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ABSTRACT: The buckling behavior of perforated nanobeams on elastic foundations has become 

increasingly important, mainly due to their widespread use in nanostructures and nanotechnology 

systems. This study investigates the buckling behavior of perforated nanobeams resting on Winkler-

Pasternak elastic foundations using Modified Couple Stress Theory (MCST) and the Finite Element 

Method (FEM). The analysis examines the effects of various parameters, including foundation elasticity, 

MCST internal length scale, perforation properties, and beam length, on critical buckling loads. Results 

indicate that increasing both Winkler and Pasternak foundation parameters enhances the critical buckling 

load, with the Pasternak parameter showing a more pronounced effect due to its incorporation of shear 

effects. The MCST internal length scale parameter significantly influences nano-beam stability, 

highlighting the importance of size effects at nanoscale dimensions. Higher filling ratios correlate directly 

with increased buckling resistance, while a greater number of holes reduces overall structural stiffness 

and decreases the critical buckling load. Beam length exhibits an inverse relationship with buckling 

strength; longer beams demonstrate lower critical buckling loads than shorter beams, regardless of the 

number of holes present. 

 

Keywords: Buckling Analysis, Finite Element Method, Modified Couple Stress Theory, Perforated Nanobeam, 

Winkler-Pasternak Foundation   

1. INTRODUCTION 

Nanobeams are important nanostructures with many applications, including nanosystems, sensors, 

and micro/nano-electro-mechanical systems (MEMS-NEMS) [1]. The increasing use of perforated 

nanobeams, particularly when weight reduction or functional requirements necessitate structural 

modifications, has made it crucial to understand their mechanical behavior and study the effects of the 

number of holes, filling ratio, and small-scale impact on these behaviors [2]. These structures often interact 

with elastic foundations in engineering applications, and their mechanical behavior varies accordingly. 

Classical beam theories (CTs) may be inadequate for analyzing nanoscale structures due to their 

inability to account for size-dependent effects [3]. Many higher-order elasticity theories have been 

proposed in the literature to overcome these deficiencies. One such theory is the Modified Couple Stress 

Theory (MCST) developed by Yang et al. [4]. This theory was introduced to capture these size effects by 

incorporating an intrinsic length scale parameter into the analysis. In recent years, many studies have been 

conducted to analyze the mechanical behavior of nanostructures using MCST [5] - [12]. 

The stability of beams on elastic foundations has been studied using various foundation models. The 

Winkler elastic foundation (WEF) model, widely used due to its simplicity, models the interaction between 

the foundation and the beam with springs [13], [14]. The Winkler-Pasternak elastic foundation (W-PEF) 

model improved the WEF model by including the shear interactions between the spring elements [15], 

[16]. There have been many studies investigating the mechanical behavior of nanostructures using elastic 

foundation models and MCST [17] - [21]. Togun and Bağdatlı [18] developed an MCST-based model to 

analyze the free vibration behavior of simply supported (S-S) nanobeams resting on a WEF. By employing 

Hamilton’s principle and the multiple scale method, their study demonstrates that the incorporation of a 

mailto:ugur.kafkas@dpu.edu.tr
mailto:ugur.kafkas@dpu.edu.tr
https://orcid.org/0000-0003-1730-7810


Perforated Nanobeams on Elastic Foundation  369 

 

material length scale parameter effectively captures significant size effects—yielding higher fundamental 

frequencies than those predicted by classical Euler–Bernoulli theory—and that an increased non-

dimensional Winkler foundation parameter enhances system stiffness. Akgöz ve Civalek [18] investigated 

the free vibration behavior of single-layered graphene sheets on a Pasternak-type elastic matrix using 

MCST and an analytical thin plate model. Their analytical results demonstrate that the material length 

scale parameter significantly affects the vibration frequencies—especially for smaller geometries and 

higher vibration modes—with its influence diminishing as the Winkler and shear modulus parameters 

increase. Şimşek [21] developed a non-classical beam model for the static and nonlinear vibration analysis 

of microbeams on a three-layered nonlinear elastic foundation by integrating MCST with Euler–Bernoulli 

beam theory and incorporating von-Kármán’s geometric nonlinearity. The study reveals that the inclusion 

of a length scale parameter and nonlinear foundation stiffness coefficients significantly influences both 

the static deflection and the nonlinear frequency ratio, with the derived closed-form expressions being 

validated through extensive numerical comparisons.  

Perforated nanobeams are nanostructures with modified stiffness properties created using various 

techniques and must be modeled appropriately [22]. Luschi and Pieri [23] proposed a local model for the 

micromechanical properties of microscale perforated beams. Although many researchers have studied 

either perforated macro/nano beams [24] - [35] or nanobeams on elastic foundations [36] - [44], the effects 

of hole patterns and elastic foundation interactions on nanobeam buckling behavior have not been 

sufficiently investigated. Abdelrahman et al. [36] modeled the buckling behavior of perforated nanobeams 

in a piezoelectric sandwich structure, considering elasticity and dimensional effects. Almitani et al. [37] 

performed the stability analysis of perforated nanorods, considering the surface energy effect. 

