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Abstract

A vertex coloring of a graph G is said to be a 2-distance coloring if any two vertices at distance at most 2 from each other receive different
colors, and the least number of colors for which G admits a 2-distance coloring is known as the 2-distance chromatic number of G, and
denoted by x»(G). We prove that if G is a planar graph with girth 5 and maximum degree A > 12, then x»(G) < A(G) +5.
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1. Preliminaries

All graphs in this paper are assumed to be simple, i.e., finite and undirected, with no loops or multiple edges. We refer to [11] for terminology
and notation not defined here. Let G be a graph; we use V(G), E(G), F(G), A(G), and g(G) to denote the vertex set, edge set, face set,
maximum degree, and girth of G, respectively. When the context is clear, we abbreviate A(G) and g(G) as A and g. A 2-distance coloring is
a vertex coloring in which two vertices that are either adjacent or share a common neighbor receive different colors. The smallest number of
colors required for G to admit a 2-distance coloring is called the 2-distance chromatic number and is denoted by x> (G).

In 1977, Wegner [10] made the following conjecture:

Conjecture 1.1. For every planar graph G,
7, A=3,
22(G) < A5, 4<A<T,
[3A]+1, A>8.

Thomassen [9] proved that this conjecture holds for planar graphs with A = 3. However, it remains open for planar graphs with A > 4.
For upper bounds, van den Heuvel and McGuinness [5] established that y,(G) < 2A+ 25, and Molloy and Salavatipour [8] proved that
1(G) < [3A] +78.

For planar graphs without short cycles, Bu and Zhu [1] demonstrated that ,(G) < A+ 5 when g > 6, this confirms Conjecture 1.1 for planar
graphs with girth at least six. Recently, Deniz [3] improved this result by showing that x> (G) < A+4 when g > 6 and A > 6. On the other
hand, La [7] proved that x»(G) < A+ 3 if either g > 7 and A > 6 or g > 8 and A > 4. For planar graphs with girth 5, Deniz [4] showed that
x2(G) < A+7, further proving that > (G) < A+ 6 when A > 10. On the other hand, Bu and Zhu [2] established that }>(G) < A+ 5 for
A>15.

In this paper, we improve the result of Bu and Zhu [2] as follows.

Theorem 1.2. If G is a planar graph with g > 5 and A > 12, then x3(G) < A+5.

Given a planar graph G, we denote by ¢(f) the length of a face f and by d(v) the degree of a vertex v. A k-vertex is a vertex of degree k. A
k™ -vertex is a vertex of degree at most k, and a k" -vertex is a vertex of degree at least k. We similarly define a k-face (or k= or k™" -face)
and k-neighbor (or k= or k" -neighbor). A k(d)-vertex is a k-vertex adjacent to d 2-vertices. When r < d(v) < s, the vertex v is called an
(r-s)-vertex.

For a vertex v € V(G), we use n;(v) (resp. n&(v)) to denote the number of i-vertices (resp. 2-vertices with a k-neighbor) adjacent to v. Let
v € V(G); we define
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D(v) = Z d(vj).
viEN(v)
We denote by d(u,v) the distance between any pair u,v € V(G). Additionally, we set N;(v) = {u € V(G) | 1 <d(u,v) < i}, fori> 1, and
clearly Ny (v) = N(v).
If there is a path uvw in G with dg(v) = 2 such that uw ¢ E(G), then we say that u and w are weak-adjacent. A pair of weak-adjacent
vertices is said to be weak neighbors of each other. Neighbors of a 3(1)-vertex that are not 2-vertices are called star-adjacent. Clearly, every
2-vertex v with a k™~ -neighbor satisfies D(v) < A+ k.

A vertex v is called expendable if
4

D(v) <A+5+ gné(v)

We denote by e(v) the number of expendable vertices in Np(v). If v satisfies D(v) < A+5+e(v), it is called light; otherwise, it is called
heavy. Note that every 2-vertex adjacent to a 4™ -vertex is expendable, so

4
Y rh(v) < e(v)

for any vertex v. Thus, every expendable vertex is a light vertex.

2. The Proof of Theorem 1.2

2.1. The Structure of Minimum Counterexample

Let G be a minimal counterexample to Theorem 1.2 such that G does not admit any 2 distance coloring with A+ 5 colors, but any proper
subgraph of G does. By the minimality, G — x has a 2-distance coloring with A+ 5 colors for every x € V(G) UE(G). Clearly, G is connected
and satisfies 6(G) > 2.

We first present some preliminary results from the paper [4], adapting our graph G to their framework.

Lemma 2.1. [4] If v is a light vertex, then each neighbour of v is a heavy vertex.

Lemma 2.2. [4] Every 5~ -vertex having a 2-neighbour is heavy. In particular, every 4-vertex having a 3(1)-neighbour is heavy as well.
Lemma 2.3. [4] Forv € V(G), let S be the set of light vertices in No(v). If v has a light neighbour, then D(v) > A+5+S|.

The following can be easily obtained from Lemmas 2.1, 2.2 and 2.3.

Corollary 2.4.  (a) Every 2-vertex having a 4~ -neighbour is light.
(b) G has no adjacent 2-vertices.
(¢) G hasno3(2)-, 3(3)-, 4(3)- 4(4)-, and 5(5)-vertices.
(d) A 3(1)-vertex cannot be adjacent to any 3-, 4(1)-, 4(2)- or light 4-vertex.

