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ABSTRACT: The buckling behavior of perforated nanobeams on elastic foundations has become
increasingly important, mainly due to their widespread use in nanostructures and nanotechnology
systems. This study investigates the buckling behavior of perforated nanobeams resting on Winkler-
Pasternak elastic foundations using Modified Couple Stress Theory (MCST) and the Finite Element
Method (FEM). The analysis examines the effects of various parameters, including foundation elasticity,
MCST internal length scale, perforation properties, and beam length, on critical buckling loads. Results
indicate that increasing both Winkler and Pasternak foundation parameters enhances the critical buckling
load, with the Pasternak parameter showing a more pronounced effect due to its incorporation of shear
effects. The MCST internal length scale parameter significantly influences nano-beam stability,
highlighting the importance of size effects at nanoscale dimensions. Higher filling ratios correlate directly
with increased buckling resistance, while a greater number of holes reduces overall structural stiffness
and decreases the critical buckling load. Beam length exhibits an inverse relationship with buckling
strength; longer beams demonstrate lower critical buckling loads than shorter beams, regardless of the
number of holes present.

Keywords: Buckling Analysis, Finite Element Method, Modified Couple Stress Theory, Perforated Nanobeam,
Winkler-Pasternak Foundation

1. INTRODUCTION

Nanobeams are important nanostructures with many applications, including nanosystems, sensors,
and micro/nano-electro-mechanical systems (MEMS-NEMS) [1]. The increasing use of perforated
nanobeams, particularly when weight reduction or functional requirements necessitate structural
modifications, has made it crucial to understand their mechanical behavior and study the effects of the
number of holes, filling ratio, and small-scale impact on these behaviors [2]. These structures often interact
with elastic foundations in engineering applications, and their mechanical behavior varies accordingly.

Classical beam theories (CTs) may be inadequate for analyzing nanoscale structures due to their
inability to account for size-dependent effects [3]. Many higher-order elasticity theories have been
proposed in the literature to overcome these deficiencies. One such theory is the Modified Couple Stress
Theory (MCST) developed by Yang et al. [4]. This theory was introduced to capture these size effects by
incorporating an intrinsic length scale parameter into the analysis. In recent years, many studies have been
conducted to analyze the mechanical behavior of nanostructures using MCST [5] - [12].

The stability of beams on elastic foundations has been studied using various foundation models. The
Winkler elastic foundation (WEF) model, widely used due to its simplicity, models the interaction between
the foundation and the beam with springs [13], [14]. The Winkler-Pasternak elastic foundation (W-PEF)
model improved the WEF model by including the shear interactions between the spring elements [15],
[16]. There have been many studies investigating the mechanical behavior of nanostructures using elastic
foundation models and MCST [17] - [21]. Togun and Bagdatli [18] developed an MCST-based model to
analyze the free vibration behavior of simply supported (5-S) nanobeams resting on a WEF. By employing
Hamilton’s principle and the multiple scale method, their study demonstrates that the incorporation of a
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material length scale parameter effectively captures significant size effects —yielding higher fundamental
frequencies than those predicted by classical Euler-Bernoulli theory—and that an increased non-
dimensional Winkler foundation parameter enhances system stiffness. Akgoz ve Civalek [18] investigated
the free vibration behavior of single-layered graphene sheets on a Pasternak-type elastic matrix using
MCST and an analytical thin plate model. Their analytical results demonstrate that the material length
scale parameter significantly affects the vibration frequencies—especially for smaller geometries and
higher vibration modes —with its influence diminishing as the Winkler and shear modulus parameters
increase. Simsek [21] developed a non-classical beam model for the static and nonlinear vibration analysis
of microbeams on a three-layered nonlinear elastic foundation by integrating MCST with Euler—Bernoulli
beam theory and incorporating von-Karman's geometric nonlinearity. The study reveals that the inclusion
of a length scale parameter and nonlinear foundation stiffness coefficients significantly influences both
the static deflection and the nonlinear frequency ratio, with the derived closed-form expressions being
validated through extensive numerical comparisons.

