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 Innovation management plays a pivotal role in harnessing advanced technologies to drive 
progress across diverse fields. In this context, integrating deep learning models within remote 
sensing technologies presents transformative potential for monitoring, change detection, 
analysis, and decision-making in fields such as agriculture, urban planning, and environmental 
studies. This study examines the role of sophisticated deep learning approaches in analyzing 
high-resolution satellite imagery to improve the detection of agricultural greenhouses. Using 
MMSegmentation (DeepLabv3Plus) with multispectral data at 0.7-meter resolution, the 
research addresses the limitations of traditional methods by substantially enhancing 
detection accuracy and efficiency. To address data scarcity and increase model robustness, 
advanced data augmentation techniques—such as rotations, scaling, and flipping - expand 
dataset diversity, fostering adaptability and performance under diverse conditions. The study 
also assesses the impact of environmental factors, including seasonal variations and weather, 
on model performance. Suggested improvements include expanding the dataset to encompass 
a wider variety of greenhouse types and conditions, incorporating high-resolution or 
hyperspectral imagery for finer details, and building multi-temporal datasets to capture 
dynamic environmental changes. The findings underscore the importance of advanced 
innovation management in enhancing remote sensing applications, offering actionable 
insights for agricultural management in Albania and similar regions. This research contributes 
to the broader field of innovation management by showcasing how deep learning can 
revolutionize practical applications in agriculture. 
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1. Introduction  
 

Innovation in agriculture stands as a key enabler for 
shaping more responsive and impactful government 
policies, fostering the development of digital tools and 
techniques that enhance both agricultural productivity 
and the quality of life [1]. Deep Learning [2, 37] offers a 
distinct paradigm within the broader landscape of 
Machine Learning algorithms. Although it is a subset of 
Machine Learning, Deep Learning diverges in its 
capabilities, particularly through the deployment of 
Artificial Neural Networks [3], which possess the ability 
to autonomously learn and make intelligent decisions. 
Unlike traditional Machine Learning models, which can 
perform adequately with varying data volumes, Deep 

Learning architectures require vast datasets to achieve 
optimal performance. Furthermore, Deep Learning 
requires high-performance computing resources, such as 
GPUs, to efficiently execute its computationally intensive 
algorithms. 

The integration of Deep Learning with satellite 
imagery has revolutionized the field of Remote Sensing, 
providing unprecedented capabilities for the monitoring 
and analysis of land use patterns and environmental 
changes [4].  

Among its diverse applications, object detection in 
satellite imagery has emerged as a crucial tool for 
evaluating agricultural practices, managing natural 
resources, and informing urban development strategies. 
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This comparative study [5] critically examines the 
performance of various Deep Learning models in the 
detection [4] of greenhouses within satellite images. 
Leveraging high-precision data from two satellites, the 
study incorporates diverse topographical features and 
climatic conditions across regions, presenting a 
comprehensive case study to assess the robustness and 
adaptability of Deep Learning models in remote sensing 
applications.  

 
2. Related Work 

 

Deep learning techniques have accelerated satellite 
imagery analysis, making it more reliable and efficient 
than conventional approaches. One of the main benefits 
of implementing deep learning techniques is their ability 
to enhance satellite image interpretation, particularly in 
fields like agriculture and disaster management [6]. 

As a result, obstacles such as converting satellite 
imagery into meaningful, high-quality maps, while not 
new, have become more manageable with advancements 
in deep learning [7]. Traditionally, producing top-quality 
maps was time-consuming and prone to errors. Thanks 
to new datasets and advancements in computer vision, 
automation is now achievable, particularly through 
hybrid model [8] and deep learning model applications 
[9]. For remote sensing, models like U-Net and Mask R-
CNN are commonly employed [8]. These models 
primarily identify specific objects, including vegetation, 
from satellite images. They are especially critical in 
converting raw satellite data into usable maps with high 
accuracy, achieving a Mean Average Precision (mAP) 
score of up to 0.79 for computers [9]. Utilizing these 
models, researchers have demonstrated how deep 
learning enhances the annotation of satellite images, 
which is of great importance in areas such as urban 
planning and disaster management.  