Abdelrahman and Eltaher [2] investigated the bending and buckling responses of perforated nanobeams, 

examining the effects of surface energy on different beam theories. Eltaher et al. [38] analytically 

investigated the static bending and buckling behavior of perforated nanobeams according to Euler-

Bernoulli and Timoshenko theories, considering nonlocal effects. Kafkas et al. [22] proposed an analytical 

solution by considering non-local effects and deformable boundary conditions while investigating the 

buckling behavior of perforated nano/microbeams on an elastic foundation. 

This study makes a novel contribution to the field of nanostructure mechanics by integrating MCST 

with FEM for analyzing the buckling behavior of perforated nanobeams on W-PEF. Unlike traditional 

analyses based solely on classical continuum theories, this study explicitly accounts for nanoscale size 

effects through the incorporation of an intrinsic length scale parameter. A comprehensive literature review 

indicates that no previous work has addressed the buckling behavior of perforated nanobeams on W-PEF 

using MCST, either analytically or numerically. These contributions not only extend the theoretical 

framework for understanding nanoscale buckling phenomena but also offer guidance for designing and 

optimizing advanced nanostructured materials.  

2. MATERIAL AND METHODS 

The geometrical configuration of a S-S perforated nanobeam loaded by an axial force 𝑃, defined by 

the presence of holes of dimensions 𝐿, 𝑏 and ℎ in the cross-sectional region, is shown in Figure 1. 

 
Figure 1. Perforated nanobeam resting on a W-PEF 

 

To effectively analyze the mechanical response of perforated structures, it is essential to consider the 
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periodic arrangement of the cut-out holes. Luschi and Pieri [23] presented analytical solutions for 

equivalent geometric and material properties of perforated beams. Let 𝑙𝑠 and 𝑡𝑠 denote the spatial period 

and period length, respectively, and the filling ratio 𝛼 can be represented as follows [23]: 

𝛼 =  
𝑡𝑠
𝑙𝑠
,      0 < 𝛼 ≤ 1 (1) 

 

The critical point to note here is that in the case of 𝛼 = 1, the nanobeam represents a fully filled solid 

beam, while 𝛼 < 1 refers to the case with holes [29]. 𝑁 indicates the number of holes along the cross-

section, the equivalent bending stiffness and shear stiffness of the perforated beam compared to the solid 

beam can be expressed as follows [23], [38] - [40]: 

(𝐸𝐼)𝑝

𝐸𝐼
=

𝛼(𝑁 + 1)(𝑁2 + 2𝑁 + 𝛼2)

(1 − 𝛼2 + 𝛼3)𝑁3 + 3𝛼𝑁2 + (3𝛼2 + 2𝛼3 − 3𝛼4 + 𝛼5)𝑁 + 𝛼3
 

(2) 

(𝐺𝐴)𝑝

𝐸𝐴
=
𝛼3(𝑁 + 1)

2𝑁
 

(3) 

 

where 𝐸 and 𝐺 represent the modulus of elasticity and shear, 𝐴 and 𝐼 represent the cross-sectional area 

and moment of inertia of the filled beam, respectively, and 𝐴 = 𝑏ℎ. The sub-index 𝑝 represents the 

perforated nano-beam. 

2.1. Modified Couple Stress Theory 

MCST, first proposed by Yang et al. [4], accounts for the small size effects observed in micro- and 

nanoscale structures by incorporating a material length scale parameter into its equations. According to 

MCST, for a solid nano-beam resting on a W-PEF, the governing equation for the buckling problem can 

be represented as follows [41], [42]:  

 

𝐸𝐼
𝜕4𝑤

𝜕𝑥4
+ 𝐺𝐴𝑙𝑚

2
𝜕4𝑤

𝜕𝑥4
+ 𝑃

𝜕2𝑤

𝜕𝑥2
− 𝑘𝑝

𝜕2𝑤

𝜕𝑥2
+ 𝑘𝑤𝑤 = 0 (4) 

 

where 𝐸𝐼 and 𝐺𝐴 are the bending and shear stiffnesses of the solid beam, respectively, 𝑙𝑚 is the material 

length scale parameter, 𝑘𝑤 and 𝑘𝑝 are the WEF and W-PEF parameters, respectively, and 𝑤 is the 

transverse displacement. If the bending and shear stiffnesses of the perforated nano-beam given in 

Equations (2) and (3) are substituted in Equation (4), the governing equation can be shown as follows: 

 

[(𝐸𝐼)𝑃 + (𝐺𝐴)𝑃𝑙𝑚
2 ]
𝜕4𝑤

𝜕𝑥4
+ [𝑃 − 𝑘𝑝]

𝜕2𝑤

𝜕𝑥2
+ 𝑘𝑤𝑤 = 0 (5) 

 

2.2. Finite Element Method 

To examine the buckling behavior of a nanobeam resting on a W-PEF via the FEM and to determine 

the critical buckling loads by accounting for the size effect using the MCST, the nanobeam is discretized 

into more minor beam elements.  

