature randomly samples by minimizing the 
number of points based on a specified ratio. A small ratio of 0.01 m was set, to maintain an accurate 
representation without losing details. After subsampling the points were reduced to 2 267 690 points. 
For the NW facade, only manual cleaning was applied. Despite the efficiency of the techniques within 
CloudCompare, the point cloud model of the NW facade had a small number of points below a million. 
When the SOR and the subsampling feature were applied, the points were reduced from 993 501 to 
570 498 points, which removed almost half of the points. Therefore, the model had 998 872 points 
and was reduced to 993 501 points by manual cleaning. To conclude, a total of 347 840 points from 
the SW facade were removed, and 5 371 points from the NW facade. These steps play an important 
role in controlling large datasets and ensuring smoother classification of the Fatih mosque’s façade 
elements. 
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2.2.4 Ontological Typology of the Fatih Mosque Façade Elements  

An ontology was created to describe the Fatih mosque’s facade elements. This ontology was developed 
according to Fatih mosque’s structural elements, based on the ontology created by (Stouffs & Tunçer, 
2015), where they described physical and conceptual elements of mosques within the Ottoman era. 
(Figure 7) decomposes the exterior façade elements, in which every element has an additional level of 
detail that belongs to it.  

 

Figure 7. An ontology for the Fatih mosque’s façade elements. Elements marked with an asterisk (*) are used for 
training and semantic segmentation (by authors).   

Eight distinct categories were identified, since the objective of this study is to digitalize the Fatih 
mosque and extract its elements, the categories were chosen with a focus on the main elements 
instead of ornaments and details. Categories like masonry walls, main load bearing walls, columns, 
entrances, windows, stairs, arches, and waterspouts were identified. Elements like domes and 
minarets weren’t chosen because they weren’t a part of the captured scene. Another important aspect 
to clarify is the minaret base element categorization, since only the base was captured, it was 
categorized as a sub-element within the main load bearing walls because it is a foundational element 
that shares the same characteristics of the buttresses that are attached to masonry load bearing walls. 
Based on the eight elements, semantic segmentation using the CANUPO plugin in CloudCompare was 
utilized. 
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2.3. Semantic Segmentation Using CANUPO Plugin 

CANUPO plugin was employed for semantic segmentation of the SW and NW facades. CANUPO is a 
plugin in CloudCompare used for classifying point cloud models (Brodu & Lague, 2012). It classifies 
based on a multi-scale dimensionality criterion, which distributes multiple core points, and recognizes 
patterns surrounding each point according to a scale ramp value of a minimum (min), maximum (max), 
and step value. The min value is the smallest range the plugin analyzes around a point, the max is the 
biggest range, and the step refers to the increments between the min and max ranges. However, the 
plugin only performs binary classification by classifying points into two groups (façade - windows). The 
classification process contains two phases: training the classifier and classifying. In the training phase, 
the process starts with the manual identification of sample areas representing each element. Then, 
the main cloud model is separated into multiple clouds (classes). Then, the “train classifier” command 
is applied, in this step, two classes are chosen (class 1 and class 2) representing (facade and windows) 
as an example. According to the targeted element, the scale ramp values are set. The classifier then 
results in a classifier file in .prm format. This file is used for classification. 

In this study, the training phase was performed on the SW facade. It started with the manual 
identification of sample areas. Using the segment tool, a polyline was manually drawn around each 
element’s representative area as shown in (Figure 8). 

 

Figure 8. Manually selected sample areas representing the Fatih mosque’s façade elements (by authors).   

To export the selected areas as separate classes, the “split cloud according to the integer values” from 
the scalar field command was applied. This resulted in multiple clouds, where each cloud represents 
an element. After manual identification, the “train classifier” feature was used. For each targeted 
element, 9 experiments with the scale ramp values (min, max, and step) were conducted. Each time, 
two constant values were kept constant while changing the third value. After every trial, a classifier 
file was produced with a total of 9 classifier files for each class, then every classifier was used to classify 
the mosque’s elements from the SW facade, as shown in (Table 3).   

Table 3. CANUPO’s training trails on the SW facade, based on changing the scale ramp min, max, and step values. 
Only scale values marked with an asterisk (*) symbol were used for testing (by authors).  
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Table 3. (Continued) CANUPO’s training trails on the SW facade, based on changing the scale ramp min, max, 
and step values. Only scale values marked with an asterisk (*) symbol were used for testing (by authors).  