In agriculture, deep learning has been applied to 
monitor land use and management, especially on a large 
scale, such as mapping paddy fields. Conventional data 
collection methods like field surveys and expert 
assessments are expensive and time-consuming 
especially when cloud coverage obscure critical 
information [10]. Spectral channels, while rich in 
information, complicate image processing due to 
adversarial environmental conditions like cloud cover 
and seasonal crop variations [11].   

Researchers have shown that using multi-temporal, 
high-resolution classification techniques with deep 
neural networks can effectively tackle these challenges. 
This approach improves the ability to monitor and 
analyze changes over time, particularly in areas like 
environmental monitoring and agriculture. Studies 
highlight that these methods enhance accuracy and help 
interpret complex data sets [6,12]. Moreover, deep 
learning's versatile Convolutional Neural Networks 
(CNNs) [13] and Recurrent Neural Networks (RNNs) 
enable the processing of large amounts of satellite data, 
capturing various spatiotemporal patterns [10]. This 
capability is essential for agricultural applications, where 
monitoring crop cycles and predicting yields depend on 
temporal changes in satellite imagery.  

Object and change detection [14] in remote sensing 
images has been a significant research focus in recent 
years. Optical remote sensing, coupled with computer 
vision, has led to dynamic advancements in Earth 
observation. However, challenges such as insufficient 
variation in datasets, limited object categories, and 
fluctuating imaging conditions have hindered progress in 
object detection [15]. To address these issues, datasets 
like DIOR (Dataset for Object Detection in Optical Remote 
Sensing Images) have been developed [16]. DIOR offers 
valuable insights, though it faces drawbacks such as the 
need for higher spatial resolution and challenges related 
to lighting, weather, seasons, and image quality [16]. 
These datasets open new avenues for studying trends in 
agriculture, urban planning, and environmental 
protection. DIOR provides a large-scale benchmark, 
essential for advancing deep learning approaches and 
improving remote sensing applications through 
aggregate multi-scale context [17]. In disaster 
management, the dataset's adaptability is crucial for 
detecting small, overlapping objects such as buildings 
and vehicles in challenging environments. DIOR's diverse 
object classes, along with its spatial and temporal 
variability, make it an invaluable tool for evaluating the 
potential of object detection models [16]. 

The Remote Sensing Super-Resolution Object 
Detection (RSSOD) dataset [18] is another significant 
achievement, providing high-resolution imagery for 
detecting small objects in highly overlapping contexts. 
Identifying minor objects, such as small structures, is 
vital for satellite imagery, especially in urban and 
agricultural planning. Researchers have observed that 
many datasets lack small object categories [19], leading 
to poor performance of object detection algorithms in 
these areas. The integration of super-resolution 
techniques with object detection has been a 
breakthrough. The Multi-class Cyclic Generative 
Adversarial Network [20] with Residual Feature 
Aggregation (MCGR) model is a novel approach that 
enhances object detection by improving image quality. 
Researchers have shown that enhancing image 
resolution before detection leads to better results, 
particularly for small objects, which are challenging to 
detect in low-resolution images. The MCGR model has 
outperformed state-of-the-art detectors [20] such as 
YOLOv5 [21], EfficientDet, and Faster R-CNN [22], 
producing a higher mAP. Due to the availability of large-
scale datasets, advancements in object detection have the 
potential to transform remote sensing. High object 
variability and resolution, particularly in small, 
distinctive objects, are essential for applications such as 
disaster response, agricultural monitoring, and urban 
planning. These versatile datasets allow for more 
effective training of object detection models, improving 
accuracy in detecting crowded, differently sized objects 
under various imaging conditions. 