2.2.1 Finite element discretization process 

The nanobeam is discretized into 𝑁𝑒 finite elements, each consisting of two nodes with four degrees 

of freedom (DOF) per element—two translational (𝑤1, 𝑤2) and two rotational (𝜃1, 𝜃2) DOFs. The shape 

functions 𝛏 are employed to interpolate the displacement field within each element based on nodal values. 

The governing differential equation, incorporating MCST effects, is formulated in its weak form to 
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facilitate FEM implementation. The nodal displacement vector, w, represents the displacements and 

rotations at both ends of the beam element and is shown as follows [43]: 

 
𝐰 = [𝑤1 𝜃1 𝑤2 𝜃2] (6) 

 

where 𝑤1 and 𝜃1 represent the transverse displacement and rotation at node 1 and 𝑤2 and 𝜃2 represent the 

transverse displacement and rotation at node 2, respectively.  

The shape functions can be given as follows [44]: 

 

𝛏 = [

𝜉1
𝜉2
𝜉3
𝜉4

] (7) 

 

Both the displacement and rotation of the nanobeam at each nodal point can be represented by the 

shape functions as follows: 

 
𝑤 = 𝑤1𝜉1 + 𝜃1𝜉2 + 𝑤2𝜉3 + 𝜃2𝜉4 (8) 

 

Given the length 𝐿𝑒 of each beam segment, the elements of the shape function vector can be defined 

as follows [44]: 

 

𝛏 = [

𝜉1
𝜉2
𝜉3
𝜉4

] =

[
 
 
 
 
 
 
 
 
 1 −

3𝑥2

𝐿𝑒
2
+
2𝑥3

𝐿𝑒
3

𝑥 −
2𝑥2

𝐿𝑒
+
𝑥3

𝐿𝑒
2

3𝑥2

𝐿𝑒
2
−
2𝑥3

𝐿𝑒
3

−
𝑥2

𝐿𝑒
+
𝑥3

𝐿𝑒
2 ]

 
 
 
 
 
 
 
 
 

 (9) 

 

According to the MCST with a small-scale effect, to obtain the weak form of the governing differential 

equation for buckling of a nanobeam on a W-PEF, shape functions can be chosen as weighting functions, 

and the differential equation can be formulated in weighted integral form. This requires multiplying the 

residual 𝑅 by the weighting functions and integrating the result over the entire length of the nanobeam: 

 

𝑅 = [(𝐸𝐼)𝑃 + (𝐺𝐴)𝑃𝑙𝑚
2 ]
𝜕4𝑤

𝜕𝑥4
+ [𝑃 − 𝑘𝑝]

𝜕2𝑤

𝜕𝑥2
+ 𝑘𝑤𝑤 (10) 

∫ ([(𝐸𝐼)𝑃 + (𝐺𝐴)𝑃𝑙𝑚
2 ]𝛏

𝜕4𝑤

𝜕𝑥4
+ [𝑃 − 𝑘𝑝]𝛏

𝜕2𝑤

𝜕𝑥2
+ 𝑘𝑤𝛏𝑤)

𝐿

0

𝑑𝑥 = 0                                                   (11) 

 

Parts integrate equation (11), and the chain rule is used to obtain the general form: 

 

∫ ([(𝐸𝐼)𝑃 + (𝐺𝐴)𝑃𝑙𝑚
2 ]
𝑑2𝛏

𝑑𝑥2
𝑑2𝛏𝑇

𝑑𝑥2
+ [𝑃 − 𝑘𝑝]

𝑑𝛏

𝑑𝑥

𝑑𝛏𝑇

𝑑𝑥
+ 𝑘𝑤𝛏𝛏

𝑇)
𝐿

0

𝑑𝑥 = 0                                                   (12) 

 

2.2.2 Solution steps in the FEM approach 

To determine the critical buckling load of the perforated nanobeam using FEM, the following solution 

procedure is applied: 
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1. Discretization: The nanobeam is divided into 𝑁𝑒 elements, each modeled using two-node 

beam elements that incorporate transverse displacement and rotation. 

2. Shape Function Definition: The displacement field is approximated using Hermite cubic 

shape functions, ensuring continuity in displacement and rotation. 

3. Weak Formulation: The governing equation is rewritten in weighted residual form, where 

shape functions serve as weighting functions, allowing the formulation of the stiffness matrix 

𝐾 and load matrix 𝐵. 

4. Stiffness and Load Matrix Computation: The global system matrices are assembled based on 

element contributions. 

5. Eigenvalue Problem Solving: The characteristic equation |𝐾 − 𝜆𝐵| = 0 is solved to determine 

the critical buckling load, where 𝜆 = 𝑃𝑐𝑟 𝑃⁄  represents the eigenvalue. 