M
as

o
n

ry
 W

al
ls

 

M
ax

 

Min:0.2, Step: 0.4, Max: 0.6 

 

Min: 0.2, Step: 0.4, Max: 0.8 

 

Min: 0.2, Step: 0.4, Max: 1.0 

 

St
e

p
 

Min: 0.2, Step: 0.3, Max: 0.8 

 

Min: 0.2, Step: 0.4, Max: 0.8 

 

Min: 0.2, Step: 0.6, Max:0.8 

 

M
in

 

Min: 0.08, Step:0.6, Max: 0.8 

 

Min: 0.2, Step: 0.6, Max: 0.8 * 

 

Min: 0.4, Step: 0.6, Max: 0.8 

 

C
o

lu
m

n
s 

M
ax

 

Min: 0.2, Step: 0.6, Max: 1.0 

 

Min: 0.2, Step: 0.6, Max: 0.8 

 

Min: 0.2, Step: 0.6, Max: 1.2 * 

 

St
e

p
 

Min: 0.2, Step: 0.6, Max: 1.2 

 

Min: 0.2, Step: 0.8, 1.2 

 

Min: 0.2, Step: 1.0, Max: 1.2 

 

M
in

 

Min: 0.2, Step: 0.8, Max: 1.2 

 

Min: 0.4, Step: 0.8, Max: 1.2 

 

Min: 0.6, Step: 0.8, Max: 1.2 

 

St
ai

rs
 

M
ax

 

Min: 0.2, Step: 0.4, Max: 0.6 

 

Min: 0.2, Step: 0.4, Max: 0.8 * 

 

Min: 0.2, Step: 0.4, Max: 1.2 

 

St
e

p
 

Min: 0.2, Step: 0.4, Max: 0.8 

 

Min: 0.2, Step: 0.3, Max: 0.8 

 

Min: 0.2, Step: 0.6, Max: 0.8 

 

M
in

 

Min: 0.2, Step: 0.4, Max: 0.8 

 

Min: 0.08, Step: 0.4, Max: 0.8 

 

Min: 0.06, Step: 0.4, Max: 0.8 
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Table 3. (Continued) CANUPO’s training trails on the SW facade, based on changing the scale ramp min, max, 
and step values. Only scale values marked with an asterisk (*) symbol were used for testing (by authors).  

M
ai

n
 L

o
ad

 B
e

ar
in

g 
W

al
ls

 

 

W
al

ls
 

b
e

ar
in

g 

M
ax

 

   

Min: 1.0, Step: 1.2, Max: 2 

 

Min: 1.0, Step: 1.2, Max: 1.6 

 

Min: 1.0, Step: 1.2, Max: 2.6 

 

St
e

p
 

Min: 1.0, Step: 1.4, Max: 2.0 

 

Min: 1.0, Step: 1.6, Max: 2.0 

 

Min: 1.0, Step: 2.0, Max: 3.5 

 

M
in

 

Min: 0.6, Step: 1.2, Max: 2 

 

Min: 0.8, Step: 1.2, Max: 2 

 

Min: 1.1, Step: 1.2, Max: 2 * 

 

A
rc

h
e

s 

m
ax

 

Min: 0.2, Step: 0.4, Max: 0.6 

 

Min: 0.2, Step: 0.4, Max: 0.8 

 

Min: 0.2, Step: 0.4, Max: 1.0 

 

st
e

p
 

Min: 0.2, Step: 0.3, Max: 0.8 

 

Min: 0.2, Step: 0.4, Max: 0.8 

 

Min: 0.2, Step: 0.6, Max: 0.8 

 

m
in

 

Min: 0.08, Step: 0.4, Max: 0.8 

 

Min: 0.2, Step: 0.3, Max: 0.8 

 

Min: 0.3, Step: 0.4, Max: 0.8 * 

 

En
tr

an
ce

s 

M
ax

 

Min: 0.4, Step: 0.6, Max: 0.8 

 

Min: 0.4, Step: 0.6, Max: 1.2 

 

Min: 0.4, Step: 0.6, Max: 0.7 

 