While deep learning has made remarkable strides 
[23] in enhancing the accuracy and efficiency of remote 
sensing image classification, it is important to recognize 
that several significant challenges still exist. Addressing 
these challenges will be essential for realizing the full 
potential of this technology and advancing the field 
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further. One major bottleneck is the complexity and 
diversity of patterns in remote sensing data, making 
feature extraction difficult. Recent advances in deep 
neural networks, particularly in deep feature learning, 
have improved scene classification. However, the 
challenge of processing large-scale and high-dimensional 
remote sensing data persists [24,36]. Moreover, deep 
learning models require large, annotated datasets for 
effective training, but such datasets are often limited in 
remote sensing. Although benchmark datasets exist, they 
are typically domain specific and lack the necessary 
variation for broader applications. Additionally, the cost 
of acquiring and annotating remote sensing data is high, 
further complicating efforts to build large, diverse 
datasets [24]. 

This study will evaluate the performance and 
suitability of deep learning models for satellite imagery 
analysis. It will also examine how variations in image 
data such as resolution, quantity, and shape affect model 
effectiveness. Through this comparative analysis, the 
research aims to contribute to the optimization of object 
detection techniques [25], thereby enhancing 
agricultural monitoring and environmental management 
in Albania, as well as in similar regions worldwide. 

 
2.1. Model Comparison for Agricultural Monitoring 

 
This section evaluates three widely used deep 

learning models: YOLO, Mask R-CNN, and 
DeepLabv3Plus to determine the most suitable approach 
for agricultural monitoring. Each model's segmentation 
type, strengths, and limitations are analyzed, with a focus 
on their ability to address the complexities of large-scale 
agricultural applications, as presented in Table 1: 
Comparative Evaluation of Deep Learning Models 
 
Table 1: Comparative Evaluation of Deep Learning 
Models  

Model Type of 
segmentatio
n 

Strength Limitation 

YOLO No 
segmentatio
n (object 
detection 
only) 

Real-Time 
detection and 
classification of 
objects 

Cannot 
provide 
pixel-level 
information 
or classify all 
regions. 

Mask R-
CNN 

Instance 
segmentatio
n 

Distinguishes 
individual 
objects with 
precise 
boundaries 

Does not 
classify all 
pixels; 
focuses on 
specific 
objects 

DeepLab
v3Plus 

Semantic 
segmentatio
n 

Classifies all 
pixel in an 
image into 
meaningful 
categories, 
creating a 
complete scene 
map 

Cannot 
separate 
individual 
objects 
within the 
same 
category 

 
From this comparative analysis, DeepLabv3Plus 

emerges as the most suitable model for agricultural 
monitoring. Its semantic segmentation capability 

ensures pixel level classification, allowing for the 
creation of comprehensive maps that are crucial for tasks 
such as crop type identification, field boundary 
delineation, and land-use classification. This model’s 
robustness to environmental variability, such as cloud 
cover and seasonal changes, further enhances its 
applicability in diverse agricultural contexts. 

While YOLO provides speed and efficiency, its lack of 
pixel-level granularity restricts its application to broader 
object detection tasks rather than detailed scene 
analysis. Mask R-CNN, though effective in object-specific 
segmentation, is less practical for large-scale agricultural 
landscapes requiring holistic mapping.  

In contrast, DeepLabv3Plus offers the optimal 
balance of scalability, accuracy, and contextual 
understanding, making it the preferred choice for 
addressing the intricate demands of agricultural 
monitoring and decision-making. 

 
3. Methodology 
 

This study presents an innovative methodology that 
integrates advanced deep learning techniques with high-
resolution multispectral satellite imagery to enhance the 
precision and efficiency of agricultural greenhouse 
detection. The segmentation approach is selected to be 
applied based on the successful application of alternative 
models, such as 3D-CNNs, in similar agricultural contexts 
[26].  At the core of this approach is the MMSegmentation 
[27] framework, which uses the DeepLabv3Plus model 
well-suited for semantic segmentation tasks [28]. This 
model has proven highly effective in identifying the 
subtle structural differences that define greenhouses, 
even in complex environments. By utilizing multispectral 
imagery with a spatial resolution of 0.7 meters, the 
methodology extracts detailed spectral data, allowing the 
model to better distinguish greenhouses from 
surrounding land features. 