To derive the global system matrices; the stiffness, elastic foundation and axial load matrices of the 

nanobeam, the shape functions in Equation (9) are substituted in Equation (12), and integrals are 

performed term by term. The resulting matrices are defined below: 

 

𝐾𝐿 = (𝐸𝐼)𝑃∫

{
 

 
𝜉1
′′

𝜉2
′′

𝜉3
′′

𝜉4
′′}
 

 𝐿𝑒

0

{𝜉1
′′   𝜉2

′′   𝜉3
′′   𝜉4

′′}𝑑𝑥 =
(𝐸𝐼)𝑃
𝐿𝑒
3

[
 
 
 
12 6𝐿𝑒 −12 6𝐿𝑒
6𝐿𝑒 4𝐿𝑒

2 −6𝐿𝑒 2𝐿𝑒
2

−12 −6𝐿𝑒 12 −6𝐿𝑒
6𝐿𝑒 2𝐿𝑒

2 −6𝐿𝑒 4𝐿𝑒
2 ]
 
 
 

 (13) 

𝐾𝑀 = (𝐺𝐴)𝑃𝑙𝑚
2 ∫

{
 

 
𝜉1
′′

𝜉2
′′

𝜉3
′′

𝜉4
′′}
 

 𝐿𝑒

0

{𝜉1
′′   𝜉2

′′   𝜉3
′′   𝜉4

′′}𝑑𝑥 =
(𝐺𝐴)𝑃𝑙𝑚

2

𝐿𝑒
3

[
 
 
 
12 6𝐿𝑒 −12 6𝐿𝑒
6𝐿𝑒 4𝐿𝑒

2 −6𝐿𝑒 2𝐿𝑒
2

−12 −6𝐿𝑒 12 −6𝐿𝑒
6𝐿𝑒 2𝐿𝑒

2 −6𝐿𝑒 4𝐿𝑒
2 ]
 
 
 

 (14) 

𝐾𝑊 = 𝑘𝑊∫ {

𝜉1
𝜉2
𝜉3
𝜉4

}
𝑙𝑒

0

{𝜉1   𝜉2   𝜉3   𝜉4}𝑑𝑥 =
𝑘𝑤
420

[
 
 
 
 
156𝐿𝑒 22𝐿𝑒 54𝐿𝑒 −13𝐿𝑒

2

22𝐿𝑒
2 4𝐿𝑒

3 13𝐿𝑒
2 −3𝐿𝑒

3

54𝐿𝑒 13𝐿𝑒
2 156𝐿𝑒 −22𝐿𝑒

2

−13𝐿𝑒
2 −3𝐿𝑒

3 −22𝐿𝑒
2 4𝐿𝑒

3 ]
 
 
 
 

 (15) 

𝐾𝑃 = 𝑘𝑝∫

{
 

 
𝜉1
′

𝜉2
′

𝜉3
′

𝜉4
′}
 

 𝐿𝑒

0

{𝜉1
′    𝜉2

′    𝜉3
′    𝜉4

′ }𝑑𝑥 =
𝑘𝑝

30𝐿𝑒
[
 
 
 
36 3𝐿𝑒 −36 3𝐿𝑒
3𝐿𝑒 4𝐿𝑒

2 −3𝐿𝑒 −𝐿𝑒
2

−36 −3𝐿𝑒 36 −3𝐿𝑒
3𝐿𝑒 −𝐿𝑒

2 −3𝐿𝑒 4𝐿𝑒
2 ]
 
 
 

 (16) 

𝐵𝐴 = 𝑃∫

{
 

 
𝜉1
′

𝜉2
′

𝜉3
′

𝜉4
′}
 

 𝑙𝑒

0

{𝜉1
′    𝜉2

′    𝜉3
′    𝜉4

′}𝑑𝑥 =
𝑃

420

[
 
 
 
 
156𝐿𝑒 22𝐿𝑒 54𝐿𝑒 −13𝐿𝑒

2

22𝐿𝑒
2 4𝐿𝑒

3 13𝐿𝑒
2 −3𝐿𝑒

3

54𝐿𝑒 13𝐿𝑒
2 156𝐿𝑒 −22𝐿𝑒

2

−13𝐿𝑒
2 −3𝐿𝑒

3 −22𝐿𝑒
2 4𝐿𝑒

3 ]
 
 
 
 

 (17) 

 

In these equations, 𝐾𝐿 is the matrix derived from the CT (local), 𝐾𝑀 is the matrix related to MCST, 

which also takes into account the effect of small size by means of the material length scale parameter. If 

the 𝐾𝑀 matrix is neglected, the finite element solution reduces to the Euler-Bernoulli beam theory based 

on classical mechanics. The 𝐾𝑊 and 𝐾𝑃 matrices are due to the WEF parameter and the Pasternak shear 

layer effect, respectively, while the 𝐵𝐴 matrix is the matrix due to the axial load. From the 𝐾𝑊 and 𝐾𝑃 

matrices, if the 𝐾𝑃 matrix is neglected, buckling analysis to MCST can be performed for the nano-beam 

resting on a WEF, while if both 𝐾𝑊 and 𝐾𝑃 are neglected, the buckling behavior of the nano-beam not 

resting on an elastic foundation is analyzed. 