Perforated nanobeams are nanostructures with modified stiffness properties created using various
techniques and must be modeled appropriately [22]. Luschi and Pieri [23] proposed a local model for the
micromechanical properties of microscale perforated beams. Although many researchers have studied
either perforated macro/nano beams [24] - [35] or nanobeams on elastic foundations [36] - [44], the effects
of hole patterns and elastic foundation interactions on nanobeam buckling behavior have not been
sufficiently investigated. Abdelrahman et al. [36] modeled the buckling behavior of perforated nanobeams
in a piezoelectric sandwich structure, considering elasticity and dimensional effects. Almitani et al. [37]
performed the stability analysis of perforated nanorods, considering the surface energy -effect.
Abdelrahman and Eltaher [2] investigated the bending and buckling responses of perforated nanobeams,
examining the effects of surface energy on different beam theories. Eltaher et al. [38] analytically
investigated the static bending and buckling behavior of perforated nanobeams according to Euler-
Bernoulli and Timoshenko theories, considering nonlocal effects. Kafkas et al. [22] proposed an analytical
solution by considering non-local effects and deformable boundary conditions while investigating the
buckling behavior of perforated nano/microbeams on an elastic foundation.

This study makes a novel contribution to the field of nanostructure mechanics by integrating MCST
with FEM for analyzing the buckling behavior of perforated nanobeams on W-PEF. Unlike traditional
analyses based solely on classical continuum theories, this study explicitly accounts for nanoscale size
effects through the incorporation of an intrinsic length scale parameter. A comprehensive literature review
indicates that no previous work has addressed the buckling behavior of perforated nanobeams on W-PEF
using MCST, either analytically or numerically. These contributions not only extend the theoretical
framework for understanding nanoscale buckling phenomena but also offer guidance for designing and
optimizing advanced nanostructured materials.

2. MATERIAL AND METHODS

The geometrical configuration of a S-S perforated nanobeam loaded by an axial force P, defined by
the presence of holes of dimensions L, b and h in the cross-sectional region, is shown in Figure 1.

L

Figure 1. Perforated nanobeam resting on a W-PEF

To effectively analyze the mechanical response of perforated structures, it is essential to consider the
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periodic arrangement of the cut-out holes. Luschi and Pieri [23] presented analytical solutions for
equivalent geometric and material properties of perforated beams. Let [; and t; denote the spatial period
and period length, respectively, and the filling ratio a can be represented as follows [23]:

ts

a=-= 0<ac<l (1)
I

The critical point to note here is that in the case of @ = 1, the nanobeam represents a fully filled solid
beam, while @ < 1 refers to the case with holes [29]. N indicates the number of holes along the cross-
section, the equivalent bending stiffness and shear stiffness of the perforated beam compared to the solid
beam can be expressed as follows [23], [38] - [40]:

(ED), a(N + 1)(N? + 2N + a?) )
El (1 —a?+ a?)N3 +3aN? + (3a? + 2a3 — 3a* + a®)N + a3

GA), a*(N+1) 3)
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where E and G represent the modulus of elasticity and shear, A and I represent the cross-sectional area
and moment of inertia of the filled beam, respectively, and A = bh. The sub-index p represents the
perforated nano-beam.

2.1. Modified Couple Stress Theory

MCST, first proposed by Yang et al. [4], accounts for the small size effects observed in micro- and
nanoscale structures by incorporating a material length scale parameter into its equations. According to
MCST, for a solid nano-beam resting on a W-PEF, the governing equation for the buckling problem can
be represented as follows [41], [42]:

EI 0w + GAI? 0w +P otw k 0w +k,yw =0 4)
x4 ™ Gx4 dx? P 9x2 wW =

where EI and GA are the bending and shear stiffnesses of the solid beam, respectively, [, is the material
length scale parameter, k,, and k, are the WEF and W-PEF parameters, respectively, and w is the
transverse displacement. If the bending and shear stiffnesses of the perforated nano-beam given in
Equations (2) and (3) are substituted in Equation (4), the governing equation can be shown as follows:

0w 02w
ax4+[P—kp]ﬁ+kWW=0 (5)

[(EDp + (GA)pl7]

2.2. Finite Element Method

To examine the buckling behavior of a nanobeam resting on a W-PEF via the FEM and to determine
the critical buckling loads by accounting for the size effect using the MCST, the nanobeam is discretized
into more minor beam elements.