St
e

p
 

Min: 0.4, Step: 0.5, Max: 0.8 

 

Min: 0.4, Step: 0.6, Max: 0.8 

 

Min: 0.4, Step: 0.7, Max: 0.8 * 

 

M
in

 

Min: 0.2, Step: 0.7, Max: 0.8 

 

Min: 0.4, Step: 0.7, Max: 0.8 

 

Min: 0.6, Step: 0.7, Max: 0.8 
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Table 3. (Continued) CANUPO’s training trails on the SW facade, based on changing the scale ramp min, max, 
and step values. Only scale values marked with an asterisk (*) symbol were used for testing (by authors).  

W
at

e
rs

p
o

u
ts

 

M
ax

 

Min: 0.2, Step: 0.4, Max: 0.6 

 

Min: 0.2, Step: 0.4, Max: 0.8 

 

Min: 0.2, Step: 0.4, Max: 1.0 

 

St
e

p
 

Min: 0.2, Step: 0.4, Max: 1.0 * 

 

Min: 0.2, Step: 0.6, Max: 1.0 

 

Min: 0.2, Step: 0.8, Max: 1.0 

 

M
in

 

Min: 0.08, Step: 0.4, Max: 1.0 

 

Min: 0.2, Step: 0.4, Max: 1.0 

 

Min: 0.4, Step: 0.4, Max: 1.0 

 

The numbers in the table, such as 0.2 or 1.2, represent distances in meters that the plugin analyzes. 
These trials were essential for identifying the best classification parameters for each element while 
observing the influence of the scale ramp on the classification results. Among the nine trials conducted 
for each class, the scale ramp parameter that resulted in the best classification results on the trained 
data was exported into a classifier file. This classifier was then used to test the plugin’s performance 
on the elements of the NW facade, providing insight into its ability to detect the same elements in 
unseen data. The segmentation results applied to the NW facade are presented in (Table 4). 

Table 4. Segmentation results on the testing dataset on the NW façade (by authors). 

Class Segmentation Results 

Windows 

 
 

Masonry Walls 

 

 

Stairs 

 

 

Entrance 

 
 

Arches 

 

 

Waterspouts 
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This workflow was repeated several times to achieve the best results by adjusting the scale ramp to 
the suitable values. The presented semantic segmentation outcomes formed the basis of the following 
assessment chapter. 

2.4 Assessment of the CANUPO's Classifier Performance 

CANUPO’s plugin’s results were evaluated based on the classification evaluation metrics, which are 
accuracy, recall, precision, and false positive rate (FPR). This method aims to provide a reliable measure 
of the plugin functionality in detecting the Fatih mosque’s facade elements. Applying this assessment 
gives an understanding of the classifier’s performance. 

2.4.1 Identification of ground truth points  

To identify the ground truth points (GTP), the manually selected representative areas illustrated before 
(Figure 8), represent GTP. These points resemble the number for each element, in which cautious 
manual selection was done to ensure optimal representation of the element. After the identification 
of GTP for each class, the resulting numbers were recorded. 

2.4.2 Calculation of TP, FP, FN, TN points 

In machine learning, each classification results in 4 types of points under the name of a confusion 
matrix, this matrix includes True Positive (TP), True Negative (TN), False Positive (FP), and False 
Negative (FN) points. (TP) are positive points that belong to the segmented class, and they were 
correctly classified. (FP) are positive points that are actually negative but were incorrectly classified. 
(FN) are negative points that are actually positive but were incorrectly classified. (TN) are negative 
points that don’t belong to the segmented class, and they were correctly classified.  

After the identification of GTP, the TP points were identified. Because CANUPO only performs binary 
segmentation, each segmentation consists of two classes, the targeted element and the facade. By 
using the split cloud according to the integer values command, each class can be analyzed separately. 
Accordingly, the targeted element’s result is a combination of TP and FP points. To extract the TP 
points, manual selection of the same representative areas of the GTP was identified. To extract the FP 
points, equation (1) was used. 

𝐹𝑃 =  𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑜𝑖𝑛𝑡𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑇𝑎𝑟𝑔𝑒𝑡𝑒𝑑 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 − 𝑇𝑃 (1) 

The other class in the binary classification, the facade, is a combination of FN and TN points. To 
calculate the FN points, equation (2) was used, this was employed because the manually selected areas 
of the GTP are a combination of TP and FN. 