We call a path xyz as a poor path it 5 < d(y) <9,2 < d(x) <3 and 2 <d(z) < 3. If a poor path xyz lies on the boundary of a face f, then
the vertex y is called f-poor vertex.
It follows from the definition of the poor path that we can bound the number of those paths in a face.

Corollary 2.5. Each face f has at most L@J f-poor vertices.

3d()
2

In the rest of this section, we will apply discharging to show that G does not exist. We assign to each vertex v a charge u(v) = —5and

to each face f a charge u(f) = ¢(f) — 5. By Euler’s formula, we have

) <3dz(v) —5> + Y () =5 =—10

veV fEF

We next present some rules and redistribute accordingly. Once the discharging finishes, we check the final charge ©*(v) and u*(f). If
w*(v) >0and u*(f) > 0, we get a contradiction that no such counterexample graph G can exist.

2.2. Discharging Rules

We apply the following discharging rules.

R1: Every 2-vertex receives 1 from each neighbour.

R2: Every 3(1)-vertex receives % from each (4-6)-neighbour; % from each 7-neighbour; % from each 8-neighbour; % from each 9-
neighbour.

R3: Every light 3(0)-vertex receives é from each 3" -neighbour.

R4: Letv be a heavy 3(0)-vertex, then v receives % from each (5-6)-neighbour; % from each (7-8)-neighbour, % from each 9-neighbour.

R5: Let v be a 4(1)-vertex.

(a) If vis adjacent to 3(1)-vertex, then v receives % from each 6-neighbour; % from each 7-neighbour; % from each 8-neighbour.
(b) If v is adjacent to light 3(0)-vertex, then v receives % from each (6-8)-neighbour.

R6: Every 4(2)-vertex receives % from each 6-neighbour; % from each (7-8)-neighbour; 3 from each 9-neighbour.
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R7: Every 5(2)-vertex receives % from each 7-neighbour, and % from each 8-neighbour.
R8: Every 9-vertex gives % to each (4-8)-neighbour other than 4(2)-vertex.
R9: Every 10T -vertex gives 1 to each 8~ -neighbour. In particular, if v is a 127 -vertex, then v also sends ﬁ to each of its weak neighbour.
R10: If an 8-vertex v is adjacent to two 8 -vertices u and w, then v gives }1 to each face containing one of uv, wv.
R11: If a 9-vertex v is adjacent to a 97 -vertex u, then v gives % to each face containing uv.
R12: If a 10" -vertex v is adjacent to a 9" -vertex u, then v gives % to each face containing uv.
R13: After applying R10-R12, every face f transfers its positive charge equally to its incident f-poor vertices.

Remark 2.6. Let f be a 6" -face. It follows from Corollary 2.5 that f has at most L&{)J f-poor vertices. Suppose that f is incident to k
non-poor 87 -vertices.

e Ifk =0, then f has at most L@J [f-poor vertices, and so f sends at least % to each of its incident f-poor vertices by R13.

e Ifk =1, then f has at most LZ( % 2
e Ifk > 72, then f has at most L[(f %_3J [f-poor vertices, and so f sends at least 1 to each of its incident f-poor vertices by RI3.

| f-poor vertices, and so f sends at least % to each of its incident f-poor vertices by R13.

Checking p1*(v), u*(f) >0, forve V(G), f € F(G)
Clearly u*(f) > 0 for each f € F(G), since every face transfers its positive charge equally to its incident f-poor vertices by R13.

We pick a vertex v € V(G) with d(v) = k. We denote by x1,x3,...,x the 2-neighbours of v for 0 < ny(v) =t <k, and let y; be the other
neighbour of x; different from v. Let f1, f> ..., f; be faces incident to v.

(1). Let k = 2. Then u(v) = —2. By Corollary 2.4(b), v is adjacent to two 3" -vertices. It follows from applying R1 that v receives 1 from
each of its neighbours, and so pt*(v) > 0.

(2). Let k =3. Then u(v) = —%. By Corollary 2.4(c), v has at most one 2-neighbour. First assume that v has a 2-neighbour, say x;. Denote
by w and z the other neighbour of v with d(w) < d(z). Clearly, x; is a light vertex, and so v must be heavy by Lemma 2.1. It then follows
from Lemma 2.3 that d(w) +d(z) > A+4 > 16.

e If 4 < d(w) < 6, then zis a 10 -vertex. Thus, v receives 1 from z by R9 and % from w by R2. Therefore, u*(v) > —% +145—-1=0
after v transfers 1 to x; by R1.

o If w is a 7-vertex, then z would be a 9" -vertex. By applying R2 and RO, v receives % from w and at least % from z. Therefore,
u(v) > —% + % + % — 1 =0 after v transfers 1 to x; by R1.

 If wis an 8-vertex, then z would also be an 8*-vertex. By applying R2 and R9, v receives at least % from each of w, z. Therefore,

u*(v) > —%+2>< % — 1 =0 after v transfers 1 to x; by RI.

=

Let us now assume that v has no 2-neighbour. If v is a light vertex, then each neighbour of v must be heavy by Lemma 2.1, and so v
receives at least % from each of it neighbours by R3; hence p*(v) > f% +3x é = 0. We further suppose that v is heavy. Denote by
u,w, and z the neighbours of v with d(u) < d(w) < d(z). Notice that v cannot have two light 3-neighbours by Lemma 2.3. If v has no
light 3-neighbour, then we deduce that v has either a 9" -neighbour or a 7" -neighbour and a 5" -neighbour or three 5+ -neighbours, since
d(u)+d(w)+d(z) > A+5 > 17. In each case, v receives totally at least % from its neighbours by applying R4. Thus, u*(v) > —% + % =0.
If v has a light 3-neighbour, say u, then we have d(w)+d(z) > 15 by Lemma 2.3. This clearly implies that v has either a 10" -neighbour
or a 61- and a 9" -neighbour or two 7 -neighbours. By applying R4 and R9, v receives totally at least % from its neighbours. Thus,
w(v) > f% + % — % = 0 after v transfers é to u by R3.