2.2.1 Finite element discretization process

The nanobeam is discretized into N¢ finite elements, each consisting of two nodes with four degrees
of freedom (DOF) per element—two translational (w;, w,) and two rotational (6,, 8,) DOFs. The shape
functions § are employed to interpolate the displacement field within each element based on nodal values.
The governing differential equation, incorporating MCST effects, is formulated in its weak form to
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facilitate FEM implementation. The nodal displacement vector, w, represents the displacements and
rotations at both ends of the beam element and is shown as follows [43]:

w=([w; 6; w, 6] (6)

where w; and 6, represent the transverse displacement and rotation at node 1 and w, and 6, represent the

transverse displacement and rotation at node 2, respectively.
The shape functions can be given as follows [44]:

= |2 )

Both the displacement and rotation of the nanobeam at each nodal point can be represented by the

shape functions as follows:
w=wié; + 6018 + wyés + 6,8, 8)

Given the length L, of each beam segment, the elements of the shape function vector can be defined
as follows [44]:
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According to the MCST with a small-scale effect, to obtain the weak form of the governing differential
equation for buckling of a nanobeam on a W-PEF, shape functions can be chosen as weighting functions,
and the differential equation can be formulated in weighted integral form. This requires multiplying the
residual R by the weighting functions and integrating the result over the entire length of the nanobeam:

R = [(EDp + @AYE1 200+ [P~ o)) S+ ko (10)
L o*w o%w
f ([(EI)P + (G 1E 5 + [P - kp]zﬁ + szw> dx =0 (11)

Parts integrate equation (11), and the chain rule is used to obtain the general form:

' El GA)plZ 8% P—k dg & k& Jdx =0 12
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2.2.2 Solution steps in the FEM approach

To determine the critical buckling load of the perforated nanobeam using FEM, the following solution

procedure is applied:
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1. Discretization: The nanobeam is divided into N elements, each modeled using two-node
beam elements that incorporate transverse displacement and rotation.
2. Shape Function Definition: The displacement field is approximated using Hermite cubic
shape functions, ensuring continuity in displacement and rotation.
3. Weak Formulation: The governing equation is rewritten in weighted residual form, where
shape functions serve as weighting functions, allowing the formulation of the stiffness matrix
K and load matrix B.
4. Stiffness and Load Matrix Computation: The global system matrices are assembled based on
element contributions.
5. Eigenvalue Problem Solving: The characteristic equation |K — AB| = 0 is solved to determine
the critical buckling load, where A = P,,. /P represents the eigenvalue.
To derive the global system matrices; the stiffness, elastic foundation and axial load matrices of the
nanobeam, the shape functions in Equation (9) are substituted in Equation (12), and integrals are
performed term by term. The resulting matrices are defined below:
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In these equations, Kj is the matrix derived from the CT (local), K); is the matrix related to MCST,
which also takes into account the effect of small size by means of the material length scale parameter. If
the K,, matrix is neglected, the finite element solution reduces to the Euler-Bernoulli beam theory based
on classical mechanics. The Ky, and Kp matrices are due to the WEF parameter and the Pasternak shear
layer effect, respectively, while the B, matrix is the matrix due to the axial load. From the Ky, and Kp
matrices, if the Kp matrix is neglected, buckling analysis to MCST can be performed for the nano-beam
resting on a WEF, while if both Ky, and Kp are neglected, the buckling behavior of the nano-beam not
resting on an elastic foundation is analyzed.