𝐹𝑁 =  𝐺𝑇𝑃 − 𝑇𝑃 (2) 

Lastly, to calculate the TN, the FN points were subtracted from the façade’s points, as shown in 
equation (3). 

𝑇𝑁 =  𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝐹𝑎𝑐𝑎𝑑𝑒′𝑠 𝑃𝑜𝑖𝑛𝑡𝑠 − 𝐹𝑁 (3) 

Using these formulas in combination with manual identification, the GTP, TP, FP, TN, and FN points 
were calculated. (Table 5) displays the confusion matrix point numbers according to each segmented 
facade element.  

Table 5. Number of GTP, and points within the confusion matrix including TP, FP, TN, and FN points based on 
each element’s segmentation result (by authors). 

 Segmented Class GTP TP Points FP Points TN Points FN Points 

So
u

th
w

es
te

rn
 

Fa
ca

d
e

 

Masonry Walls 1 280 605 726 995 537 633 553 610 449 452 

Main Load Bearing Walls 548 764 211 239 216 848 337 525 1 502 078 

Columns 19 817 19 228 235 219 589 2 012 654 

Windows 200 196 167 042 605 421 33 154 1 462 073 

Entrances 75 617 50 691 652 435 24 926 1 539 638 
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Table 5. (Continued) Number of GTP, and points within the confusion matrix including TP, FP, TN, and FN points 
based on each element’s segmentation result (by authors). 

 

Stairs 88 106 77 501 443 172 10 605 1 736 412 

Arches 47 442 35 346 581 765 12 096 1 638 483 

Waterspouts 7 143 7 023 198 526 120 2 062 021 

N
o

rt
h

w
es

te
rn

 F
ac

ad
e

 

Masonry Walls 811 469 626 873 99 905 184 596 82 127 

Windows 41 698 22 888 290 299 18 810 661 504 

Entrances 118 610 91 736 304 246 26 874 570 645 

Stairs 14 749 5 462 183 565 9 287 795 587 

Arches 5 409 5 328 276 629 81 711 463 

Waterspouts 1 575 0 115701 1 575 876 225 

2.4.3. Accuracy, recall, precision, and false positive rate percentage calculation 

To calculate the evaluation metrics for each class, equations (4), (5), (6), and (7) are referenced from 
Macher, Landes, and Grussenmeyer (2017). For accuracy, equation (4) is used to measure the overall 
performance of the classifier, assessing its ability to correctly identify positive and negative points. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100% (4) 

The recall (True Positives Rate) is calculated to evaluate the number of positive points correctly 
classified. Using equation (5) the recall was obtained.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100% (5) 

The precision metric evaluates how many of the predicted positive points were actually positive, 
testing the accuracy of the classifier's predictions, using equation (6). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100% (6) 

Lastly, the False Positive Rate (FPR), determined using equation (7), measures the proportion of actual 
negatives that were misclassified as positives. 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
× 100% (7) 

To interpret the percentages, a range of high, medium, and low ranges were set: values above 75% 
were classified as high, 50–75% as medium, and below 50% as low. However, some limitations need 
to be considered. First, the identification of Ground Truth Points (GTP) and True Positive (TP) points is 
done manually, which was subjected to errors due to the complexity of managing the dataset 
manually. However, to avoid so many errors, the representative areas were selected as accurately as 
possible. Second, since the NW facade wasn’t used for training, its representative areas had to be 
identified manually too, to calculate the evaluation metrics using the same mentioned equations. 
Third, for the masonry walls class, the number of GTP and TP points include additional ornamental 
elements like the stone carvings above the windows, which aren’t targeted for classification. 
Nonetheless, this didn’t impact on the evaluation process. 

3. Findings and Discussion 

This chapter presents the findings from the CANUPO classifier. The classifier was trained to extract 
eight building elements.  (Table 6) displays the assessment evaluation percentages of the CANUPO’s 
classifier segmentation results. 
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Table 6. Accuracy, recall, precision, and false positive rate percentages for the segmented classes (by authors).  