(3). Let k = 4. The initial charge of v is u(v) = 1. By Corollary 2.4(c), v has at most two 2-neighbours. Note that v is heavy whenever it has
a 2-neighbour by Lemma 2.2.

Let n(v) = 0. Recall that v has at most three 3(1)-neighbours by Corollary 2.4(d); moreover, by the same reason, v is heavy whenever it
has a 3(1)-neighbour. If v has at most one 3(1)-neighbour, then u*(v) > 1— % —-3x % > 0 after v sends % to its 3(1)-neighbour by R2,
and % to each of its light 3(0)-neighbours by R3. Suppose now that v has exactly two 3(1)-neighbours. If v has no light 3(0)-neighbour,
then p*(v) >1-2x % > 0 after v sends % to each of its 3(1)-neighbour by R2. If v has a light 3(0)-neighbour, then v would also have a
11" -neighbour by Lemma 2.3. Thus, v receives 1 from its 11" -neighbour by R9 and sends at most % to each of its 3-neighbours by R2-R3,
andsopu*(v) >1+1-3x % > 0. Finally suppose that v has exactly three 3(1)-neighbours. Since v is heavy and there exist three expendable
vertices (2-neighbours of 3(1)-vertices) in N (v), we deduce that v has a 117 -neighbour. Thus, v receives 1 from its 11" -neighbour by R9
and sends at most % to each of its 3-neighbours by R2-R3, and so u*(v) > 1+1—-3 x % > 0.

Let np(v) = 1. Suppose first that v has no 3(1)-neighbours. If v has no light 3(0)-neighbour, then u*(v) > 1—1 =0 after v sends 1 to x; by
R1. Thus we assume that v has a light 3(0)-neighbour. Since v is heavy by Lemma 2.2, v can have at most two light 3(0)-neighbours. If v
has exactly one light 3(0)-neighbour, then v has either a 9T -neighbour, or two 67 -neighbours. In each case, v receives totally at least % from
its 6+ -neighbours by R5(b), R8 and R9. Thus u*(v) > 1+ & — 1 — & = O after v sends 1 to x; by R1, and { to its light 3(0)-neighbour by
R3. On the other hand, if v is adjacent to two light 3(0)-vertices, then v has also a 12" -neighbour z by Lemma 2.3. It follows that v receives
1 fromzby R9,andso u*(v) > 14+1—-1-2x é > 0 after v sends 1 to x| by R1 and % to each of its light 3(0)-neighbours by R3.

Now suppose that v has exactly one 3(1)-neighbour. Denote by w and z the neighbours of v other than 2- and 3(1)-vertices. Since v is
heavy by Lemma 2.2, we have d(w) +d(z) > A+2 > 14. If v has no light 3(0)-neighbour, then v has either one 6™ -neighbour and one
8T -neighbour or two 71 -neighbours or a 9™ -neighbour by Lemma 2.3, where we recall that x| is a light neighbour of v. In each case,
v receives totally at least % from its 6" -neighbours by R5(a), R8, and R9. Thus p*(v) > 1+ % —1- % = 0 after v sends 1 to x| by RI,
and % to its 3(1)-neighbour by R2. If v has a light 3(0)-neighbour, then v would have a 12" -neighbour by Lemma 2.3. It follows that v
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receives 1 from its 127 -neighbours by R9, and sends 1 to x| by R1, % to its 3(1)-neighbour by R2, é to its light 3(0)-neighbour by R3. Thus
prv)=1+1-1-3-1>o.

Finally suppose that v has two 3(1)-neighbours. By Lemma 2.3, v has a 12+ -neighbour z. It then follows that v receives 1 from z by R9, and
sends 1 to x; by R1, % to each of its 3(1)-neighbours by R2. Thus u*(v) > 1+1—-1-2x % =0.

Let ny(v) = 2. By Corollary 2.4(d), v has no 3(1)-neighbour. Since v is heavy, we deduce that v has either a 6-neighbour and a 91 -neighbour
or two 7T -neighbours or a 10" -neighbour by Lemma 2.3. In each case, v receives totally at least 1 from its 6T -neighbours by R6 and R9.
Thus p*(v) > 14+1—2x 1 =0 after v sends 1 to each of x;,x, by R1.

(4). k= 5. The initial charge of vis p(v) = % Notice that if v has no 2-neighbour, then v gives at most % to each of its neighbours by R2-R4,
so u*(v) > % —5x % = 0. Thus, we may assume that 1 < ny(v) < 4 where the last inequality comes from Corollary 2.4(c). Recall that v is
heavy by Lemma 2.2. In addition, if v has a 3(1)-neighbour u, then « must have a 11 -neighbour, since any 3(1)-vertex is heavy by Lemma
2.2. In such a case, v is star-adjacent to a 11+ -neighbour.

Let ny(v) = 1. Notice that if v has three 3-neighbours, then the last neighbour of v must be a 6 vertex, since v is heavy. Therefore,
w(v) > % —-1-3x % = 0 after v sends 1 to x| by R1, and at most % to each of its 3-neighbours by R2-R4.