The buckling loads of a nanobeam resting on the W-PEF can be calculated according to MCST using
the total stiffness and load matrices as follows [45]:

|K —2B| =0 (18)

where 1 eigenvalue represents the ratio of the critical buckling load (P,,) to the applied axial load (P), K is
the sum of the stiffness matrices, and B is the sum of the matrices resulting from the axial load and is
shown as:
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1= % (19)
[K] = [K,] + [Ky] + [Ki] + [Kp] (20)
[B] = [B] (21)

3. RESULTS AND DISCUSSION

This chapter examines the critical buckling loads of nanobeams resting on a W-PEF using numerical
results based on the MCST, considering the effects of size and elastic foundation. The study provides a
FEM-based solution, and analyses are conducted to validate the results and to explore the influence of
various parameters on the buckling behavior of nanobeams. For these analyses, as well as the presentation
of figures and tables, the following dimensionless quantities are employed:

kLt
w_ 22
K EL (22)
ke =222 (23)

A comparison study to verify the accuracy of the FEM model is presented in this section. The analytical
solution of critical buckling loads according to MCST for a S-S solid nanobeam resting on the W-PEF is
given by Mercan et al. [41] as follows:

2.2 2
P(n) = (EI + GAlfn)nL—Z+%+kp (24)
where n is the mode number of the buckling.

By substituting the equivalent bending stiffness and shear stiffness of the perforated beams, derived
from Equations (2) and (3), into Equation (24), the critical buckling loads according to the MCST for a S-S
perforated nanobeam resting on a W-PEF can be analytically determined. In Equation (24), the smallest
load (n = 1) is called the critical buckling load [46] and can be calculated as follows:

T2 kL2
Por = [(EDp + (GA)p 5] Yt 7

+k, (25)

The analytically calculated critical buckling loads, along with the results obtained from the FEM model
for varying element numbers, are presented in Table 1. The geometrical and material properties of the
perforated nanobeam are given as follows in Table 1 and in the rest of the study unless otherwise stated:
E=1TPa,h=2nm, b=4nm, K¥ =100, K? =5, N =5,a =0.5, and [, = 0.5. Comparisons are made
for different values of L and N°.

Table 1. Comparison of critical buckling loads (P,,-) obtained from Equation (25) and
FEM for different values of L and N°
P, (nN)
L (nm) Eq. 25 FEM

N¢ =10 N¢ =15 N¢ =20 N¢ =25 N¢ =30

10 602.3807 602.3834 602.3812 602.3809 602.3808 602.3807
20 150.5952 150.5958 150.5953 150.5952 150.5952 150.5952
30 66.9312 66.9315 66.9312 66.9312 66.9312 66.9312
40 37.6488 37.6490 37.6488 37.6488 37.6488 37.6488
50 24.0952 24.0953 24.0952 24.0952 24.0952 24.0952
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From Table 1, the analytical solution given in Equation (25) closely matches the solution provided by
the FEM. For all other L lengths except L = 10 nm, the N® = 20 case gives exact results up to four digits
after the integer. In the case of L = 10, the exact result is obtained at N = 30. In the analyses performed
throughout the study, N® = 30 was chosen considering this situation, and all analyses were performed
according to this value.

Figure 2 compares the critical buckling loads of a perforated nanobeam resting on a W-PEF as
predicted by CT and MCST. The numerical values employed in this figure are consistent with those listed
in Table 1. Two different length-scale parameters are selected for MCST: [, = 1 nm. and [,,, = 2 nm.