The buckling loads of a nanobeam resting on the W-PEF can be calculated according to MCST using 

the total stiffness and load matrices as follows [45]: 

 
|𝐾 − 𝜆𝐵| = 0 (18) 

 

where 𝜆 eigenvalue represents the ratio of the critical buckling load (𝑃𝑐𝑟) to the applied axial load (𝑃), 𝐾 is 

the sum of the stiffness matrices, and 𝐵 is the sum of the matrices resulting from the axial load and is 

shown as: 
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𝜆 =
𝑃𝑐𝑟
𝑃

 (19) 

[𝐾] = [𝐾𝐿] + [𝐾𝑀] + [𝐾𝑊] + [𝐾𝑃] (20) 
[𝐵] = [𝐵𝐴] (21) 

 

3. RESULTS AND DISCUSSION 

This chapter examines the critical buckling loads of nanobeams resting on a W-PEF using numerical 

results based on the MCST, considering the effects of size and elastic foundation. The study provides a 

FEM-based solution, and analyses are conducted to validate the results and to explore the influence of 

various parameters on the buckling behavior of nanobeams. For these analyses, as well as the presentation 

of figures and tables, the following dimensionless quantities are employed: 

 

𝐾𝑤 =
𝑘𝑤𝐿

4

𝐸𝐼
 (22) 

𝐾𝑝 =
𝑘𝑝𝐿

2

𝐸𝐼
 (23) 

 

A comparison study to verify the accuracy of the FEM model is presented in this section. The analytical 

solution of critical buckling loads according to MCST for a S-S solid nanobeam resting on the W-PEF is 

given by Mercan et al. [41] as follows: 

𝑃(𝑛)̅̅ ̅̅ ̅̅ = (𝐸𝐼 + 𝐺𝐴𝑙𝑚
2 )
𝑛2𝜋2

𝐿2
+
𝑘𝑤𝐿

2

𝑛2𝜋2
+ 𝑘𝑝 (24) 

 

where 𝑛 is the mode number of the buckling.  

By substituting the equivalent bending stiffness and shear stiffness of the perforated beams, derived 

from Equations (2) and (3), into Equation (24), the critical buckling loads according to the MCST for a S-S 

perforated nanobeam resting on a W-PEF can be analytically determined. In Equation (24), the smallest 

load (𝑛 = 1) is called the critical buckling load [46] and can be calculated as follows: 

 

𝑃𝑐𝑟 = [(𝐸𝐼)𝑃 + (𝐺𝐴)𝑃𝑙𝑚
2 ]
𝜋2

𝐿2
+
𝑘𝑤𝐿

2

𝜋2
+ 𝑘𝑝 (25) 

  

The analytically calculated critical buckling loads, along with the results obtained from the FEM model 

for varying element numbers, are presented in Table 1. The geometrical and material properties of the 

perforated nanobeam are given as follows in Table 1 and in the rest of the study unless otherwise stated: 

𝐸 = 1 TPa, ℎ = 2 nm, 𝑏 = 4 nm, 𝐾𝑤 = 100, 𝐾𝑝 = 5, 𝑁 = 5, 𝛼 = 0.5, and 𝑙𝑚  = 0.5. Comparisons are made 

for different values of 𝐿 and 𝑁𝑒. 

 

Table 1. Comparison of critical buckling loads (𝑃𝑐𝑟) obtained from Equation (25) and 

FEM for different values of 𝐿 and 𝑁𝑒 

𝐿 (nm) 

𝑃𝑐𝑟  (nN) 

Eq. 25 
FEM 

𝑁𝑒 = 10 𝑁𝑒 = 15 𝑁𝑒 = 20 𝑁𝑒 = 25 𝑁𝑒 = 30 

10 602.3807 602.3834 602.3812 602.3809 602.3808 602.3807 

20 150.5952 150.5958 150.5953 150.5952 150.5952 150.5952 

30 66.9312 66.9315 66.9312 66.9312 66.9312 66.9312 

40 37.6488 37.6490 37.6488 37.6488 37.6488 37.6488 

50 24.0952 24.0953 24.0952 24.0952 24.0952 24.0952 
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From Table 1, the analytical solution given in Equation (25) closely matches the solution provided by 

the FEM. For all other 𝐿 lengths except 𝐿 = 10 nm, the 𝑁𝑒 = 20 case gives exact results up to four digits 

after the integer. In the case of 𝐿 = 10, the exact result is obtained at 𝑁𝑒 = 30. In the analyses performed 

throughout the study, 𝑁𝑒 = 30 was chosen considering this situation, and all analyses were performed 

according to this value. 

Figure 2 compares the critical buckling loads of a perforated nanobeam resting on a W-PEF as 

predicted by CT and MCST. The numerical values employed in this figure are consistent with those listed 

in Table 1. Two different length-scale parameters are selected for MCST: 𝑙𝑚 = 1 nm. and 𝑙𝑚 = 2 nm. 