Let ny(v) = 2. If one of x;’s is expendable, then the other x; would be light vertex. In such a case, v cannot have a 3(1)-neighbour by Lemma
2.3. Then, since v can have at most two 3(0)-neighbours (as v is heavy), we have u*(v) > % —2x1-2x % > 0 after v sends 1 to each
of x; by R1 and at most % to each of its 3(0)-neighbours by R3-R4. Suppose now that none of the x;’s is expendable. That is, each y; is a
127" -vertex. This means that v is weak adjacent to two 12 -vertices. On the other hand, v is adjacent to at most two 3(1)-neighbours as it is
heavy. If v has no 3(1)-neighbour, then p*(v) > % —2x1-2x % > 0 after v sends 1 to each x; by R1 and % to each of its 3(0)-neighbours
by R3-R4.

If v has exactly one 3(1)-neighbour, then v would have either a 8*-neighbour or no 3(0)-neighbour. In the former, v receives at least %
from its 8"-neighbour by R7-R9, and so pu*(v) > 3+ 5 —2x1-1 - é > 0 after v sends 1 to each x; by R1, 1 to its 3(1)-neighbour by
R2, and % to its 3(0)-neighbour by R3-R4. In the latter, v sends no charge to its neighbours other than 2- and 3(1)-vertices. Thus, we have
we(v) > % —2x1- % = 0 after v sends 1 to each x; by R1 and % to its 3(1)-neighbour by R2.

If v has two 3(1)-neighbours, then v would be star-adjacent to two 117 -vertices as stated above. Since v is weak-adjacent to two 127 -vertices
and star-adjacent to two 117" -vertices, there exists a face f; for i € [5] such that it is either a 5-face having two adjacent 117 -vertices x and y
or a 67 -face. If f; is a 6T -face, then it transfers at least 1 to v by R13 together with Remark 2.6. On the other hand, if f; is a 5-face having
two adjacent 11" -vertices x and y, then each of x,y gives % to the faces containing xy by R12, so f; gets totally at least 1 from x,y and
transfers it to v by R13. Consequently, v receives at least 1 from f;. Therefore, u*(v) > % +1-2x1-2x % > ( after v transfers 1 to each
x; by R1 and % to each of its 3(1)-neighbours by R2.

Let np(v) = 3. Suppose first that one of the x;’s is expendable. Then the other 2-neighbours of v would be light. Note that v cannot have any
3(1)-neighbour by Lemma 2.3. If v has a 3(0)-neighbour, then v would have also 117 -neighbour by Lemma 2.3. By applying R9, v receives
1 from its 11" -neighbour. Thus, p*(v) > % +1-3x1-— % > 0 after v sends 1 to each of x; by R1 and % to its 3(0)-neighbour by R3-R4.
Otherwise, if v has no 3(0)-neighbour, then v has either an 8" -neighbour or two 7" -neighbours by Lemma 2.3. In each case, v receives
totally at least % from its 6" -neighbours by R7. Then, u*(v) > % + % —3 x 1 =0 after v sends 1 to each x; by R1.

Next we suppose that none of the x;’s is expendable, i.e., each y; is a 127 -vertex. Since v is weak-adjacent to three 12" -vertices, we conclude
that there exists a face f; for i € [5] such that it is either a 5-face having two adjacent 127 -vertices or a 6™ -face. By applying R12 and R13
together with Remark 2.6, f; transfers at least 1 to v. Thus, u*(v) > % +1—3x1> 0 after v sends 1 to each x; by R1.

Let np(v) = 4. If one of the x;’s is expendable, then the other 2-neighbours of v would be light vertices. In this case, we would have
D(v) > A+5+|{x1,x2,...,x4}| by Lemma 2.3, however this is not possible as D(v) < A+ 8. We therefore suppose that none of the x;’s is
expendable, i.e., each y; is a 12 -vertex. Since v is weak-adjacent to four 127 -vertices, we conclude that there exist two faces f;,, fi, for
i1,ip € [5] such that each of them is either a 5-face having two adjacent 127" -vertices or a 67 -face. By applying R12 and R13 together with
Remark 2.6, each of f;,, f;, transfers at least 1 to v. Thus, pu*(v) > % +2x1—4x1>0after v sends 1 to each x; by RI.

(5). Let k = 6. The initial charge of v is 1 (v) = 4. Notice first that if v has at most two 2-neighbours, then v gives 1 to each of its 2-neighbours
by R1 and at most % to each of its other neighbours by R2-R6, so pt*(v) >4 —-2x1—4x % = 0. We may therefore assume that ny (v) > 3.

Let np(v) = 3. We may assume that v has a 3(1)-neighbour, since otherwise, u*(v) >4 -3 x1—-3 x % > 0 after v transfers 1 to each x; by
R1, and at most % to each of its other neighbours by R3-R6. Suppose first that one of the x;’s is light, and so v is heavy by Lemma 2.1. Then
v would have either two 5-neighbours or a 6" -neighbour. In the former, u*(v) >4 -3 x 1 — % > ( after v transfers 1 to each x; by R1, and %
to its 3(1)-neighbour by R2. In the latter, u*(v) >4 -3 x1-2x % = 0 after v transfers 1 to each x; by R1, and at most % to each of its
(3 — 4)-neighbours by R2-R6. Next we suppose that all x;’s are heavy. That is, each y; is a 11T -vertex. Recall that v is star-adjacent to a
10 -vertex, since any 3(1)-vertex is heavy. It then follows that v is weak-adjacent to three 117 -vertices and star-adjacent to a 10" -vertex.
We then conclude that there exists a face f; for i € [6] such that it is either a 5-face having two adjacent 10T -vertices or a 6™ -face. By
applying R12 and R13 together with Remark 2.6, f; transfers at least 1 to v. Thus, u*(v) >4+1-3x1-3x % > 0 after v sends 1 to each
x; by R1 and at most % to each of its (3 —4)-neighbours by R2-R6.