 
Targeted Class 

Accuracy 
Percentage 

Recall 
Percentage 

Precision 
Percentage 

False Positive 
Rate Percentage 

So
u

th
w

es
te

rn
 F

ac
ad

e
 

Masonry Walls 52% 57% 57% 54% 

Main Load Bearing Walls 76% 38% 49% 13% 

Columns 90% 97% 8% 10% 

Windows 72% 83% 22% 29% 

Entrances 70% 67% 7% 30% 

Stairs 80% 88% 15% 20% 

Arches 74% 75% 6% 26% 

Waterspouts 91% 98% 3% 9% 

N
o

rt
h

w
es

te
rn

 F
ac

ad
e

 Masonry Walls 71% 77% 86% 55% 

Windows 69% 55% 7% 30% 

Entrances 67% 77% 23% 35% 

Stairs 81% 37% 3% 19% 

Arches 72% 99% 2% 28% 

Waterspouts 88% 0% 0% 12% 

The accuracy metric indicates the classifier’s general ability to detect the TP and TN points. Therefore, 
based on the chosen scale ramp values from (Table 4) and the accuracy metric, the results were 
assigned with a high, medium, and low range in (Table 7). The targeted element is classified in red, 
while the façade is always classified in dark blue. 

Table 7. Categorization of the classification results in high, medium, and low accuracy, based on the accuracy 
metric percentages (by authors). 

Accuracy Metric-Based Categorization  

High Accuracy 

(above 75%) 

Medium Accuracy  

(50 – 75%) 

Low Accuracy 

(Below 50%) 

Southwestern Façade 

Main Load bearing walls Class 

 

Masonry Walls Class 

 

- 

Columns Class 

 

Windows Class 

 

- 

Stairs Class 

 

Entrances Class 

 

- 
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Table 7. (Continued) Categorization of the classification results in high, medium, and low accuracy, based on the 
accuracy metric percentages (by authors). 

Waterspouts Class 

 

Arches Class 

 

- 

Northwestern Façade 

Stairs Class 

 

Masonry Walls Class 

 

- 

Waterspouts Class 

 

Windows Class 

 

- 

- Entrances Class 

 

- 

- Arches Class 

 

- 

Larger elements with a broader scale ramp like the main load-bearing walls, with a 1.1 min, 1.2 step, 2 
max, and the columns from the SW facade, have a higher accuracy. On the other hand, the scale ramp 
with narrower values below 1 meter, had high and medium accuracy, yet no element resulted in a low 
accuracy from both facades. Accuracy gives a general insight without explanation of what was correctly 
classified and misclassified. Therefore, analyzing other metrics is essential. 

3.1 Southwestern Facade Evaluation Metrics  

• Masonry Walls Class  
o Accuracy: 52% (Medium), Recall: 57% (Medium), Precision: 57% (Medium), FPR: 54% (Medium) 

This class illustrates moderate performance in identifying the TP and TN points. Even though the 
masonry walls can be easily distinguished from the segmentation result, the medium recall and 
precision demonstrate failure in detecting half of the correct points. Also, 54% of the FPR suggests that 
almost half of the points were incorrectly classified.  

• Main Load Bearing Walls Class  
o Accuracy: 76% (High), Recall: 38% (Low), Precision: 49% (Low), FPR: 13% (Low) 

While the accuracy is close to high, the very low recall and precision indicate that many TP points were 
missed, and half of the predicted points were wrong. The increased accuracy relates to the low FPR, 
where the classifier made fewer mistakes in classifying non-targeted elements.  

• Columns Class  
o Accuracy: 90% (High), Recall: 97% (High), Precision: 8% (Low), FPR: 10% (Low) 

The high accuracy and recall suggest that almost all columns were correctly segmented. However, the 
low precision indicates that a high number of points were mistaken with them.  



Journal of Architectural Sciences and Applications, 2025, 10 (1), 30-54. 
 

48 
 

• Windows Class  
o Accuracy: 72% (Medium), Recall: 83% (High), Precision: 22% (Low), FPR: 29% (Low) 

Accuracy indicates moderate performance, with a high recall meaning that a high number of TP points 
were classified. However, the 22% precision says that many points were confused with the windows’ 
points. 

• Entrances Class  
o Accuracy: 70% (Medium), Recall: 67% (Medium), Precision: 7% (Low), FPR: 30% (Low) 

The medium accuracy and recall prove moderate performance. The low FPR shows that CANUPO had 
fewer false tempts in classifying non-targeted elements, this might be because of the entrance’s 
distinct geometry and material. 

