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Abstract

A vertex coloring of a graph G is said to be a 2-distance coloring if any two vertices at distance at most 2 from each other receive different
colors, and the least number of colors for which G admits a 2-distance coloring is known as the 2-distance chromatic number of G, and
denoted by χ2(G). We prove that if G is a planar graph with girth 5 and maximum degree ∆≥ 12, then χ2(G)≤ ∆(G)+5.
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1. Preliminaries

All graphs in this paper are assumed to be simple, i.e., finite and undirected, with no loops or multiple edges. We refer to [11] for terminology
and notation not defined here. Let G be a graph; we use V (G), E(G), F(G), ∆(G), and g(G) to denote the vertex set, edge set, face set,
maximum degree, and girth of G, respectively. When the context is clear, we abbreviate ∆(G) and g(G) as ∆ and g. A 2-distance coloring is
a vertex coloring in which two vertices that are either adjacent or share a common neighbor receive different colors. The smallest number of
colors required for G to admit a 2-distance coloring is called the 2-distance chromatic number and is denoted by χ2(G).
In 1977, Wegner [10] made the following conjecture:

Conjecture 1.1. For every planar graph G,

χ2(G)≤


7, ∆ = 3,
∆+5, 4≤ ∆≤ 7,
b 3

2 ∆c+1, ∆≥ 8.

Thomassen [9] proved that this conjecture holds for planar graphs with ∆ = 3. However, it remains open for planar graphs with ∆ ≥ 4.
For upper bounds, van den Heuvel and McGuinness [5] established that χ2(G) ≤ 2∆+25, and Molloy and Salavatipour [8] proved that
χ2(G)≤ d 5

3 ∆e+78.
For planar graphs without short cycles, Bu and Zhu [1] demonstrated that χ2(G)≤ ∆+5 when g≥ 6, this confirms Conjecture 1.1 for planar
graphs with girth at least six. Recently, Deniz [3] improved this result by showing that χ2(G)≤ ∆+4 when g≥ 6 and ∆≥ 6. On the other
hand, La [7] proved that χ2(G)≤ ∆+3 if either g≥ 7 and ∆≥ 6 or g≥ 8 and ∆≥ 4. For planar graphs with girth 5, Deniz [4] showed that
χ2(G)≤ ∆+7, further proving that χ2(G)≤ ∆+6 when ∆≥ 10. On the other hand, Bu and Zhu [2] established that χ2(G)≤ ∆+5 for
∆≥ 15.
In this paper, we improve the result of Bu and Zhu [2] as follows.

Theorem 1.2. If G is a planar graph with g≥ 5 and ∆≥ 12, then χ2(G)≤ ∆+5.

Given a planar graph G, we denote by `( f ) the length of a face f and by d(v) the degree of a vertex v. A k-vertex is a vertex of degree k. A
k−-vertex is a vertex of degree at most k, and a k+-vertex is a vertex of degree at least k. We similarly define a k-face (or k− or k+-face)
and k-neighbor (or k− or k+-neighbor). A k(d)-vertex is a k-vertex adjacent to d 2-vertices. When r ≤ d(v)≤ s, the vertex v is called an
(r-s)-vertex.
For a vertex v ∈V (G), we use ni(v) (resp. nk

2(v)) to denote the number of i-vertices (resp. 2-vertices with a k-neighbor) adjacent to v. Let
v ∈V (G); we define
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D(v) = ∑
vi∈N(v)

d(vi).

We denote by d(u,v) the distance between any pair u,v ∈V (G). Additionally, we set Ni(v) = {u ∈V (G) | 1≤ d(u,v)≤ i}, for i≥ 1, and
clearly N1(v) = N(v).
If there is a path uvw in G with dG(v) = 2 such that uw /∈ E(G), then we say that u and w are weak-adjacent. A pair of weak-adjacent
vertices is said to be weak neighbors of each other. Neighbors of a 3(1)-vertex that are not 2-vertices are called star-adjacent. Clearly, every
2-vertex v with a k−-neighbor satisfies D(v)≤ ∆+ k.
A vertex v is called expendable if

D(v)< ∆+5+
4

∑
i=3

ni
2(v).

We denote by e(v) the number of expendable vertices in N2(v). If v satisfies D(v)< ∆+5+ e(v), it is called light; otherwise, it is called
heavy. Note that every 2-vertex adjacent to a 4−-vertex is expendable, so

4

∑
i=3

ni
2(v)≤ e(v)

for any vertex v. Thus, every expendable vertex is a light vertex.

2. The Proof of Theorem 1.2

2.1. The Structure of Minimum Counterexample

Let G be a minimal counterexample to Theorem 1.2 such that G does not admit any 2 distance coloring with ∆+5 colors, but any proper
subgraph of G does. By the minimality, G−x has a 2-distance coloring with ∆+5 colors for every x ∈V (G)∪E(G). Clearly, G is connected
and satisfies δ (G)≥ 2.
We first present some preliminary results from the paper [4], adapting our graph G to their framework.

Lemma 2.1. [4] If v is a light vertex, then each neighbour of v is a heavy vertex.

Lemma 2.2. [4] Every 5−-vertex having a 2-neighbour is heavy. In particular, every 4-vertex having a 3(1)-neighbour is heavy as well.

Lemma 2.3. [4] For v ∈V (G), let S be the set of light vertices in N2(v). If v has a light neighbour, then D(v)≥ ∆+5+ |S|.

The following can be easily obtained from Lemmas 2.1, 2.2 and 2.3.

Corollary 2.4. (a) Every 2-vertex having a 4−-neighbour is light.
(b) G has no adjacent 2-vertices.
(c) G has no 3(2)-, 3(3)-, 4(3)- 4(4)-, and 5(5)-vertices.
(d) A 3(1)-vertex cannot be adjacent to any 3-, 4(1)-, 4(2)- or light 4-vertex.