 

 
Figure 2. Comparison of the critical buckling loads for CT and MCST 

 

In applying the MCST, the length scale parameter is typically determined by comparing 

experimentally measured size-dependent mechanical responses—such as bending stiffness, natural 

frequencies, or related behaviors at micro/nano scales—with theoretical predictions from MCST. Yang et 

al. [4] have outlined methodological approaches whereby experimental micro-scale data are modeled 

under the MCST framework to obtain the corresponding material length scale. Similarly, Park and Gao 

[47] employed variational methods to derive closed-form solutions, thereby highlighting the importance 

of calibrating 𝑙𝑚 based on the bending and vibration responses of micro-beams. Their findings indicate 

that 𝑙𝑚 is closely tied to the microstructural characteristics of the material, such as grain size, crystal 

structure, or atomic-level regularity. Due to the scarcity of comprehensive nano-scale experimental data—

often stemming from the high costs and complexities of conducting such experiments—the range  

0 < 𝑙𝑚/ℎ ≤ 1 is frequently adopted in the literature [26], [41], [48]. This practical choice captures a broad 

spectrum of microstructural effects without requiring exhaustive experimental calibration for every 

specific material. As seen in Figure 2, MCST yields consistently higher critical buckling loads than the CT, 

demonstrating the enhanced stiffness arising from material microstructure effects. 

Figure 3 demonstrates the effects of the elastic foundation on the critical buckling load. The analysis 

uses previously mentioned material and geometrical properties with 𝐿 = 30 nm. The figure presents 

critical buckling loads for various values of 𝐾𝑤 and 𝐾𝑝.  
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Figure 3. The critical buckling loads for different values of dimensionless elastic foundation 

parameters 

 

The results show that critical buckling load values increase continuously as the dimensionless WEF 

parameter (𝐾𝑤) increases, indicating more vital interaction between the nanobeam and foundation, 

thereby growing stiffness. The WEF model simulates foundation resistance using a spring analogy - as 

this resistance increases, the beam's buckling resistance also increases. This linear relationship shows that 

𝐾𝑤's effect on critical buckling load is consistent across all values, meaning the beam's buckling stability 

is directly proportional to foundation stiffness. Figure 3 displays four curves representing different 

dimensionless Pasternak parameter (𝐾𝑝) values (0, 1, 5, 10). The critical buckling load increases with 𝐾𝑝, 

similar to 𝐾𝑤. The Pasternak parameter enhances foundation stiffness by incorporating shear 

deformations, making the nanobeam more resistant to buckling. Even when 𝐾𝑝 = 0, the buckling load 

increases with 𝐾𝑤, and this trend becomes more pronounced when 𝐾𝑝 is included in the analysis. This 

demonstrates that the beam achieves greater stability when the foundation is modeled using both the 

spring analogy (Winkler) and shear effects (Pasternak). Each curve in Figure 3 corresponds to a specific 

𝐾𝑝 value, showing 𝑃𝑐𝑟  increasing with 𝐾𝑤. Higher 𝐾𝑝 values yield greater 𝑃𝑐𝑟  values for equivalent 𝐾𝑤 

values. Notably, 𝐾𝑝 has a significantly greater effect on the nanobeam's 𝑃𝑐𝑟  value than 𝐾𝑤. For instance, 

when 𝐾𝑝 = 0, increasing 𝐾𝑤 from 0 to 100 results in approximately 135% increase in 𝑃𝑐𝑟 . Similarly, when 

𝐾𝑤 = 0, increasing 𝐾𝑝 from 0 to 10 produces a comparable percentage increase in 𝑃𝑐𝑟 , demonstrating how 

shear effects substantially strengthen the beam's buckling capacity. To further elucidate the combined 

effects of the 𝐾𝑤 and 𝐾𝑝 foundation parameters on the critical buckling load, Figure 4 has been added. 

This figure offers a comprehensive visualization of the interaction between 𝐾𝑤, 𝐾𝑝, and 𝑃𝑐𝑟 , clearly 

depicting how simultaneous variations in both foundation parameters influence buckling behavior. 

 

 
Figure 4. Variation of the critical buckling loads depending on 𝐾𝑤 and 𝐾𝑝 

 

Figures 5 and 6 illustrate how 𝑃𝑐𝑟  varies with the filling ratio and hole number while also revealing 

the effect of MCST's length scale parameter. The analysis uses 𝐾𝑤 = 100 and 𝐾𝑝 = 5, with 𝑙𝑚  = 0.1 in 

Figure 5 and 𝑙𝑚  = 2 in Figure 6, allowing examination of cases where MCST's effect is minimal and 
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maximal, respectively. 