800k — CT

MCST/,, = 1 nm.
6000 MCST /, = 2 nm. |
z
&
5 400¢
200+

10 20 30 0 50
L (nm)
Figure 2. Comparison of the critical buckling loads for CT and MCST

In applying the MCST, the length scale parameter is typically determined by comparing
experimentally measured size-dependent mechanical responses—such as bending stiffness, natural
frequencies, or related behaviors at micro/nano scales —with theoretical predictions from MCST. Yang et
al. [4] have outlined methodological approaches whereby experimental micro-scale data are modeled
under the MCST framework to obtain the corresponding material length scale. Similarly, Park and Gao
[47] employed variational methods to derive closed-form solutions, thereby highlighting the importance
of calibrating [, based on the bending and vibration responses of micro-beams. Their findings indicate
that [, is closely tied to the microstructural characteristics of the material, such as grain size, crystal
structure, or atomic-level regularity. Due to the scarcity of comprehensive nano-scale experimental data—
often stemming from the high costs and complexities of conducting such experiments—the range
0 < ln/h < 1is frequently adopted in the literature [26], [41], [48]. This practical choice captures a broad
spectrum of microstructural effects without requiring exhaustive experimental calibration for every
specific material. As seen in Figure 2, MCST yields consistently higher critical buckling loads than the CT,
demonstrating the enhanced stiffness arising from material microstructure effects.

Figure 3 demonstrates the effects of the elastic foundation on the critical buckling load. The analysis
uses previously mentioned material and geometrical properties with L = 30 nm. The figure presents
critical buckling loads for various values of K" and KP.
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Figure 3. The critical buckling loads for different values of dimensionless elastic foundation
parameters

The results show that critical buckling load values increase continuously as the dimensionless WEF
parameter (K") increases, indicating more vital interaction between the nanobeam and foundation,
thereby growing stiffness. The WEF model simulates foundation resistance using a spring analogy - as
this resistance increases, the beam's buckling resistance also increases. This linear relationship shows that
K"'s effect on critical buckling load is consistent across all values, meaning the beam's buckling stability
is directly proportional to foundation stiffness. Figure 3 displays four curves representing different
dimensionless Pasternak parameter (K?) values (0, 1, 5, 10). The critical buckling load increases with K7,
similar to KY. The Pasternak parameter enhances foundation stiffness by incorporating shear
deformations, making the nanobeam more resistant to buckling. Even when K? = 0, the buckling load
increases with K%, and this trend becomes more pronounced when K? is included in the analysis. This
demonstrates that the beam achieves greater stability when the foundation is modeled using both the
spring analogy (Winkler) and shear effects (Pasternak). Each curve in Figure 3 corresponds to a specific
K? value, showing P, increasing with K". Higher K? values yield greater P, values for equivalent K"
values. Notably, K? has a significantly greater effect on the nanobeam's P, value than K". For instance,
when K? = 0, increasing K" from 0 to 100 results in approximately 135% increase in P,,.. Similarly, when
K" = 0, increasing K? from 0 to 10 produces a comparable percentage increase in P, demonstrating how
shear effects substantially strengthen the beam's buckling capacity. To further elucidate the combined
effects of the K" and KP foundation parameters on the critical buckling load, Figure 4 has been added.
This figure offers a comprehensive visualization of the interaction between K%, K?, and F,,, clearly
depicting how simultaneous variations in both foundation parameters influence buckling behavior.

Figure 4. Variation of the critical buckling loads depending on K" and K?

Figures 5 and 6 illustrate how P, varies with the filling ratio and hole number while also revealing
the effect of MCST's length scale parameter. The analysis uses K" = 100 and K? = 5, with [, = 0.1 in
Figure 5 and [, = 2 in Figure 6, allowing examination of cases where MCST's effect is minimal and
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maximal, respectively.
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Figure 5. Variation of the critical buckling loads depending on @ and N (I, = 0.1)
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Figure 6. Variation of the critical buckling loads depending on @ and N (I,,, = 2)

Figures 5 and 6 illustrate the relationship between the critical buckling load, the filling ratio, and the
number of holes in perforated nanobeams. The results indicate that P.. increases significantly as «
approaches 1, meaning that a fully filled beam exhibits higher buckling resistance. For a given a, an
increase in N leads to a decrease in P, as more perforations reduce the overall stiffness, thereby
diminishing the buckling resistance. When N = 1, the nanobeam retains the highest P.,, confirming that
fewer perforations contribute to greater structural rigidity. Conversely, when N = 10, the increased
number of perforations weakens the structure, leading to lower P, values. A key observation is the
influence of the internal length scale parameter on buckling resistance. Comparing different cases (I, =
0.1 versus [, = 2) reveals that a larger [,,, significantly increases P, demonstrating that MCST accounts
for microscale effects that enhance the beam's stiffness.