We call a path xyz as a poor path if 5≤ d(y)≤ 9, 2≤ d(x)≤ 3 and 2≤ d(z)≤ 3. If a poor path xyz lies on the boundary of a face f , then
the vertex y is called f -poor vertex.
It follows from the definition of the poor path that we can bound the number of those paths in a face.

Corollary 2.5. Each face f has at most b `( f )
2 c f -poor vertices.

In the rest of this section, we will apply discharging to show that G does not exist. We assign to each vertex v a charge µ(v) = 3d(v)
2 −5 and

to each face f a charge µ( f ) = `( f )−5. By Euler’s formula, we have

∑
v∈V

(
3d(v)

2
−5
)
+ ∑

f∈F
(`( f )−5) =−10

We next present some rules and redistribute accordingly. Once the discharging finishes, we check the final charge µ∗(v) and µ∗( f ). If
µ∗(v)≥ 0 and µ∗( f )≥ 0, we get a contradiction that no such counterexample graph G can exist.

2.2. Discharging Rules

We apply the following discharging rules.

R1: Every 2-vertex receives 1 from each neighbour.
R2: Every 3(1)-vertex receives 1

2 from each (4-6)-neighbour; 2
3 from each 7-neighbour; 3

4 from each 8-neighbour; 5
6 from each 9-

neighbour.
R3: Every light 3(0)-vertex receives 1

6 from each 3+-neighbour.
R4: Let v be a heavy 3(0)-vertex, then v receives 1

6 from each (5-6)-neighbour; 1
3 from each (7-8)-neighbour, 1

2 from each 9-neighbour.
R5: Let v be a 4(1)-vertex.

(a) If v is adjacent to 3(1)-vertex, then v receives 1
6 from each 6-neighbour; 1

4 from each 7-neighbour; 1
3 from each 8-neighbour.

(b) If v is adjacent to light 3(0)-vertex, then v receives 1
12 from each (6-8)-neighbour.

R6: Every 4(2)-vertex receives 1
4 from each 6-neighbour; 1

2 from each (7-8)-neighbour; 3
4 from each 9-neighbour.
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R7: Every 5(2+)-vertex receives 1
4 from each 7-neighbour, and 1

2 from each 8-neighbour.
R8: Every 9-vertex gives 1

2 to each (4-8)-neighbour other than 4(2)-vertex.
R9: Every 10+-vertex gives 1 to each 8−-neighbour. In particular, if v is a 12+-vertex, then v also sends 1

12 to each of its weak neighbour.
R10: If an 8-vertex v is adjacent to two 8+-vertices u and w, then v gives 1

4 to each face containing one of uv, wv.
R11: If a 9-vertex v is adjacent to a 9+-vertex u, then v gives 1

4 to each face containing uv.
R12: If a 10+-vertex v is adjacent to a 9+-vertex u, then v gives 1

2 to each face containing uv.
R13: After applying R10-R12, every face f transfers its positive charge equally to its incident f -poor vertices.

Remark 2.6. Let f be a 6+-face. It follows from Corollary 2.5 that f has at most b `( f )
2 c f -poor vertices. Suppose that f is incident to k

non-poor 8+-vertices.

• If k = 0, then f has at most b `( f )
2 c f -poor vertices, and so f sends at least 1

3 to each of its incident f -poor vertices by R13.

• If k = 1, then f has at most b `( f )−2
2 c f -poor vertices, and so f sends at least 1

2 to each of its incident f -poor vertices by R13.

• If k ≥ 2, then f has at most b `( f )−3
2 c f -poor vertices, and so f sends at least 1 to each of its incident f -poor vertices by R13.

Checking µ∗(v),µ∗( f )≥ 0, for v ∈V (G), f ∈ F(G)

Clearly µ∗( f )≥ 0 for each f ∈ F(G), since every face transfers its positive charge equally to its incident f -poor vertices by R13.

We pick a vertex v ∈V (G) with d(v) = k. We denote by x1,x2, . . . ,xt the 2-neighbours of v for 0≤ n2(v) = t ≤ k, and let yi be the other
neighbour of xi different from v. Let f1, f2 . . . , fk be faces incident to v.

(1). Let k = 2. Then µ(v) =−2. By Corollary 2.4(b), v is adjacent to two 3+-vertices. It follows from applying R1 that v receives 1 from
each of its neighbours, and so µ∗(v)≥ 0.

(2). Let k = 3. Then µ(v) =− 1
2 . By Corollary 2.4(c), v has at most one 2-neighbour. First assume that v has a 2-neighbour, say x1. Denote

by w and z the other neighbour of v with d(w)≤ d(z). Clearly, x1 is a light vertex, and so v must be heavy by Lemma 2.1. It then follows
from Lemma 2.3 that d(w)+d(z)≥ ∆+4≥ 16.

• If 4≤ d(w)≤ 6, then z is a 10+-vertex. Thus, v receives 1 from z by R9 and 1
2 from w by R2. Therefore, µ∗(v)≥− 1

2 +1+ 1
2 −1 = 0

after v transfers 1 to x1 by R1.
• If w is a 7-vertex, then z would be a 9+-vertex. By applying R2 and R9, v receives 2

3 from w and at least 5
6 from z. Therefore,

µ∗(v)≥− 1
2 +

2
3 +

5
6 −1 = 0 after v transfers 1 to x1 by R1.

• If w is an 8-vertex, then z would also be an 8+-vertex. By applying R2 and R9, v receives at least 3
4 from each of w,z. Therefore,

µ∗(v)≥− 1
2 +2× 3

4 −1 = 0 after v transfers 1 to x1 by R1.