A key innovation in this approach is the use of data 
augmentation techniques, such as rotation, flipping, and 
scaling. These techniques help make the model more 
robust by artificially increasing the diversity of the 
training data, which in turn helps the model perform 
better in real-world applications. Fine-tuning the model 
further ensures that it adapts to the specific 
characteristics of the study area, improving the accuracy 
of greenhouse detection. To make the process more 
efficient, the methodology incorporates the ArcGIS Pro 
Geoprocessing Tool, specifically the "Classify Pixel Using 
Deep Learning" tool. This integration automates much of 
the pixel classification, reducing the need for manual 
intervention and speeding up the overall workflow. 

To assess the model’s performance, several key 
metrics are used, including precision, recall, and the F1 
score [29-30]. These metrics help evaluate different 
aspects of the model’s ability to identify greenhouses. 
Precision measures how accurately the model identifies 
positive instances (greenhouses), while recall looks at 
how well the model captures all relevant greenhouse 
structures. The F1 score combines both precision and 
recall into a single measure, offering a balanced 
assessment of the model’s overall performance, 
especially when there may be imbalances in the data. 
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Support which refers to the number of actual instances in 
each class adds further context to these evaluations. A 
confusion matrix [30], also helps clarify the model’s 
decision-making process by showing how many 
instances were correctly or incorrectly classified as true 
positives (TP), false positives (FP), false negatives (FN), 
and true negatives (TN) [31]. 

In summary, the methodology presented here 
provides a robust, scalable framework for the automatic 
detection of agricultural greenhouses. By combining 
advanced deep learning models with high-resolution 
satellite imagery and geospatial analysis, the approach 
ensures both accuracy and practical applicability. The 
process follows a series of well-defined steps: starting 
with the management of high-resolution satellite images 
(70 cm pixel), preparing training samples manually, 
training the DLPK model, executing the model, 
generating the final results, and evaluating the model’s 
performance. This structured approach helps ensure 
reliable and consistent greenhouse detection results. 

 
 
 
 

 
 
 
Figure 1. Methodology Workflow for Agricultural 
Greenhouse Detection Using Deep Learning 
 

The diagram visually illustrates the key steps in the 
methodology, from satellite image management to final 
evaluation. 

 

4. Results 
 

When training a deep learning model for image 
analysis, the output generated by the Train Deep 
Learning Model tool [32, 39] includes a file titled 
model_metric.html. This file provides comprehensive 
information regarding the performance of the trained 
model, detailing key metrics such as the learning rate, 
training and validation losses [33], and the average 
precision score [34]. These metrics are critical for 
evaluating the model’s accuracy and effectiveness, 
offering valuable insights into its training dynamics and 
predictive performance. 

Occasionally, the training loss may exceed the 
validation loss, which could indicate that the model is 
underfitting. Underfitting occurs when the model fails to 
adequately capture the underlying patterns in the 
training data, resulting in significant prediction errors. 
As shown in Figure 2, Model 1 exhibits a higher training 
loss, suggesting the model’s inability to generalize 
effectively. This elevated training loss points to the need 
for additional training iterations to address the 
discrepancy. Alternatively, enhancing the dataset by 
incorporating a larger sample size could improve the 
model's capacity to generalize, thus leading to better 
performance. The performance metrics [13] for Model 1, 
including precision, recall, and F1 score, are summarized 
in Table 1 below. 