This effect is particularly evident in Figures 5 and 6, where the N = 1 curve consistently exhibits the
highest P, values. The difference between Figures 5 and 6 is attributed solely to the variation in [,,. This
discrepancy can be explained by examining the role of shear stiffness, which is influenced by [,;,. As seen
in the governing equation, the term (GA)pl3, contributes directly to P... When [, is small, (GA), has a
limited effect, leading to a concave downward trend in Figure 5. However, when [,,, is large, the influence
of (GA) p becomes more pronounced, smoothing out the increase in F,, as a increases, resulting in a convex
upward trend in Figure 6. This finding reveals the role of micro-scale shear effects in determining the
buckling response of perforated nanobeams. Furthermore, the relationship between a and N indicates that
although Pcr generally increases with a, this effect diminishes as N increases. In other words, when a
nanobeam has a high number of perforations, increasing the filling ratio has a limited impact on its
buckling strength. This suggests that the structural weakening effect caused by perforations depends not
only on a but also on N and Im, demonstrating the necessity of incorporating non-classical continuum
theories for accurate stability predictions in nanoscale beams.
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Figure 7 provides a detailed examination of MCST's length scale parameter effect, showing P,
variation as a function of [,, and N.

140

P, (nN)

6840 0.5 1.0 1.5 2.0 25
I (nm)

Figure 7. Variation of the critical buckling loads depending on [,,, and N

The results clearly demonstrate increasing P, values with higher [,,, values, indicating how the
MCST's [,,, parameter contributes to beam stiffness at nanoscale dimensions. This shows that size effects,
significant at nano dimensions, enhance stiffness and buckling resistance. P, decreases with increasing N,
and this effect becomes more pronounced at higher [,,, values. The P, difference between N =1 and N =
10 is approximately 13.25% at [, = 0.02 nm, increasing to 28.60% at I, = 2.5 nm. However, higher [,
values mitigate the holes' weakening effect on the beam. For instance, the P, valuefor N =1and [, = 0
(CT) is lower than for N = 10 and [,,, = 1.3 nm. This demonstrates how [,'s positive contribution to
nanobeam stability can match or exceed P, values even with more holes. These findings indicate that the
internal length parameter counterbalances hole-induced structural weakening by increasing stiffness in
nano-sized structures. Consequently, with higher [,, parameter values, critical buckling load can remain
high despite increased hole numbers.

Figure 8 analyzes the relationship between critical buckling loads and nanobeam length for varying
numbers of holes.

20 25 30 35 40 45 50
L (nm)
Figure 8. Variation of the critical buckling loads depending on L and N

The analysis demonstrates that critical buckling load decreases as beam length increases, confirming
that longer beams have lower buckling resistance. This trend is consistent across all hole configurations.
Beams with fewer holes maintain higher critical buckling load values even as length increases, indicating
that structural stiffness decreases significantly with both increased hole numbers and the nanobeam
length. Comparing configurations from N = 1 to N = 10 reveals that a higher number of holes
substantially reduces critical buckling load. This reduction occurs because holes diminish the beam's
overall structural stiffness, lowering its buckling resistance. The N = 10 configuration yields the lowest
critical buckling load values, demonstrating the negative impact of multiple holes on structural stability.

Figures 9 through 12 examine elastic foundation effects on critical buckling load. Figures 9 and 11 plot
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results for K? =5 with varying K" values, while Figures 10 and 12 show results for K" = 100 with
varying K? values. Figures 9 and 10 analyze effects relative to the number of holes, while Figures 11 and
12 examine effects relative to the filling ratio.