Let us now assume that v has no 2-neighbour. If v is a light vertex, then each neighbour of v must be heavy by Lemma 2.1, and so v
receives at least 1

6 from each of it neighbours by R3; hence µ∗(v) ≥ − 1
2 + 3× 1

6 = 0. We further suppose that v is heavy. Denote by
u,w, and z the neighbours of v with d(u) ≤ d(w) ≤ d(z). Notice that v cannot have two light 3-neighbours by Lemma 2.3. If v has no
light 3-neighbour, then we deduce that v has either a 9+-neighbour or a 7+-neighbour and a 5+-neighbour or three 5+-neighbours, since
d(u)+d(w)+d(z)≥ ∆+5≥ 17. In each case, v receives totally at least 1

2 from its neighbours by applying R4. Thus, µ∗(v)≥− 1
2 +

1
2 = 0.

If v has a light 3-neighbour, say u, then we have d(w)+d(z)≥ 15 by Lemma 2.3. This clearly implies that v has either a 10+-neighbour
or a 6+- and a 9+-neighbour or two 7+-neighbours. By applying R4 and R9, v receives totally at least 2

3 from its neighbours. Thus,
µ∗(v)≥− 1

2 +
2
3 −

1
6 = 0 after v transfers 1

6 to u by R3.

(3). Let k = 4. The initial charge of v is µ(v) = 1. By Corollary 2.4(c), v has at most two 2-neighbours. Note that v is heavy whenever it has
a 2-neighbour by Lemma 2.2.

Let n2(v) = 0. Recall that v has at most three 3(1)-neighbours by Corollary 2.4(d); moreover, by the same reason, v is heavy whenever it
has a 3(1)-neighbour. If v has at most one 3(1)-neighbour, then µ∗(v) ≥ 1− 1

2 −3× 1
6 ≥ 0 after v sends 1

2 to its 3(1)-neighbour by R2,
and 1

6 to each of its light 3(0)-neighbours by R3. Suppose now that v has exactly two 3(1)-neighbours. If v has no light 3(0)-neighbour,
then µ∗(v)≥ 1−2× 1

2 ≥ 0 after v sends 1
2 to each of its 3(1)-neighbour by R2. If v has a light 3(0)-neighbour, then v would also have a

11+-neighbour by Lemma 2.3. Thus, v receives 1 from its 11+-neighbour by R9 and sends at most 1
2 to each of its 3-neighbours by R2-R3,

and so µ∗(v)≥ 1+1−3× 1
2 > 0. Finally suppose that v has exactly three 3(1)-neighbours. Since v is heavy and there exist three expendable

vertices (2-neighbours of 3(1)-vertices) in N2(v), we deduce that v has a 11+-neighbour. Thus, v receives 1 from its 11+-neighbour by R9
and sends at most 1

2 to each of its 3-neighbours by R2-R3, and so µ∗(v)≥ 1+1−3× 1
2 > 0.

Let n2(v) = 1. Suppose first that v has no 3(1)-neighbours. If v has no light 3(0)-neighbour, then µ∗(v)≥ 1−1 = 0 after v sends 1 to x1 by
R1. Thus we assume that v has a light 3(0)-neighbour. Since v is heavy by Lemma 2.2, v can have at most two light 3(0)-neighbours. If v
has exactly one light 3(0)-neighbour, then v has either a 9+-neighbour, or two 6+-neighbours. In each case, v receives totally at least 1

6 from
its 6+-neighbours by R5(b), R8 and R9. Thus µ∗(v)≥ 1+ 1

6 −1− 1
6 = 0 after v sends 1 to x1 by R1, and 1

6 to its light 3(0)-neighbour by
R3. On the other hand, if v is adjacent to two light 3(0)-vertices, then v has also a 12+-neighbour z by Lemma 2.3. It follows that v receives
1 from z by R9, and so µ∗(v)≥ 1+1−1−2× 1

6 > 0 after v sends 1 to x1 by R1 and 1
6 to each of its light 3(0)-neighbours by R3.

Now suppose that v has exactly one 3(1)-neighbour. Denote by w and z the neighbours of v other than 2- and 3(1)-vertices. Since v is
heavy by Lemma 2.2, we have d(w)+d(z) ≥ ∆+2 ≥ 14. If v has no light 3(0)-neighbour, then v has either one 6+-neighbour and one
8+-neighbour or two 7+-neighbours or a 9+-neighbour by Lemma 2.3, where we recall that x1 is a light neighbour of v. In each case,
v receives totally at least 1

2 from its 6+-neighbours by R5(a), R8, and R9. Thus µ∗(v) ≥ 1+ 1
2 − 1− 1

2 = 0 after v sends 1 to x1 by R1,
and 1

2 to its 3(1)-neighbour by R2. If v has a light 3(0)-neighbour, then v would have a 12+-neighbour by Lemma 2.3. It follows that v
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receives 1 from its 12+-neighbours by R9, and sends 1 to x1 by R1, 1
2 to its 3(1)-neighbour by R2, 1

6 to its light 3(0)-neighbour by R3. Thus
µ∗(v)≥ 1+1−1− 1

2 −
1
6 > 0.

Finally suppose that v has two 3(1)-neighbours. By Lemma 2.3, v has a 12+-neighbour z. It then follows that v receives 1 from z by R9, and
sends 1 to x1 by R1, 1

2 to each of its 3(1)-neighbours by R2. Thus µ∗(v)≥ 1+1−1−2× 1
2 = 0.

Let n2(v) = 2. By Corollary 2.4(d), v has no 3(1)-neighbour. Since v is heavy, we deduce that v has either a 6-neighbour and a 9+-neighbour
or two 7+-neighbours or a 10+-neighbour by Lemma 2.3. In each case, v receives totally at least 1 from its 6+-neighbours by R6 and R9.
Thus µ∗(v)≥ 1+1−2×1 = 0 after v sends 1 to each of x1,x2 by R1.