Let ny(v) = 4. Suppose first that two of the x;’s are expendable. Then the other x;’s would be light vertices. Clearly, v is heavy by
Lemma 2.1. If v has a 3(1)-neighbour, then v would have a 117" -neighbour, and so v receives 1 from its 11" -neighbour by R9. Thus,
wvy>4+1—-4x1- % > 0 after v sends 1 to each x; by R1, % to its 3(1)-neighbour by R2. If v has no 3(1)-neighbour, then v
has either a 9" -neighbour or no (3 — 4)-neighbour by Lemma 2.3. In the former, v receives at least % from its 91 -neighbour by R8
and so u*(v) >4+ % —4x1- % = 0 after v sends 1 to each x; by R1 and at most % to its (3 —4)-neighbour by R2-R6. In the latter,
u*(v) >4—4x1=0after v sends 1 to each x; by R1.
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Now we suppose that exactly one of the x;’s is expendable, say x;. Obviously, v is heavy by Lemma 2.1. It then follows from Lemma 2.3
that if v has a (3 — 4)-neighbour, then v would have a 61 -neighbour as well. Notice that, for i € {2,3,4}, each y; is a 117 -vertex since x; is
not expendable.

We first consider the case that v has a 3(1)-neighbour. Then v would be star-adjacent to 117 -vertex, as a 3(1)-vertex is heavy by Lemma 2.2.
Since v is weak-adjacent to three 117 -vertices and star-adjacent to a 11" -vertex, we conclude that there exists a face f; for i € [6] such that it
is either a 5-face having two adjacent 117" -vertices or a 6™ -face. By applying R12 and R13 together with Remark 2.6, f; transfers at least 1
to v. Thus, p*(v) >44+1—-4x1— % > 0 after v sends 1 to each x; by R1 and % to its 3(1)-neighbours by R2.

Now we consider the case that v has no 3(1)-neighbour. If y,,y3,y4 are 127 -vertices, then, by applying R9, each of y,,y3,y4 sends 11—2
to v, and so we have p*(v) > 4+ 3 x % —4x1- % = 0 after v sends 1 to each x; by R1 and at most % to its (3 — 4)-neighbour by
R3-R6. If exactly one of y;,y3,y4 is a 11-vertex, say y;, then, by applying R9, each of y3,y4 sends 1—12 to v. Also we deduce that v has
either a 9" -neighbour or no 4(2)-neighbour by Lemma 2.3. In the former, v receives at least % from its 9" -neighbour by R8 and so
wiv) >4+2x ﬁ + % —4x1- % > 0 after v sends 1 to each x; by R1 and at most % to its (3 —4)-neighbour by R3-R6. In the latter,
ur(v) >4+42x % —4x1— é = 0 after v sends 1 to each x; by R1 and at most % to its (3 —4)-neighbour by R2-R6. If two of y,,y3,y4 are
11-vertices, then v has either a 91 -neighbour or no 3(0)-, 4(1)- and 4(2)-neighbour by Lemma 2.3. In the former, v receives at least % from
its 9" -neighbour by R8 and so u*(v) >4+ % —4x1- % > 0 after v sends 1 to each x; by R1 and at most % to its (3 —4)-neighbour by
R3-R6. In the latter, u*(v) >4 —4 x 1 = 0 after v sends 1 to each x; by R1.

Finally suppose that none of the x;’ is expendable, i.e., each y; is a 117 -vertex. Since v is weak-adjacent to four 117 -vertices, we conclude
that there exists two faces f;,, f;, for i1, i, € [6] such that each of them is either a 5-face having two adjacent 117 -vertices or a 61 -face. By
applying R12 and R13 together with Remark 2.6, each of f; , f;, transfers at least 1 to v. Thus, u*(v) >4+2x1—-4x1-2x % > 0 after v
sends 1 to each x; by R1 and at most % to each of its other neighbours by R2-R6.

Let np(v) = 5. If two of x;’s are expendable, then the others would be light vertices. In such a case, v would have a 12T -neighbour, since
it is heavy by Lemma 2.1. It then follows that v receives 1 from its 12" -neighbour by R9, and sends 1 to each of its 2-neighbour by R1.
Thus u*(v) >4+41—5x 1 =0. Now, assume that at most one of the x;’s is expendable. Since v is weak-adjacent to four 11" -vertices, we
conclude that there exist two faces f;,, f;, for i1,iy € [6] such that each of them is either a 5-face having two adjacent 11" -vertices or a
61 -face. By applying R12 and R13 together with Remark 2.6, each of f;,, f;, transfers at least 1 to v. Thus, u*(v) >4+2x1—-5x1— % >0
after v sends 1 to each x; by R1 and at most % to its other neighbour by R2-R6.

Let np(v) = 6. All the x;’s are heavy, since otherwise, v and one of its neighbour would be light, a contradiction by Lemma 2.1. Since v is
weak-adjacent to six 117 -vertices, we deduce that each f; is either a 5-face having two adjacent 117 -vertices or a 6™ -face. By applying R12
and R13 together with Remark 2.6, each f; transfers at least 1 to v. Thus, u*(v) >4+6x1—6x 1> 0 after v sends 1 to each x; by R1.