- N=1
100}

N=2

P, (nN)

0 50 100 150 200
»
Figure 9. Variation of the critical buckling loads depending on K" and N (K? = 5)

90+

Pe: (nN)

50 S A R
0 2 4 6 8 10
K?

Figure 10. Variation of the critical buckling loads depending on K? and N (K" = 100)

Figure 9 demonstrates that critical buckling load increases with higher WEF parameter values.
However, increasing the number of holes (from N =1 to N = 10) significantly reduces critical buckling
load. The holes weaken structural stiffness, diminishing the foundation stiffness's positive effect on critical
buckling load. Beams with fewer holes (N = 1) exhibit higher buckling loads, indicating that foundation
stiffness more effectively enhances structural stability in these cases. Similarly, Figure 10 shows that the
critical buckling load increases with higher Pasternak foundation parameter values. The Pasternak
foundation model's incorporation of shear effects enhances beam stiffness, improving buckling resistance.
While critical buckling load still decreases with increased hole numbers, higher K? values partially
compensate for hole-induced weakening through increased foundation shear stiffness. Nevertheless,
configurations with more holes (N = 10) maintain lower critical buckling loads, indicating that hole-
induced weakening dominates despite increased foundation stiffness. Both figures demonstrate that
critical buckling load increases with higher K" and KP parameters due to enhanced elastic foundation
support, though increased hole numbers consistently reduce critical buckling load.
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Figure 12. Variation of the critical buckling loads depending on K? and a (K" = 100)

Figures 11 and 12 reveal that critical buckling load increases significantly with higher filling ratios,
indicating enhanced structural stiffness and buckling resistance. Both foundation parameters (K" and K?)
positively affect P,,.. Figure 11 clearly shows P, increasing with K", demonstrating enhanced buckling
resistance as foundation support strengthens. Additionally, P, increases linearly with the filling ratio (as
o increases from 0.1 to 0.9). Figure 12 shows that similar P, increases with higher K? values. P,
consistently increases with o for each K? value, demonstrating that higher filling ratios combined with
foundation shear stiffness provide enhanced buckling resistance.

4. CONCLUSIONS

This study contributes to the field of nanostructure mechanics by investigating the buckling behavior
of perforated nanobeams resting on W-PEF using MCST and FEM. This analysis significantly extends
previous work on nanoscale buckling by incorporating size effects through MCST —an approach not
previously applied to perforated nanobeams on W-PEF. The results demonstrate several key findings that
advance the understanding of nanoscale mechanical behavior:

e Both Winkler and Pasternak foundation parameters substantially increase critical buckling
loads, with the Pasternak foundation demonstrating superior influence due to its
incorporation of shear effects. This finding aligns with previous research [16], [18] - [20], on
beam—foundation interaction but extends the literature by examining perforated nanobeams
at the nanoscale.

e Theinclusion of the internal length scale parameter increases the predicted buckling capacity,
emphasizing the need to account for size-dependent microstructural effects. These results
support previous MCST-based studies on nano-beams without holes [41] - [43], but
additionally demonstrate the interaction between holes and microstructural stiffness.

e Higher fill ratios are associated with increased buckling resistance, while additional holes
reduce structural stability. Unlike macro-scale studies that treat holes as simple mass
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reduction, this analysis also reveals the interactions between holes, size effects and foundation
properties at the nanoscale.

Beam length exhibits an inverse relationship with buckling resistance, particularly
pronounced in highly perforated configurations, indicating a heightened sensitivity to
geometric parameters at the nanoscale.

These findings provide practical guidance for nanostructured material design, particularly for

applications requiring optimized buckling resistance. Future research directions should include:

Investigating temperature effects on perforated nanobeam stability, particularly for
applications in extreme thermal environments.

Exploring different nanomaterials (e.g., graphene, carbon nanotubes) with their respective
size-dependent properties.

Examining dynamic loading conditions and vibration response.

Incorporating multi-physics coupling effects (electro-mechanical, thermo-mechanical)
relevant to next-generation nano-devices.

The methodology developed in this study provides a framework for future investigations into
complex nanostructure behavior where classical theories prove inadequate.
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