(4). k = 5. The initial charge of v is µ(v) = 5
2 . Notice that if v has no 2-neighbour, then v gives at most 1

2 to each of its neighbours by R2-R4,
so µ∗(v)≥ 5

2 −5× 1
2 = 0. Thus, we may assume that 1≤ n2(v)≤ 4 where the last inequality comes from Corollary 2.4(c). Recall that v is

heavy by Lemma 2.2. In addition, if v has a 3(1)-neighbour u, then u must have a 11+-neighbour, since any 3(1)-vertex is heavy by Lemma
2.2. In such a case, v is star-adjacent to a 11+-neighbour.

Let n2(v) = 1. Notice that if v has three 3-neighbours, then the last neighbour of v must be a 6+ vertex, since v is heavy. Therefore,
µ∗(v)≥ 5

2 −1−3× 1
2 = 0 after v sends 1 to x1 by R1, and at most 1

2 to each of its 3-neighbours by R2-R4.

Let n2(v) = 2. If one of xi’s is expendable, then the other xi would be light vertex. In such a case, v cannot have a 3(1)-neighbour by Lemma
2.3. Then, since v can have at most two 3(0)-neighbours (as v is heavy), we have µ∗(v) ≥ 5

2 −2×1−2× 1
6 > 0 after v sends 1 to each

of xi by R1 and at most 1
6 to each of its 3(0)-neighbours by R3-R4. Suppose now that none of the xi’s is expendable. That is, each yi is a

12+-vertex. This means that v is weak adjacent to two 12+-vertices. On the other hand, v is adjacent to at most two 3(1)-neighbours as it is
heavy. If v has no 3(1)-neighbour, then µ∗(v)≥ 5

2 −2×1−2× 1
6 > 0 after v sends 1 to each xi by R1 and 1

6 to each of its 3(0)-neighbours
by R3-R4.
If v has exactly one 3(1)-neighbour, then v would have either a 8+-neighbour or no 3(0)-neighbour. In the former, v receives at least 1

2
from its 8+-neighbour by R7-R9, and so µ∗(v)≥ 5

2 +
1
2 −2×1− 1

2 −
1
6 > 0 after v sends 1 to each xi by R1, 1

2 to its 3(1)-neighbour by
R2, and 1

6 to its 3(0)-neighbour by R3-R4. In the latter, v sends no charge to its neighbours other than 2- and 3(1)-vertices. Thus, we have
µ∗(v)≥ 5

2 −2×1− 1
2 = 0 after v sends 1 to each xi by R1 and 1

2 to its 3(1)-neighbour by R2.
If v has two 3(1)-neighbours, then v would be star-adjacent to two 11+-vertices as stated above. Since v is weak-adjacent to two 12+-vertices
and star-adjacent to two 11+-vertices, there exists a face fi for i ∈ [5] such that it is either a 5-face having two adjacent 11+-vertices x and y
or a 6+-face. If fi is a 6+-face, then it transfers at least 1 to v by R13 together with Remark 2.6. On the other hand, if fi is a 5-face having
two adjacent 11+-vertices x and y, then each of x,y gives 1

2 to the faces containing xy by R12, so fi gets totally at least 1 from x,y and
transfers it to v by R13. Consequently, v receives at least 1 from fi. Therefore, µ∗(v)≥ 5

2 +1−2×1−2× 1
2 > 0 after v transfers 1 to each

xi by R1 and 1
2 to each of its 3(1)-neighbours by R2.

Let n2(v) = 3. Suppose first that one of the xi’s is expendable. Then the other 2-neighbours of v would be light. Note that v cannot have any
3(1)-neighbour by Lemma 2.3. If v has a 3(0)-neighbour, then v would have also 11+-neighbour by Lemma 2.3. By applying R9, v receives
1 from its 11+-neighbour. Thus, µ∗(v)≥ 5

2 +1−3×1− 1
6 > 0 after v sends 1 to each of xi by R1 and 1

6 to its 3(0)-neighbour by R3-R4.
Otherwise, if v has no 3(0)-neighbour, then v has either an 8+-neighbour or two 7+-neighbours by Lemma 2.3. In each case, v receives
totally at least 1

2 from its 6+-neighbours by R7. Then, µ∗(v)≥ 5
2 +

1
2 −3×1 = 0 after v sends 1 to each xi by R1.

Next we suppose that none of the xi’s is expendable, i.e., each yi is a 12+-vertex. Since v is weak-adjacent to three 12+-vertices, we conclude
that there exists a face fi for i ∈ [5] such that it is either a 5-face having two adjacent 12+-vertices or a 6+-face. By applying R12 and R13
together with Remark 2.6, fi transfers at least 1 to v. Thus, µ∗(v)≥ 5

2 +1−3×1 > 0 after v sends 1 to each xi by R1.

Let n2(v) = 4. If one of the xi’s is expendable, then the other 2-neighbours of v would be light vertices. In this case, we would have
D(v)≥ ∆+5+ |{x1,x2, . . . ,x4}| by Lemma 2.3, however this is not possible as D(v)≤ ∆+8. We therefore suppose that none of the xi’s is
expendable, i.e., each yi is a 12+-vertex. Since v is weak-adjacent to four 12+-vertices, we conclude that there exist two faces fi1 , fi2 for
i1, i2 ∈ [5] such that each of them is either a 5-face having two adjacent 12+-vertices or a 6+-face. By applying R12 and R13 together with
Remark 2.6, each of fi1 , fi2 transfers at least 1 to v. Thus, µ∗(v)≥ 5

2 +2×1−4×1 > 0 after v sends 1 to each xi by R1.

(5). Let k = 6. The initial charge of v is µ(v) = 4. Notice first that if v has at most two 2-neighbours, then v gives 1 to each of its 2-neighbours
by R1 and at most 1

2 to each of its other neighbours by R2-R6, so µ∗(v)≥ 4−2×1−4× 1
2 = 0. We may therefore assume that n2(v)≥ 3.