(6). Let k = 7. The initial charge of v is p(v) = 12—1 Observe that a 3™ -vertex may receive at most % from v by R2-R7. So, if v has at most

two 2-neighbours, then p*(v) > % —2x1-5x% % > 0 after v sends 1 to each x; by R1 and at most % to each of its other neighbours by
R2-R7. Therefore we may assume that np(v) > 3.

Let ny(v) = 3. If v has at most three 3(1)-neighbours, then p*(v) > 171 —3x1-3x % — % = 0 after v sends 1 to each x; by RI, %
to each of its 3(1)-neighbour by R2, and at most % to each of its neighbours other than 2- and 3(1)-vertices by R3-R7. If v has four
3(1)-neighbours, then v would be light, and so each x; must be heavy by Lemma 2.1. This means that each y; is a 10" -vertex. Also each
3(1)-neighbour of v is adjacent to a 97 -vertex as a 3(1)-vertex is heavy by Lemma 2.2. Since v is weak-adjacent to three 10T -vertices
and star-adjacent to four 9 -vertices, we conclude that there exists two faces fiys fi, for iy, ip € [7] such that each of them is either a 5-face
having two adjacent 9" -vertices or a 67 -face. By applying R11-R13 together with Remark 2.6, each of f;,, f;, transfers at least % to v. Thus,
w(v) > % +2x % —3x1—-4x % > 0 after v sends 1 to each x; by R1 and % to each of its 3(1)-neighbours by R2.

Let ny(v) = 4. If all the x;’s are heavy, then each y; must be a 10" -vertex. Since v is weak-adjacent to four 107 -vertices, we conclude that
there exists a face f; for i € [7] such that it is either a 5-face having two adjacent 107 -vertices or a 67 -face. By applying R12-R13 together
with Remark 2.6, f; transfers at least 1 to v. Thus, u*(v) > 12—1 +1-4x1-3x % > ( after v sends 1 to each x; by R1, and at most % to each
of its other neighbours by R2-R7.

Now we suppose that one of the x;’s is light, then v would be heavy by Lemma 2.1. If v has no 3(1)-neighbour, then p*(v) > % —4x1—
3x % = 0 after v sends 1 to each x; by R1, and at most % to each of its other neighbours by R3-R7. If v has exactly one 3(1)-neighbour,
then v cannot have two 4(2)-neighbour by Lemma 2.3. Thus, u*(v) > % —4x1- % - % - % = 0 after v sends 1 to each x; by R1, % to its
3(1)-neighbour by R2, % to its 4(2)-neighbour by R6, and at most % to its neighbour other than 2-, 3(1)-, and 4(2)-vertex by R3-R5, R7. If v
has two 3(1)-neighbours, then v would have a 6™ -neighbour by Lemma 2.3. Thus, u*(v) > % —4x1-2x % > 0 after v sends 1 to each x;

by R1 and % to each of its 3(1)-neighbours by R2.

Let ny(v) = 5. If three of x;’s are expendable, then the others would be light vertices. In such a case, v would have either a 10" -neighbour or
no 3(1)-neighbour. In the former, v receives 1 from its 10" -neighbour by R9, and sends 1 to each of its 2-neighbour, at most % to its other
5~ -neighbour by R2-R7. Thus pu*(v) > % +1-5x1-— % > 0. In the latter, v cannot have two (3 — 5)-neighbours by Lemma 2.3, and so
w(v) > % —5x1— % = 0 after v sends 1 to each of its 2-neighbour by R1 and at most % to its (3 — 5)-neighbour by R3-R7.

Now, assume that exactly two of the x;’s are expendable, say x,x>. Then each of y3,v4,ys is a 107 -vertex since they are not expendable.
Suppose first that exactly one of y3,y4,y5 is a 117~ -vertex, say y3. Obviously, y3 is light vertex. By R9, each of y4,ys sends 1—12 to v. Since v
is heavy by Lemma 2.1, we deduce that v has either two 5T -neighbours or one 67 -neighbour. In each case, v sends totally at most % to its
(3 — 5)-neighbours by R2-R7. Thus, u*(v) > 171 +2x 1—12 —5x1— % = 0 after v sends 1 to each of its 2-neighbour by R1.

Next we suppose that at least two of y3,y4,ys are 11~ -vertices. Since v is heavy by Lemma 2.1, v has a 6T -neighbour. Moreover, we
deduce that v has either 9" -neighbour or no 3(1)-neighbour. In the former, v receives at least % from its 9" -neighbour by R8-R9, and so
w(v) > 1—21 + % —5x1— % > 0 after v sends 1 to each of its 2-neighbour by R1 and at most % to its (3 — 5)-neighbour by R2-R7. In the
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latter, we have pu*(v) > 1—21 —5x1-— % > 0 after v sends 1 to each of its 2-neighbour by R1 and at most % to its (3 — 5)-neighbour by R3-R7.
Now we suppose that each of y3,y4,ys5 is a 127-vertex. So, each of y3,y4,y5 sends ﬁ to v. Since v is heavy, v has either one 4-
neighbour and one 5" -neighbour or a 67 -neighbour. In each case, v sends totally at most % to its (3 — 5)-neighbours by R2-R7. Thus,
ur(v) > % +3x 11—2 —5x1-— % = 0 after v sends 1 to each of its 2-neighbour by R1.

Finally, assume that at most one of the x;’s is expendable. Since v is weak-adjacent to four 10T -vertices, we conclude that there exists a
face f; for i € [7] such that it is either a 5-face having two adjacent 10T -vertices or a 6 -face. By applying R12-R13 together with Remark
2.6, f; transfers at least 1 to v. Thus, u*(v) > % +1—-5x1-2x % > 0 after v sends 1 to each x; by R1 and at most % to each of its other
neighbours by R2-R7.