 

Model 1 Specifications: 
Collected samples: 348  
Model Type: MMSegmentation 
Model Name: deeplabv3plus 

 
Table 2. Model 1 Performance Metrics  

Metric Result 

precision 0.884234 

recall 0.939886 

f1 score 0.911211 

 

Figure 2. Training and Validation loss - Model 1 
 

In Model 2, the training loss consistently exceeds the 
validation loss, as shown in Figure 3. This pattern 
typically suggests overfitting, where the model fails to 
generalize to unseen data. Despite performing well on 
the training dataset, the model shows poor 
generalization on the validation set. Notably, the 
validation loss initially declines but eventually rises, 
indicating the onset of overfitting. This can occur due to 
an excessively complex model relative to the dataset or 
prolonged training duration. A common remedy for this 
issue is early stopping, terminating training once the loss 
stabilizes at a low value. Early stopping, along with other 
regularization techniques, is crucial for improving model 
generalization and preventing overfitting. Performance 
metrics for Model 2, including precision, recall, and F1 
score, are provided in Table 2 below. 
 
Model 2 Specifications: 
Collected samples: 914  
Model Type: MMSegmentation 
Model Name: deeplabv3plus 
 
Table 3. Model 2 Performance Metrics  

Metric Result 

precision 0.908052 

recall 0.912206 

f1 score 0.910124 
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Figure 3. Training and Validation loss - Model 2 
 

In Model 3, as depicted in Figure 4, both the training 
and validation losses progressively decline before 
stabilizing, suggesting that the model has achieved an 
optimal fit. This pattern indicates a well-balanced state, 
where the model successfully avoids both underfitting 
and overfitting, effectively generalizing to new data while 
minimizing prediction errors. The performance metrics 
for Model 3, such as precision, recall, and f1 score, are 
presented in Table 3 below. 
 
Model 3 Specifications:  
Collected samples: 3401  
Model Type: MMSegmentation 
Model Name: deeplabv3plus 
 
Table 4. Model 3 Performance Metrics 

Metric Result 

precision 0.928721 

recall 0.927120 

f1 score 0.927920 

 

Figure 4. Training and Validation loss - Model 3 
 

4.1. Discussion 
 
The results of the greenhouse detection process are 

systematically presented through a series of figures, each 
illustrating the distinct contributions of Models 1, 2, and 
3. Figure 5 provides an initial overview of the area of 

interest, establishing the context for the subsequent 
analysis. Figures 6, 7, and 8 present the detection 
outcomes from each model, highlighting their respective 
strengths and limitations in identifying greenhouses 
within satellite imagery. These figures reflect the models' 
varying abilities to navigate complex agricultural 
landscapes, accounting for diverse environmental and 
topographical conditions. 

Figure 9 offers a comparative analysis of the three 
models' performance, facilitating a direct evaluation of 
their relative efficacy. The results demonstrate that 
Model 3 outperforms the other models in terms of both 
accuracy and reliability, detecting greenhouses with 
higher precision and fewer false positives. This suggests 
that Model 3 is the most robust and effective approach 
for agricultural monitoring, particularly in challenging 
contexts where environmental variables may impact 
detection accuracy. 

The performance enhancement observed in Model 3 
can be attributed to the fine-tuning process. Initially, the 
model was trained using pre-trained weights from a 
large-scale object detection model, followed by 
systematic optimization of key hyperparameters, 
including the learning rate, batch size, and number of 
epochs. Additionally, data augmentation techniques such 
as random rotations, scaling, and flips were employed to 
expand the variability of the training dataset. This 
strategy aimed to improve the model’s ability to 
generalize across diverse agricultural landscapes, 
ultimately resulting in improved accuracy and detection 
reliability, as evidenced in Figure 10. 

Despite the advancements made, several challenges 
persist. The use of ArcGIS [38] Geoprocessing tools for 
data preprocessing, while effective, can introduce certain 
inconsistencies, particularly when dealing with large and 
complex datasets. These inconsistencies, often related to 
geographical feature alignment and data quality, 
necessitate careful attention during preprocessing and 
validation stages. While Model 3 demonstrated robust 
performance, further refinement is needed to address 
the detection of smaller or overlapping greenhouses, 
which remain challenging in certain conditions. 