Let n2(v) = 3. We may assume that v has a 3(1)-neighbour, since otherwise, µ∗(v)≥ 4−3×1−3× 1
4 > 0 after v transfers 1 to each xi by

R1, and at most 1
4 to each of its other neighbours by R3-R6. Suppose first that one of the xi’s is light, and so v is heavy by Lemma 2.1. Then

v would have either two 5-neighbours or a 6+-neighbour. In the former, µ∗(v)≥ 4−3×1− 1
2 > 0 after v transfers 1 to each xi by R1, and 1

2
to its 3(1)-neighbour by R2. In the latter, µ∗(v)≥ 4−3×1−2× 1

2 = 0 after v transfers 1 to each xi by R1, and at most 1
2 to each of its

(3−4)-neighbours by R2-R6. Next we suppose that all xi’s are heavy. That is, each yi is a 11+-vertex. Recall that v is star-adjacent to a
10+-vertex, since any 3(1)-vertex is heavy. It then follows that v is weak-adjacent to three 11+-vertices and star-adjacent to a 10+-vertex.
We then conclude that there exists a face fi for i ∈ [6] such that it is either a 5-face having two adjacent 10+-vertices or a 6+-face. By
applying R12 and R13 together with Remark 2.6, fi transfers at least 1 to v. Thus, µ∗(v)≥ 4+1−3×1−3× 1

2 > 0 after v sends 1 to each
xi by R1 and at most 1

2 to each of its (3−4)-neighbours by R2-R6.

Let n2(v) = 4. Suppose first that two of the xi’s are expendable. Then the other xi’s would be light vertices. Clearly, v is heavy by
Lemma 2.1. If v has a 3(1)-neighbour, then v would have a 11+-neighbour, and so v receives 1 from its 11+-neighbour by R9. Thus,
µ∗(v) ≥ 4+ 1− 4× 1− 1

2 > 0 after v sends 1 to each xi by R1, 1
2 to its 3(1)-neighbour by R2. If v has no 3(1)-neighbour, then v

has either a 9+-neighbour or no (3− 4)-neighbour by Lemma 2.3. In the former, v receives at least 1
2 from its 9+-neighbour by R8

and so µ∗(v) ≥ 4+ 1
2 − 4× 1− 1

2 = 0 after v sends 1 to each xi by R1 and at most 1
2 to its (3− 4)-neighbour by R2-R6. In the latter,

µ∗(v)≥ 4−4×1 = 0 after v sends 1 to each xi by R1.
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Now we suppose that exactly one of the xi’s is expendable, say x1. Obviously, v is heavy by Lemma 2.1. It then follows from Lemma 2.3
that if v has a (3−4)-neighbour, then v would have a 6+-neighbour as well. Notice that, for i ∈ {2,3,4}, each yi is a 11+-vertex since xi is
not expendable.
We first consider the case that v has a 3(1)-neighbour. Then v would be star-adjacent to 11+-vertex, as a 3(1)-vertex is heavy by Lemma 2.2.
Since v is weak-adjacent to three 11+-vertices and star-adjacent to a 11+-vertex, we conclude that there exists a face fi for i ∈ [6] such that it
is either a 5-face having two adjacent 11+-vertices or a 6+-face. By applying R12 and R13 together with Remark 2.6, fi transfers at least 1
to v. Thus, µ∗(v)≥ 4+1−4×1− 1

2 > 0 after v sends 1 to each xi by R1 and 1
2 to its 3(1)-neighbours by R2.

Now we consider the case that v has no 3(1)-neighbour. If y2,y3,y4 are 12+-vertices, then, by applying R9, each of y2,y3,y4 sends 1
12

to v, and so we have µ∗(v) ≥ 4+ 3× 1
12 − 4× 1− 1

4 = 0 after v sends 1 to each xi by R1 and at most 1
4 to its (3− 4)-neighbour by

R3-R6. If exactly one of y2,y3,y4 is a 11-vertex, say y2, then, by applying R9, each of y3,y4 sends 1
12 to v. Also we deduce that v has

either a 9+-neighbour or no 4(2)-neighbour by Lemma 2.3. In the former, v receives at least 1
2 from its 9+-neighbour by R8 and so

µ∗(v) ≥ 4+ 2× 1
12 + 1

2 − 4× 1− 1
4 > 0 after v sends 1 to each xi by R1 and at most 1

4 to its (3− 4)-neighbour by R3-R6. In the latter,
µ∗(v)≥ 4+2× 1

12 −4×1− 1
6 = 0 after v sends 1 to each xi by R1 and at most 1

6 to its (3−4)-neighbour by R2-R6. If two of y2,y3,y4 are
11-vertices, then v has either a 9+-neighbour or no 3(0)-, 4(1)- and 4(2)-neighbour by Lemma 2.3. In the former, v receives at least 1

2 from
its 9+-neighbour by R8 and so µ∗(v)≥ 4+ 1

2 −4×1− 1
4 > 0 after v sends 1 to each xi by R1 and at most 1

4 to its (3−4)-neighbour by
R3-R6. In the latter, µ∗(v)≥ 4−4×1 = 0 after v sends 1 to each xi by R1.
Finally suppose that none of the xi’ is expendable, i.e., each yi is a 11+-vertex. Since v is weak-adjacent to four 11+-vertices, we conclude
that there exists two faces fi1 , fi2 for i1, i2 ∈ [6] such that each of them is either a 5-face having two adjacent 11+-vertices or a 6+-face. By
applying R12 and R13 together with Remark 2.6, each of fi1 , fi2 transfers at least 1 to v. Thus, µ∗(v)≥ 4+2×1−4×1−2× 1

2 > 0 after v
sends 1 to each xi by R1 and at most 1

2 to each of its other neighbours by R2-R6.