• Stairs Class  
o Accuracy: 80% (High), Recall: 88% (High), Precision: 15% (Low), FPR: 20% (Low) 

The high accuracy and recall with the low FPR indicate good performance in detecting the stairs. 
However, most of CANUPO’s predicted points were false.  

• Arches Class  
o Accuracy: 74% (Medium), Recall: 75% (Medium), Precision: 6% (Low), FPR: 26% (Low) 

Detecting arches is moderately effective, but the 6% precision is for the high rate of confusing arches 
with other elements. Most FP points were detected from elements with a curvature feature, like the 
entrance, and pointed arch windows. 

• Waterspouts Class  
o Accuracy: 91% (High), Recall: 98% (High), Precision: 3% (Low), FPR: 9% (Low) 

The very high accuracy and recall highlight CANUPO’s success in identifying waterspouts. However, the 
low precision indicated a high number of FP points.  

3.2 Northwestern Facade Evaluation Metrics 

While the SW facade was used for training, the segmentation results from the NW facade are more 
reliable for the classifier’s evaluation. It tests its ability to perform semantic segmentation on unseen 
data. This helps in identifying whether CANUPO is effective to use among other mosques.  

• Masonry Walls Class  
o Accuracy: 71% (Medium), Recall: 77% (High), Precision: 86% (High), FPR: 55% (Medium). 

An average performance was obtained. The high recall and precision mean it performed moderately 
well in detecting the correct points. However, non-targeted elements like the upper windows and the 
entrance were falsely classified resulting in a higher FPR. 

• Windows Class  
o Accuracy: 69% (Medium), Recall: 55% (Medium), Precision: 7% (Low), FPR: 30% (Low). 

The classifier showed moderate performance, however, it failed to detect most of the windows’ 
geometry, especially the upper ones. These percentages illustrate failure in detecting windows from 
unseen data.  

• Entrances Class  
o Accuracy: 67% (Medium), Recall: 77% (High), Precision: 23% (Low), FPR: 35% (Low). 

Medium accuracy relates to the semi-high recall percentage where the classifier was able to detect 
77% of the element. Yet, it had a low precision, this confusion might be caused by the element’s 
geometry where it was confused with other elements with curvature features. 

• Stairs Class  
o Accuracy: 81% (High), Recall: 37% (Low), Precision: 3% (Low), FPR: 19% (Low). 
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The high accuracy doesn’t prove success in detecting the stairs, it is affected by the low FPR. A very 
low percentage of recall and precision demonstrates the classifier’s failure to distinguish the stairs. 

• Arches Class  
o Accuracy: 72% (Medium), Recall: 99% (High), Precision: 2% (Low), FPR: 28% (Low). 

Arches scored the highest recall with almost complete identification, illustrating high success in 
detecting the element. What decreased the accuracy was confusing the arches with other elements.   

• Waterspouts class  
o Accuracy: 88% (High), Recall: 0% (Low), Precision: 0% (Low), FPR: 12% (Low) 

Despite the high accuracy, the 0% recall and precision percentage present a complete failure in entirely 
misclassifying the waterspout element. The reason behind the high accuracy is due to the waterspout's 
small number of points in comparison to the façade’s large points number.   

4. Conclusion and Suggestion 

Results indicate valuable insights on the utilization of CANUPO for semantic segmentation of the Fatih 
mosque’s facade elements. The study’s objective was to address the literature’s gap by creating a 
digital replica of the southwestern and northwestern facades and to semantically segment their 
elements. Based on this, a photogrammetric approach was utilized for data collection, and the 
CANUPO plugin for segmentation. The results showed a mix of high and medium accuracy, but it had 
inconsistent recall, precision, and false positive rate percentages. This chapter reflects on the validity 
of the findings and methodology, their implications, and potential effects.  