In addition to accuracy, it is important to consider 
other performance metrics, such as precision, recall, and 
F1-score, to provide a more nuanced evaluation of the 
model's capabilities. These metrics would offer deeper 
insights into the model’s ability to balance true positive 
detection with the minimization of false positives and 
false negatives. Moving forward, enhancing the model's 
robustness to handle variations in environmental 
conditions, such as lighting, weather, and seasonal 
changes in satellite imagery, will be crucial for optimizing 
its practical application in agricultural monitoring. 

In conclusion, while the results of this study 
demonstrate the significant potential of deep learning 
models, particularly Model 3 in agricultural monitoring, 
continued fine-tuning and testing with additional 
datasets are essential for further improving the model’s 
reliability. The findings suggest that with further 
optimization, deep learning models can provide highly 
effective solutions for agricultural monitoring, offering 
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the potential for more precise and scalable applications 
in real-world settings. 

 
 

 
Figure 5. Area of Interest 
 

  
Figure 6. Greenhouses detection – Model 1        

     

Figure 7. Greenhouses detection – Model 2 
                                                          
 
 
          
 
 
 
 

Figure 8. Greenhouses detection – Model 3 
 

Figure 9. Greenhouses detection – Model 1,2,3            
 

Figure 10. Greenhouses detection – Model 3 (Final) 
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5. Conclusions and future research 
 

This study demonstrates the significant potential of 
deep learning models, specifically MMSegmentation 
(DeepLabv3Plus), for the automated detection of 
agricultural greenhouses using high-resolution 
multispectral satellite imagery. The methodology 
successfully identifies greenhouse structures, offering 
improvements in both accuracy and scalability. The 
integration of deep learning models with high-resolution 
imagery, with a spatial resolution of 0.7 meters, proved 
essential for distinguishing greenhouses from other 
agricultural features. The results confirm that 
MMSegmentation, when coupled with a robust fine-
tuning process, can address the complexities inherent in 
greenhouse detection, particularly in environments 
where conventional detection methods fall short. 

In addition to the technical contributions, this study 
underscores the importance of innovation management 
in the development and deployment of AI-driven 
solutions. The successful application of deep learning for 
greenhouse detection highlights the need for effective 
innovation management strategies that bridge the gap 
between cutting edge technology and practical 
implementation in agricultural monitoring.  

By fostering cross-disciplinary collaboration and 
aligning technological advancements with the needs of 
agricultural stakeholders, innovation management 
ensures that these technologies are scalable, sustainable, 
and adaptable to diverse environmental conditions. 

While the approach presented in this study shows 
promising results, several limitations were identified 
that must be addressed to further enhance the model's 
performance. A key challenge is the limited scope of the 
dataset, which primarily focuses on agricultural regions 
in Albania.  

This restriction in geographic coverage hampers the 
model’s ability to generalize to other regions with 
different environmental conditions, such as varying 
vegetation types, landforms, and seasonal fluctuations.  

In future research, it is critical to expand the dataset 
to include imagery from diverse regions with different 
topographies and climatic conditions. This will enable 
the model to be tested across a wider range of 
agricultural environments and improve its 
generalizability and robustness.  

Datasets from various geographical regions, including 
areas with varying climates [35] and agricultural 
practices, would offer valuable insights into how the 
model performs under different conditions, ultimately 
improving its adaptability and accuracy in detecting 
greenhouses worldwide. The role of innovation 
management will be crucial in facilitating the 
collaboration needed to gather diverse datasets and 
implement these technological advancements in new 
contexts. 

Another limitation lies in the environmental 
challenges, including shadowing, lighting variability, and 
cloud cover, which affected the model’s detection 
capabilities. These environmental factors introduce 
inconsistencies in the satellite imagery, making it 
difficult for the model to consistently identify 
greenhouses, especially in regions with frequent cloud 

cover or in areas with significant seasonal variations in 
lighting.  

While these challenges were briefly mentioned in the 
study, the solutions to address them were not fully 
explored. To enhance the model’s performance, future 
research should investigate advanced shadow removal 
algorithms, such as those based on deep learning, which 
can effectively eliminate the effects of shadows and 
lighting inconsistencies.  