Let n2(v) = 5. If two of xi’s are expendable, then the others would be light vertices. In such a case, v would have a 12+-neighbour, since
it is heavy by Lemma 2.1. It then follows that v receives 1 from its 12+-neighbour by R9, and sends 1 to each of its 2-neighbour by R1.
Thus µ∗(v)≥ 4+1−5×1 = 0. Now, assume that at most one of the xi’s is expendable. Since v is weak-adjacent to four 11+-vertices, we
conclude that there exist two faces fi1 , fi2 for i1, i2 ∈ [6] such that each of them is either a 5-face having two adjacent 11+-vertices or a
6+-face. By applying R12 and R13 together with Remark 2.6, each of fi1 , fi2 transfers at least 1 to v. Thus, µ∗(v)≥ 4+2×1−5×1− 1

2 > 0
after v sends 1 to each xi by R1 and at most 1

2 to its other neighbour by R2-R6.

Let n2(v) = 6. All the xi’s are heavy, since otherwise, v and one of its neighbour would be light, a contradiction by Lemma 2.1. Since v is
weak-adjacent to six 11+-vertices, we deduce that each fi is either a 5-face having two adjacent 11+-vertices or a 6+-face. By applying R12
and R13 together with Remark 2.6, each fi transfers at least 1 to v. Thus, µ∗(v)≥ 4+6×1−6×1 > 0 after v sends 1 to each xi by R1.

(6). Let k = 7. The initial charge of v is µ(v) = 11
2 . Observe that a 3+-vertex may receive at most 2

3 from v by R2-R7. So, if v has at most
two 2-neighbours, then µ∗(v)≥ 11

2 −2×1−5× 2
3 > 0 after v sends 1 to each xi by R1 and at most 2

3 to each of its other neighbours by
R2-R7. Therefore we may assume that n2(v)≥ 3.

Let n2(v) = 3. If v has at most three 3(1)-neighbours, then µ∗(v) ≥ 11
2 − 3× 1− 3× 2

3 −
1
2 = 0 after v sends 1 to each xi by R1, 2

3
to each of its 3(1)-neighbour by R2, and at most 1

2 to each of its neighbours other than 2- and 3(1)-vertices by R3-R7. If v has four
3(1)-neighbours, then v would be light, and so each xi must be heavy by Lemma 2.1. This means that each yi is a 10+-vertex. Also each
3(1)-neighbour of v is adjacent to a 9+-vertex as a 3(1)-vertex is heavy by Lemma 2.2. Since v is weak-adjacent to three 10+-vertices
and star-adjacent to four 9+-vertices, we conclude that there exists two faces fi1 , fi2 for i1, i2 ∈ [7] such that each of them is either a 5-face
having two adjacent 9+-vertices or a 6+-face. By applying R11-R13 together with Remark 2.6, each of fi1 , fi2 transfers at least 1

3 to v. Thus,
µ∗(v)≥ 11

2 +2× 1
3 −3×1−4× 2

3 > 0 after v sends 1 to each xi by R1 and 2
3 to each of its 3(1)-neighbours by R2.

Let n2(v) = 4. If all the xi’s are heavy, then each yi must be a 10+-vertex. Since v is weak-adjacent to four 10+-vertices, we conclude that
there exists a face fi for i ∈ [7] such that it is either a 5-face having two adjacent 10+-vertices or a 6+-face. By applying R12-R13 together
with Remark 2.6, fi transfers at least 1 to v. Thus, µ∗(v)≥ 11

2 +1−4×1−3× 2
3 > 0 after v sends 1 to each xi by R1, and at most 2

3 to each
of its other neighbours by R2-R7.
Now we suppose that one of the xi’s is light, then v would be heavy by Lemma 2.1. If v has no 3(1)-neighbour, then µ∗(v)≥ 11

2 −4×1−
3× 1

2 = 0 after v sends 1 to each xi by R1, and at most 1
2 to each of its other neighbours by R3-R7. If v has exactly one 3(1)-neighbour,

then v cannot have two 4(2)-neighbour by Lemma 2.3. Thus, µ∗(v)≥ 11
2 −4×1− 2

3 −
1
2 −

1
3 = 0 after v sends 1 to each xi by R1, 2

3 to its
3(1)-neighbour by R2, 1

2 to its 4(2)-neighbour by R6, and at most 1
3 to its neighbour other than 2-, 3(1)-, and 4(2)-vertex by R3-R5, R7. If v

has two 3(1)-neighbours, then v would have a 6+-neighbour by Lemma 2.3. Thus, µ∗(v)≥ 11
2 −4×1−2× 2

3 > 0 after v sends 1 to each xi

by R1 and 2
3 to each of its 3(1)-neighbours by R2.

Let n2(v) = 5. If three of xi’s are expendable, then the others would be light vertices. In such a case, v would have either a 10+-neighbour or
no 3(1)-neighbour. In the former, v receives 1 from its 10+-neighbour by R9, and sends 1 to each of its 2-neighbour, at most 2

3 to its other
5−-neighbour by R2-R7. Thus µ∗(v)≥ 11

2 +1−5×1− 2
3 > 0. In the latter, v cannot have two (3−5)-neighbours by Lemma 2.3, and so

µ∗(v)≥ 11
2 −5×1− 1

2 = 0 after v sends 1 to each of its 2-neighbour by R1 and at most 1
2 to its (3−5)-neighbour by R3-R7.