Let n(v) = 6. If three of the x;’s are expendable, then the others would be light vertices. This implies that v has a 11" -neighbour by Lemma
2.3. Then v receives 1 from its 117 -neighbour by R9, and so pu*(v) > 12—1 +1—6x1 > 0 after sends 1 to each of its 2-neighbour by R1.
Suppose now that at most two of the x;’s are expendable. Since v is weak-adjacent to four 107 -vertices, we conclude that there exists a face
fi fori € [7] such that it is either a 5-face having two adjacent 107 -vertices or a 6™ -face. By applying R12-R13 together with Remark 2.6, f;
transfers at least 1 to v. Thus, u*(v) > % +1—6x1 >0 after v sends 1 to each x; by R1.

Let ny(v) = 7. All the x;’s are heavy, since otherwise, v and one of its neighbour would be light, a contradiction by Lemma 2.1. Since v is
weak-adjacent to seven 10" -vertices, we deduce that each f; is either a 5-face having two adjacent 10 -vertices or a 6 -face. By applying
R12-R13 together with Remark 2.6, each f; transfers at least 1 to v. Thus, u*(v) > 1—21 +6x1—7x1>0 after v sends 1 to each x; by R1.

(7). Let k = 8. The initial charge of v is tt(v) = 7. Note that if v has at most four 2-neighbours, then pu*(v) >7—4x 1 —4 x % =0 after v
sends 1 to each x; by R1 and at most % to each of its other neighbours by R2-R7. So, we may assume that n,(v) > 5.

Let ny(v) = 5. If one of the x;’s is light, then v would be heavy by Lemma 2.1, and so v cannot have three 3(1)-neighbours by Lemma 2.3.
Thus, u*(v) >7—-5x1-2x % - % = 0 after v sends 1 to each x; by R1, % to each of its 3(1)-neighbour by R2, and at most % to each of its
other neighbours by R3-R7. If all the x;’s are heavy, then each y; would be a 9" -vertex. Since v is weak-adjacent to five 9T -vertices, we
conclude that there exist two faces f;, , f;, for i1, i € [8] such that each of them is either a 5-face having two adjacent 9" -vertices or a 6 -face.
By applying R11-R13 together with Remark 2.6, each of f;,, f;, transfers at least % to v. Thus, u*(v) > 7+2 x % —5x1-3x % > 0 after v

sends 1 to each x; by R1 and at most % to each of its other neighbours by R2-R7.

Let np(v) = 6. Observe that if three of the x;’s are light, then v would have either a 6 -neighbour or no 3(1)-neighbour by Lemma 2.3.
In the former, u*(v) >7—-6x1— % > 0 after v sends 1 to each x; by R1 and at most % to its (3 — 5)-neighbour by R2-R7. In the latter,
W@ >7-6x1-2x % = 0 after v sends 1 to each of its 2-neighbours by R1 and at most % to each of its (3 — 5)-neighbours by R2-R7.
Suppose now that exactly two of the x;’s are light, say x;,x,. By Lemma 2.1, v is heavy. It follows that v cannot have two 3(1)-neighbours by
Lemma 2.3. If v has no 3(1)-neighbour, then u*(v) >7—-6x1—-2x % = 0 after v sends 1 to each of its 2-neighbours by R1 and at most %
to each of its (3 — 5)-neighbours by R2-R7. If v has a 3(1)-neighbour, say z, then z is adjacent to a 107 -vertex since a 3(1)-vertex is heavy by
Lemma 2.2. That is, v is star-adjacent to a 10" -vertex. Recall that y3,y4,ys,ye are 9" -vertices. Since v is weak-adjacent to four 9" -vertices
and star-adjacent to a 10T -vertex, then we conclude that there exists a face f; for i € [8] such that it is either a 5-face having two adjacent
97 -vertices or a 67 -face. By applying R11-R13 together with Remark 2.6, f; transfers at least % tov. Thus, u*(v) >7+ % —6x1— % - % >0
after v sends 1 to each x; by R1, % to its 3(1)-neighbour by R2, and at most % to each of its 3" -neighbours other than 3(1)-vertex by R3-R7.
Next we suppose that at most one of the x;’s is light, say x; (if exists). Clearly, y»,y3,...,y¢ are 9 -vertices. Since v is weak-adjacent
to five 9" -vertices, we conclude that there exist two faces f;,, f;, for i1,y € [8] such that each of them is either a 5-face having two
adjacent 97" -vertices or a 61-face. By applying R11-R13 together with Remark 2.6, each of f; , f;, transfers at least % to v. Thus,
wrv)>74+2x % —6x1-2x % > 0 after v sends 1 to each x; by R1 and at most % to each of its (3 — 5)-neighbours by R2-R7.