Moreover, the development of spectral indices that 
are designed to mitigate the effects of lighting variability, 
such as those based on the Normalized Difference 
Vegetation Index (NDVI) or other vegetation indices, 
could help to improve the accuracy of greenhouse 
detection, particularly in regions with fluctuating light 
conditions. Implementing these techniques will make the 
model more resilient to the environmental factors that 
currently pose significant challenges. Here, innovation 
management will be essential for integrating such 
advancements into the existing workflow, ensuring their 
successful adoption and practical application in 
agricultural monitoring. 

Furthermore, while this study focused on a single-
resolution imagery (0.7 meters), exploring the 
integration of higher resolution or hyperspectral 
imagery could offer even more detailed information for 
greenhouse detection. Hyperspectral imagery, which 
captures a broader range of wavelengths beyond the 
visible spectrum, has the potential to provide additional 
spectral information that could further differentiate 
greenhouses from surrounding land features, improving 
detection accuracy in complex agricultural 
environments.  

Future research could explore the incorporation of 
such high-resolution and hyperspectral data to enhance 
the model’s performance and expand its applicability. 
The incorporation of innovation management principles 
will be key in ensuring that such high-resolution data is 
accessible, analyzed effectively, and integrated into 
decision-making processes across various agricultural 
sectors. 

In terms of model performance, the study primarily 
relied on precision, recall, and F1-score metrics to 
evaluate the detection accuracy. While these metrics 
provided valuable insights into the model’s ability to 
correctly identify greenhouses, future research should 
consider incorporating additional performance 
measures that can offer further insights into the model's 
ability to discriminate between different classes. 

Additionally, it would be beneficial to evaluate the 
model's performance in a real-world setting, where the 
conditions of satellite imagery can vary due to 
atmospheric disturbances, seasonal changes, or other 
factors that are not always represented in training data. 
Innovation management will play a pivotal role in 
facilitating the real-world deployment of these models, 
ensuring they are adapted to practical use cases and 
addressing the challenges posed by varying 
environmental conditions. 

Future research should focus on several key areas to 
enhance the applicability and performance of the model. 
First, the development of multi-temporal datasets that 
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capture imagery from different seasons, weather 
conditions, and times of day will be crucial in addressing 
the challenges posed by environmental variability. These 
datasets will help the model better adapt to changes in 
the landscape and improve its ability to generalize over 
time. Second, integrating advanced techniques for 
handling environmental challenges, such as shadow 
removal, lighting correction, and cloud detection, will 
improve the model’s robustness. Third, expanding the 
dataset to include regions with different geographical 
features, climates, and agricultural practices will 
enhance the model’s ability to generalize across diverse 
agricultural landscapes.  

To facilitate this, future research will leverage data 
from the Copernicus program, which provides access to 
a wide range of high-resolution satellite imagery from 
various geographical regions. This will allow for the 
expansion of the geographical scope of the study, 
enabling the model to be tested across diverse 
topographies and climates. Finally, exploring the 
integration of hyperspectral imagery could offer more 
precise spectral data, leading to further improvements in 
greenhouse detection. The integration of innovation 
management into these research directions will ensure 
that these technological advancements are efficiently 
implemented and scaled, with a focus on sustainability 
and impact. 

By addressing these challenges and expanding the 
scope of the research, future studies can build on the 
findings of this study to create more scalable, accurate, 
and reliable geospatial AI solutions for agricultural 
monitoring. This will not only improve greenhouse 
detection but also contribute to more effective 
agricultural management and monitoring practices, both 
in Albania and in other regions with diverse 
environmental conditions. Furthermore, innovation 
management will be essential in ensuring that the 
advancements made in AI and satellite imagery are 
effectively translated into practical solutions that drive 
innovation in agricultural practices. Future studies 
should explore how innovation management can 
facilitate the adoption of AI technologies, ensuring that 
they meet the needs of agricultural stakeholders and 
contribute to more sustainable, efficient, and data-driven 
agricultural systems. 
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