Now, assume that exactly two of the xi’s are expendable, say x1,x2. Then each of y3,y4,y5 is a 10+-vertex since they are not expendable.
Suppose first that exactly one of y3,y4,y5 is a 11−-vertex, say y3. Obviously, y3 is light vertex. By R9, each of y4,y5 sends 1

12 to v. Since v
is heavy by Lemma 2.1, we deduce that v has either two 5+-neighbours or one 6+-neighbour. In each case, v sends totally at most 2

3 to its
(3−5)-neighbours by R2-R7. Thus, µ∗(v)≥ 11

2 +2× 1
12 −5×1− 2

3 = 0 after v sends 1 to each of its 2-neighbour by R1.
Next we suppose that at least two of y3,y4,y5 are 11−-vertices. Since v is heavy by Lemma 2.1, v has a 6+-neighbour. Moreover, we
deduce that v has either 9+-neighbour or no 3(1)-neighbour. In the former, v receives at least 1

2 from its 9+-neighbour by R8-R9, and so
µ∗(v)≥ 11

2 + 1
2 −5×1− 2

3 > 0 after v sends 1 to each of its 2-neighbour by R1 and at most 2
3 to its (3−5)-neighbour by R2-R7. In the
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latter, we have µ∗(v)≥ 11
2 −5×1− 1

2 > 0 after v sends 1 to each of its 2-neighbour by R1 and at most 1
2 to its (3−5)-neighbour by R3-R7.

Now we suppose that each of y3,y4,y5 is a 12+-vertex. So, each of y3,y4,y5 sends 1
12 to v. Since v is heavy, v has either one 4-

neighbour and one 5+-neighbour or a 6+-neighbour. In each case, v sends totally at most 3
4 to its (3− 5)-neighbours by R2-R7. Thus,

µ∗(v)≥ 11
2 +3× 1

12 −5×1− 3
4 = 0 after v sends 1 to each of its 2-neighbour by R1.

Finally, assume that at most one of the xi’s is expendable. Since v is weak-adjacent to four 10+-vertices, we conclude that there exists a
face fi for i ∈ [7] such that it is either a 5-face having two adjacent 10+-vertices or a 6+-face. By applying R12-R13 together with Remark
2.6, fi transfers at least 1 to v. Thus, µ∗(v)≥ 11

2 +1−5×1−2× 2
3 > 0 after v sends 1 to each xi by R1 and at most 2

3 to each of its other
neighbours by R2-R7.

Let n2(v) = 6. If three of the xi’s are expendable, then the others would be light vertices. This implies that v has a 11+-neighbour by Lemma
2.3. Then v receives 1 from its 11+-neighbour by R9, and so µ∗(v)≥ 11

2 +1−6×1 > 0 after sends 1 to each of its 2-neighbour by R1.
Suppose now that at most two of the xi’s are expendable. Since v is weak-adjacent to four 10+-vertices, we conclude that there exists a face
fi for i ∈ [7] such that it is either a 5-face having two adjacent 10+-vertices or a 6+-face. By applying R12-R13 together with Remark 2.6, fi
transfers at least 1 to v. Thus, µ∗(v)≥ 11

2 +1−6×1 > 0 after v sends 1 to each xi by R1.

Let n2(v) = 7. All the xi’s are heavy, since otherwise, v and one of its neighbour would be light, a contradiction by Lemma 2.1. Since v is
weak-adjacent to seven 10+-vertices, we deduce that each fi is either a 5-face having two adjacent 10+-vertices or a 6+-face. By applying
R12-R13 together with Remark 2.6, each fi transfers at least 1 to v. Thus, µ∗(v)≥ 11

2 +6×1−7×1 > 0 after v sends 1 to each xi by R1.

(7). Let k = 8. The initial charge of v is µ(v) = 7. Note that if v has at most four 2-neighbours, then µ∗(v)≥ 7−4×1−4× 3
4 = 0 after v

sends 1 to each xi by R1 and at most 3
4 to each of its other neighbours by R2-R7. So, we may assume that n2(v)≥ 5.

Let n2(v) = 5. If one of the xi’s is light, then v would be heavy by Lemma 2.1, and so v cannot have three 3(1)-neighbours by Lemma 2.3.
Thus, µ∗(v)≥ 7−5×1−2× 3

4 −
1
2 = 0 after v sends 1 to each xi by R1, 3

4 to each of its 3(1)-neighbour by R2, and at most 1
2 to each of its

other neighbours by R3-R7. If all the xi’s are heavy, then each yi would be a 9+-vertex. Since v is weak-adjacent to five 9+-vertices, we
conclude that there exist two faces fi1 , fi2 for i1, i2 ∈ [8] such that each of them is either a 5-face having two adjacent 9+-vertices or a 6+-face.
By applying R11-R13 together with Remark 2.6, each of fi1 , fi2 transfers at least 1

3 to v. Thus, µ∗(v)≥ 7+2× 1
3 −5×1−3× 3

4 > 0 after v
sends 1 to each xi by R1 and at most 3

4 to each of its other neighbours by R2-R7.

Let n2(v) = 6. Observe that if three of the xi’s are light, then v would have either a 6+-neighbour or no 3(1)-neighbour by Lemma 2.3.
In the former, µ∗(v) ≥ 7−6×1− 3

4 > 0 after v sends 1 to each xi by R1 and at most 3
4 to its (3−5)-neighbour by R2-R7. In the latter,

µ∗(v)≥ 7−6×1−2× 1
2 = 0 after v sends 1 to each of its 2-neighbours by R1 and at most 1

2 to each of its (3−5)-neighbours by R2-R7.
Suppose now that exactly two of the xi’s are light, say x1,x2. By Lemma 2.1, v is heavy. It follows that v cannot have two 3(1)-neighbours by
Lemma 2.3. If v has no 3(1)-neighbour, then µ∗(v)≥ 7−6×1−2× 1

2 = 0 after v sends 1 to each of its 2-neighbours by R1 and at most 1
2

to each of its (3−5)-neighbours by R2-R7. If v has a 3(1)-neighbour, say z, then z is adjacent to a 10+-vertex since a 3(1)-vertex is heavy by
Lemma 2.2. That is, v is star-adjacent to a 10+-vertex. Recall that y3,y4,y5,y6 are 9+-vertices. Since v is weak-adjacent to four 9+-vertices
and star-adjacent to a 10+-vertex, then we conclude that there exists a face fi for i ∈ [8] such that it is either a 5-face having two adjacent
9+-vertices or a 6+-face. By applying R11-R13 together with Remark 2.6, fi transfers at least 1