Let ny(v) = 7. If three of the x;’s are light, then v would have a 6 -neighbour by Lemmas 2.1 and 2.3. Thus, u*(v) >7—7 x 1 =0 after v
sends 1 to each x; by R1. Suppose now that exactly two of the x;’s are light, say x;,x,. Then v would have a 5*-neighbour by Lemmas 2.1
and 2.3. On the other hand, y3,y4,...,y7 are 9" -vertices. Since v is weak-adjacent to five 97 -vertices, we conclude that there exist two faces
firs fi, Tor iy, ip € [8] such that each of them is either a 5-face having two adjacent 9™ -vertices or a 61 -face. By applying R11-R13 together
with Remark 2.6, each of f; , f;, transfers at least % to v. Thus, p*(v) > 742 x % —7x1— % > ( after v sends 1 to each x; by R1 and at
most % to its 5T-neighbour by R7. Finally suppose that at most one of the x;’s is light, say x| (if exists). Then y»,y3,...,y7 are 9™ -vertices.
Since v is weak-adjacent to six 97 -vertices, we conclude that there exists four faces f;,, f3,,- - ., fi, forii,ia,...,is € [8] such that each of
them is either a 5-face having two adjacent 9" -vertices or a 6 -face. By applying R11-R13 together with Remark 2.6, each of f;,, fi,, ..., f,
transfers at least % to v. Thus, u*(v) >7+4x % —7x1—- % > 0 after v sends 1 to each x; by R1 and at most % to its other neighbour by
R2-R7.

Let ny(v) = 8. All the x;’s are heavy, since otherwise, v and one of its neighbour would be light, a contradiction by Lemma 2.1. Since v is
weak-adjacent to eight 97 -vertices, we deduce that each f; is either a 5-face having two adjacent 9T -vertices or a 67 -face. By applying
R11-R13 together with Remark 2.6, each f; transfers at least % to v. Thus, u*(v) > 748 x % —8x 1> 0 after v sends 1 to each x; by R1.

(8). Let k =9. The initial charge of v is p(v) = 1—27 Note that if v has at most six 2-neighbours, then u*(v) > Y —6x 1 —3 x % =0 after v

2
sends 1 to each x; by R1, at most % to each of its other neighbours by R2-R7. So, we may assume that n (v) > 7.

Let np(v) = 7. If two of the x;’s are light, then v would have at most one neighbour forming a 3(1)- or 4(2)-vertex by Lemmas 2.1 and 2.3.
In such a case, u*(v) > % —Tx1— % - % > 0 after v sends 1 to each x; by R1, at most % to its 3(1)- or 4(2)-neighbour (if exists) by R2,R6,
and at most % to each of its other neighbours by R3-R5,R7.

Suppose now that exactly one of the x;’s is light, say x;. Clearly, y,y3,...,y7 are 8 -vertices. If v has no 3(1)-neighbour, then p*(v) >
% —7x1-2x % > ( after v sends 1 to each x; by R1 and at most % to each of its other neighbour by R3-R7. If v has a 3(1)-neighbour, say
z, then z is adjacent to a 8"-vertex other than v, since a 3(1)-vertex is heavy Lemma 2.2. That is, v is star-adjacent to a 8*-vertex. Recall
that y5,y3,...,y7 are 8 -vertices. Since v is weak-adjacent to six 8" -vertices and star-adjacent to a 8 -vertex, we conclude that there exist
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two consecutive faces f;, f;1 1 for i € [9] such that each of them is either a 5-face having two adjacent 8 "-vertices or a 6" -face. If both f;
and f;, 1 are 5-faces, then there exists a common 8 -vertex x; on f; and f; | adjacent to two 8T -vertices on those faces, and so x; sends
at least % to each of f;, fiy1 by R10-R12. If one of f; and f;| is a 6" -face, then it sends at least % to v by R13 together with Remark 2.6.
Consequently, v receives totally at least % from its incident faces by R13. Thus, u*(v) > % + % —T7x1-2x % > 0 after v sends 1 to each
x; by R1 and at most % to each of its other neighbour by R2-R7.

Finally we suppose that all the x;’s are heavy. Clearly, yi,y>,...,y7 are 8T -vertices. Since v is weak-adjacent to seven 8 -vertices, we
conclude that there exist two consecutive faces f;, fi41 for i € [8] such that each of them is either a 5-face having two adjacent 8*-vertices or
a 67 -face. Similarly as above, v receives totally at least % from its incident faces by R10-R13. Thus, p*(v) > % + % —7x1-2x % >0
after v sends 1 to each x; by R1 and at most % to each of its other neighbour by R2-R7.

Let ny(v) > 8. If two of the x;’s are light, then v has neither 3(1)- nor 4(2)-neighbour by Lemmas 2.1 and 2.3. In this case, u*(v) >
177 —8x1-— % = 0 after v sends 1 to each of its 2-neighbour by R1 and at most % to its other neighbour R3-R4, R8. Suppose now that
at most one of the x;’s is light, say x; (if exists). Clearly, y»,y3,...,yg are 8 -vertices. Since v is weak-adjacent to seven 8" -vertices, we
conclude that there exist two consecutive faces f;, fiy1 for i € [8] such that each of them is either a 5-face having two adjacent 8*-vertices or
a 6T -face. Similarly as above, v receives totally at least % from its incident faces by R10-R13. Thus, p*(v) > % + % —Tx1-2x % >0

after v sends 1 to each x; by R1 and at most % to each of its other neighbour by R2-R7.

(9). Let k > 10. The initial charge of v is pu(v) > %(v) —5 > 10. By R9, v sends 1 to each of its 8 -neighbour. Besides, if v has a

9T -neighbour u, then v sends % to each face containing vu by R12. Therefore, v sends exactly 1 charge for each of its neighbours. On the
other hand, if v is a 127 -vertex, then v sends 11—2 to its each weak neighbour, and so u*(v) > %(V) —5—d(v)x1—d(v) x 11—2 > 0.

We obtain a non-negative charge on each vertex and face, which contradicts the fact that the total charge is negative. Thus, G cannot exist.
This concludes the proof of Theorem 1.2.
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