The segmentation accuracy outcome showed a variation between high to medium accuracy. However, 
for classifiers with binary classification like CANUPO, high accuracy doesn’t certainly present successful 
performance. The unexpected offsets between the evaluation metrics like the case of waterspouts 
from the NW facade with 88% accuracy and 0% recall, might be due to the targeted element’s small 
points number in comparison to the nontargeted classes. However, the same class of waterspouts 
from the trained data had 91% accuracy proves the classifier’s inconsistency and struggle to learn 
heritage element’s features. Since this plugin was originally designed to segment vegetation and 
terrain, it showed a higher success with percentages near to 98% within that field (Štroner et al., 2021). 
However, in this study, it wasn’t possible to obtain high accuracy across all elements. 

The recall metric showed varying results across the elements. These random percentages partially 
contradict the findings of (Moyano et al., 2021), which stated that CANUPO segments bigger elements 
better than smaller elements. While elements like columns and arches are proportionally big with high 
recall, the classifier was also able to detect smaller elements of waterspouts from the SW facade with 
98% recall. Yet, the classifier completely failed at segmenting the same element from unseen data, 
which reduces its validity for studies based on comprehensive segmentation. 

In most results, the precision percentages were very low, suggesting that the classifier’s predictions 
are usually incorrect. This might be due to the classifier not being subjected to enough data for training. 
This raises concerns about CANUPO’s effectiveness in classifying more complex buildings with richer 
ornaments. On the other hand, FPR showed a low percentage for most of the elements, meaning it 
performed better in not misclassifying non-targeted points.  

A key step to exploring CANUPO’s performance was the scale ramp values set in the training phase. In 
this study, altering the maximum and step values is what mostly affected the segmentation results on 
the SW facade. Contrary to what was expected, not all values caused a noticeable outcome, especially 
the minimum value which caused little to no differences in classification. One possibility is that the 
minimum scale might be more influential for the segmentation of ornaments and smaller elements. 
However, the current study doesn’t allow for a definitive conclusion because it didn’t experiment with 
the segmentation of small elements. A pattern emerged in the relation between the scale ramp and 
the evaluation metrics percentages, where bigger elements like the main load bearing walls and 
columns with a larger scale range scored high recall results, meaning that CANUPO recognizes TP better 
when analyzing points on larger distances.  
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Another important aspect is the time the data was captured, where the presence of shadows affects 
the segmentation results and confuses the classifier into thinking that the shaded areas have different 
materials. Upon a trail done on the SW facade captured at 2 p.m. with the sun hitting the surface, most 
segmentation trails with the sun showed complete failure. Which was avoided in the other site visits. 
Taking that into consideration, shadow visibility wasn’t an issue in this study’s process. 

In conclusion, this study on the utilization of CANUPO to semantically segment the Fatih Mosque’s 
facade elements provided vital insights into its utilization within the heritage documentation and 
conservation field. This research aimed to segment the mosque’s facade elements and provide a 
reliable, sharable digital model. The core problem addressed is the lack of literature and solutions for 
the Fatih mosque’s urgent need for long-term documentation and conservation solutions. Through the 
implementation of point cloud semantic segmentation, this paper introduced valuable perspectives on 
understanding CANUPO’s classifier functionality for segmenting heritage building elements.  

The study’s segmentation results demonstrated that the utilization of a cost-effective 
photogrammetric approach with the use of CANUPO served considerable potential in the extraction of 
digital building elements from historical buildings. Despite the challenges, this study highlighted key 
aspects that affect the segmentation results such as the scale ramp values and their relationship with 
the element’s size, the capturing time, and the model’s quality which all play crucial roles in the 
obtained results. Generally, the classifier showed inconsistent and moderate performance, calling for 
further developments and experiments on heritage data. Even though most segmentation results 
didn’t achieve high accuracy, the utilized methods and workflow show potential for the use of CANUPO 
for semantic segmentation and heritage preservation. Concluding that with additional refinement and 
developments, the study’s approach can be reliable for heritage digital documentation and analysis. 

Future work should focus on the segmentation of smaller elements at a time, such as the segmentation 
of the window and the window’s frame. Another focus can be the training and testing of one element 
repeated on multiple buildings with the same architectural style, to better understand the classifier 
functionality on unseen data. Moreover, elements with high accuracy can be employed within BIM to 
extract parametric objects. To conclude, this study presented a notable framework for the 
digitalization and semantic segmentation of heritage buildings’ elements using CANUPO, offering a 
technological approach for the documentation and preservation of heritage assets in Türkiye.  
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