 

 
Figure 5. Variation of the critical buckling loads depending on 𝛼 and 𝑁 (𝑙𝑚  = 0.1) 

 

 
Figure 6. Variation of the critical buckling loads depending on 𝛼 and 𝑁 (𝑙𝑚 = 2) 

 

Figures 5 and 6 illustrate the relationship between the critical buckling load, the filling ratio, and the 

number of holes in perforated nanobeams. The results indicate that 𝑃𝑐𝑟  increases significantly as 𝛼 

approaches 1, meaning that a fully filled beam exhibits higher buckling resistance. For a given 𝛼, an 

increase in 𝑁 leads to a decrease in 𝑃𝑐𝑟 , as more perforations reduce the overall stiffness, thereby 

diminishing the buckling resistance. When 𝑁 = 1, the nanobeam retains the highest 𝑃𝑐𝑟 , confirming that 

fewer perforations contribute to greater structural rigidity. Conversely, when 𝑁 = 10, the increased 

number of perforations weakens the structure, leading to lower 𝑃𝑐𝑟  values. A key observation is the 

influence of the internal length scale parameter on buckling resistance. Comparing different cases (𝑙𝑚 =

0.1 versus 𝑙𝑚 = 2) reveals that a larger 𝑙𝑚 significantly increases 𝑃𝑐𝑟 , demonstrating that MCST accounts 

for microscale effects that enhance the beam's stiffness.  

This effect is particularly evident in Figures 5 and 6, where the 𝑁 = 1 curve consistently exhibits the 

highest 𝑃𝑐𝑟  values. The difference between Figures 5 and 6 is attributed solely to the variation in 𝑙𝑚. This 

discrepancy can be explained by examining the role of shear stiffness, which is influenced by 𝑙𝑚. As seen 

in the governing equation, the term (𝐺𝐴)𝑃𝑙𝑚
2  contributes directly to 𝑃𝑐𝑟 . When 𝑙𝑚 is small, (𝐺𝐴)𝑃 has a 

limited effect, leading to a concave downward trend in Figure 5. However, when 𝑙𝑚 is large, the influence 

of (𝐺𝐴)𝑃 becomes more pronounced, smoothing out the increase in 𝑃𝑐𝑟  as 𝛼 increases, resulting in a convex 

upward trend in Figure 6. This finding reveals the role of micro-scale shear effects in determining the 

buckling response of perforated nanobeams. Furthermore, the relationship between α and N indicates that 

although Pcr generally increases with α, this effect diminishes as N increases. In other words, when a 

nanobeam has a high number of perforations, increasing the filling ratio has a limited impact on its 

buckling strength. This suggests that the structural weakening effect caused by perforations depends not 

only on α but also on N and lm, demonstrating the necessity of incorporating non-classical continuum 

theories for accurate stability predictions in nanoscale beams. 
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Figure 7 provides a detailed examination of MCST's length scale parameter effect, showing 𝑃𝑐𝑟  

variation as a function of 𝑙𝑚 and 𝑁. 

  

 
Figure 7. Variation of the critical buckling loads depending on 𝑙𝑚 and 𝑁 

 

The results clearly demonstrate increasing 𝑃𝑐𝑟  values with higher 𝑙𝑚 values, indicating how the 

MCST's 𝑙𝑚 parameter contributes to beam stiffness at nanoscale dimensions. This shows that size effects, 

significant at nano dimensions, enhance stiffness and buckling resistance. 𝑃𝑐𝑟  decreases with increasing 𝑁, 

and this effect becomes more pronounced at higher 𝑙𝑚 values. The 𝑃𝑐𝑟  difference between 𝑁 = 1 and 𝑁 =

10 is approximately 13.25% at 𝑙𝑚 = 0.02 nm, increasing to 28.60% at 𝑙𝑚 = 2.5 nm. However, higher 𝑙𝑚 

values mitigate the holes' weakening effect on the beam. For instance, the 𝑃𝑐𝑟  value for 𝑁 = 1 and 𝑙𝑚 = 0 

(CT) is lower than for 𝑁 = 10 and 𝑙𝑚 = 1.3 nm. This demonstrates how 𝑙𝑚's positive contribution to 

nanobeam stability can match or exceed 𝑃𝑐𝑟  values even with more holes. These findings indicate that the 

internal length parameter counterbalances hole-induced structural weakening by increasing stiffness in 

nano-sized structures. Consequently, with higher 𝑙𝑚 parameter values, critical buckling load can remain 

high despite increased hole numbers. 

Figure 8 analyzes the relationship between critical buckling loads and nanobeam length for varying 

numbers of holes. 

 
Figure 8. Variation of the critical buckling loads depending on 𝐿 and 𝑁 

 

The analysis demonstrates that critical buckling load decreases as beam length increases, confirming 

that longer beams have lower buckling resistance. This trend is consistent across all hole configurations. 

Beams with fewer holes maintain higher critical buckling load values even as length increases, indicating 

that structural stiffness decreases significantly with both increased hole numbers and the nanobeam 

length. Comparing configurations from 𝑁 =  1 to 𝑁 =  10 reveals that a higher number of holes 

substantially reduces critical buckling load. This reduction occurs because holes diminish the beam's 

overall structural stiffness, lowering its buckling resistance. The 𝑁 = 10 configuration yields the lowest 

critical buckling load values, demonstrating the negative impact of multiple holes on structural stability. 

Figures 9 through 12 examine elastic foundation effects on critical buckling load. Figures 9 and 11 plot 
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results for 𝐾𝑝 = 5  with varying 𝐾𝑤 values, while Figures 10 and 12 show results for 𝐾𝑤 = 100 with 

varying 𝐾𝑝 values. Figures 9 and 10 analyze effects relative to the number of holes, while Figures 11 and 

12 examine effects relative to the filling ratio. 

 

 
Figure 9. Variation of the critical buckling loads depending on 𝐾𝑤 and 𝑁 (𝐾𝑝 = 5) 

 

 
Figure 10. Variation of the critical buckling loads depending on 𝐾𝑝 and 𝑁 (𝐾𝑤 = 100) 

 

Figure 9 demonstrates that critical buckling load increases with higher WEF parameter values. 

However, increasing the number of holes (from 𝑁 = 1 to 𝑁 = 10) significantly reduces critical buckling 

load. The holes weaken structural stiffness, diminishing the foundation stiffness's positive effect on critical 

buckling load. Beams with fewer holes (𝑁 = 1) exhibit higher buckling loads, indicating that foundation 

stiffness more effectively enhances structural stability in these cases. Similarly, Figure 10 shows that the 

critical buckling load increases with higher Pasternak foundation parameter values. The Pasternak 

foundation model's incorporation of shear effects enhances beam stiffness, improving buckling resistance. 

While critical buckling load still decreases with increased hole numbers, higher 𝐾𝑝 values partially 

compensate for hole-induced weakening through increased foundation shear stiffness. Nevertheless, 

configurations with more holes (𝑁 = 10) maintain lower critical buckling loads, indicating that hole-

induced weakening dominates despite increased foundation stiffness. Both figures demonstrate that 

critical buckling load increases with higher 𝐾𝑤 and 𝐾𝑝 parameters due to enhanced elastic foundation 

support, though increased hole numbers consistently reduce critical buckling load. 
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Figure 11. Variation of the critical buckling loads depending on 𝐾𝑤 and 𝛼 (𝐾𝑝 = 5) 

 

 
Figure 12. Variation of the critical buckling loads depending on 𝐾𝑝 and 𝛼 (𝐾𝑤 = 100) 

 

Figures 11 and 12 reveal that critical buckling load increases significantly with higher filling ratios, 

indicating enhanced structural stiffness and buckling resistance. Both foundation parameters (𝐾𝑤 and 𝐾𝑝) 

positively affect 𝑃𝑐𝑟 . Figure 11 clearly shows 𝑃𝑐𝑟  increasing with 𝐾𝑤, demonstrating enhanced buckling 

resistance as foundation support strengthens. Additionally, 𝑃𝑐𝑟  increases linearly with the filling ratio (as 

α increases from 0.1 to 0.9). Figure 12 shows that similar 𝑃𝑐𝑟  increases with higher 𝐾𝑝 values. 𝑃𝑐𝑟  

consistently increases with α for each 𝐾𝑝 value, demonstrating that higher filling ratios combined with 

foundation shear stiffness provide enhanced buckling resistance. 

4. CONCLUSIONS 

This study contributes to the field of nanostructure mechanics by investigating the buckling behavior 

of perforated nanobeams resting on W-PEF using MCST and FEM. This analysis significantly extends 

previous work on nanoscale buckling by incorporating size effects through MCST—an approach not 

previously applied to perforated nanobeams on W-PEF. The results demonstrate several key findings that 

advance the understanding of nanoscale mechanical behavior: 

• Both Winkler and Pasternak foundation parameters substantially increase critical buckling 

loads, with the Pasternak foundation demonstrating superior influence due to its 

incorporation of shear effects. This finding aligns with previous research [16], [18] - [20], on 

beam–foundation interaction but extends the literature by examining perforated nanobeams 

at the nanoscale. 

• The inclusion of the internal length scale parameter increases the predicted buckling capacity, 

emphasizing the need to account for size-dependent microstructural effects. These results 

support previous MCST-based studies on nano-beams without holes [41] - [43], but 

additionally demonstrate the interaction between holes and microstructural stiffness. 

• Higher fill ratios are associated with increased buckling resistance, while additional holes 

reduce structural stability. Unlike macro-scale studies that treat holes as simple mass 
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reduction, this analysis also reveals the interactions between holes, size effects and foundation 

properties at the nanoscale. 

• Beam length exhibits an inverse relationship with buckling resistance, particularly 

pronounced in highly perforated configurations, indicating a heightened sensitivity to 

geometric parameters at the nanoscale. 

These findings provide practical guidance for nanostructured material design, particularly for 

applications requiring optimized buckling resistance. Future research directions should include: 

• Investigating temperature effects on perforated nanobeam stability, particularly for 

applications in extreme thermal environments. 

• Exploring different nanomaterials (e.g., graphene, carbon nanotubes) with their respective 

size-dependent properties. 

• Examining dynamic loading conditions and vibration response. 

• Incorporating multi-physics coupling effects (electro-mechanical, thermo-mechanical) 

relevant to next-generation nano-devices. 

The methodology developed in this study provides a framework for future investigations into 

complex nanostructure behavior where classical theories prove inadequate. 
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