3 to v. Thus, µ∗(v)≥ 7+ 1
3−6×1− 3

4−
1
2 > 0

after v sends 1 to each xi by R1, 3
4 to its 3(1)-neighbour by R2, and at most 1

2 to each of its 3+-neighbours other than 3(1)-vertex by R3-R7.
Next we suppose that at most one of the xi’s is light, say x1 (if exists). Clearly, y2,y3, . . . ,y6 are 9+-vertices. Since v is weak-adjacent
to five 9+-vertices, we conclude that there exist two faces fi1 , fi2 for i1, i2 ∈ [8] such that each of them is either a 5-face having two
adjacent 9+-vertices or a 6+-face. By applying R11-R13 together with Remark 2.6, each of fi1 , fi2 transfers at least 1

3 to v. Thus,
µ∗(v)≥ 7+2× 1

3 −6×1−2× 3
4 > 0 after v sends 1 to each xi by R1 and at most 3

4 to each of its (3−5)-neighbours by R2-R7.

Let n2(v) = 7. If three of the xi’s are light, then v would have a 6+-neighbour by Lemmas 2.1 and 2.3. Thus, µ∗(v)≥ 7−7×1 = 0 after v
sends 1 to each xi by R1. Suppose now that exactly two of the xi’s are light, say x1,x2. Then v would have a 5+-neighbour by Lemmas 2.1
and 2.3. On the other hand, y3,y4, . . . ,y7 are 9+-vertices. Since v is weak-adjacent to five 9+-vertices, we conclude that there exist two faces
fi1 , fi2 for i1, i2 ∈ [8] such that each of them is either a 5-face having two adjacent 9+-vertices or a 6+-face. By applying R11-R13 together
with Remark 2.6, each of fi1 , fi2 transfers at least 1

3 to v. Thus, µ∗(v)≥ 7+2× 1
3 −7×1− 1

2 > 0 after v sends 1 to each xi by R1 and at
most 1

2 to its 5+-neighbour by R7. Finally suppose that at most one of the xi’s is light, say x1 (if exists). Then y2,y3, . . . ,y7 are 9+-vertices.
Since v is weak-adjacent to six 9+-vertices, we conclude that there exists four faces fi1 , fi2 , . . . , fi4 for i1, i2, . . . , i4 ∈ [8] such that each of
them is either a 5-face having two adjacent 9+-vertices or a 6+-face. By applying R11-R13 together with Remark 2.6, each of fi1 , fi2 , . . . , fi4
transfers at least 1

3 to v. Thus, µ∗(v)≥ 7+4× 1
3 −7×1− 3

4 > 0 after v sends 1 to each xi by R1 and at most 3
4 to its other neighbour by

R2-R7.

Let n2(v) = 8. All the xi’s are heavy, since otherwise, v and one of its neighbour would be light, a contradiction by Lemma 2.1. Since v is
weak-adjacent to eight 9+-vertices, we deduce that each fi is either a 5-face having two adjacent 9+-vertices or a 6+-face. By applying
R11-R13 together with Remark 2.6, each fi transfers at least 1

3 to v. Thus, µ∗(v)≥ 7+8× 1
3 −8×1 > 0 after v sends 1 to each xi by R1.

(8). Let k = 9. The initial charge of v is µ(v) = 17
2 . Note that if v has at most six 2-neighbours, then µ∗(v)≥ 17

2 −6×1−3× 5
6 = 0 after v

sends 1 to each xi by R1, at most 5
6 to each of its other neighbours by R2-R7. So, we may assume that n2(v)≥ 7.

Let n2(v) = 7. If two of the xi’s are light, then v would have at most one neighbour forming a 3(1)- or 4(2)-vertex by Lemmas 2.1 and 2.3.
In such a case, µ∗(v)≥ 17

2 −7×1− 5
6 −

1
2 > 0 after v sends 1 to each xi by R1, at most 5

6 to its 3(1)- or 4(2)-neighbour (if exists) by R2,R6,
and at most 1

2 to each of its other neighbours by R3-R5,R7.
Suppose now that exactly one of the xi’s is light, say x1. Clearly, y2,y3, . . . ,y7 are 8+-vertices. If v has no 3(1)-neighbour, then µ∗(v)≥
17
2 −7×1−2× 3

4 > 0 after v sends 1 to each xi by R1 and at most 3
4 to each of its other neighbour by R3-R7. If v has a 3(1)-neighbour, say

z, then z is adjacent to a 8+-vertex other than v, since a 3(1)-vertex is heavy Lemma 2.2. That is, v is star-adjacent to a 8+-vertex. Recall
that y2,y3, . . . ,y7 are 8+-vertices. Since v is weak-adjacent to six 8+-vertices and star-adjacent to a 8+-vertex, we conclude that there exist
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two consecutive faces fi, fi+1 for i ∈ [9] such that each of them is either a 5-face having two adjacent 8+-vertices or a 6+-face. If both fi
and fi+1 are 5-faces, then there exists a common 8+-vertex xs on fi and fi+1 adjacent to two 8+-vertices on those faces, and so xs sends
at least 1

4 to each of fi, fi+1 by R10-R12. If one of fi and fi+1 is a 6+-face, then it sends at least 1
3 to v by R13 together with Remark 2.6.

Consequently, v receives totally at least 1
3 from its incident faces by R13. Thus, µ∗(v)≥ 17

2 + 1
3 −7×1−2× 5

6 > 0 after v sends 1 to each
xi by R1 and at most 5

6 to each of its other neighbour by R2-R7.
Finally we suppose that all the xi’s are heavy. Clearly, y1,y2, . . . ,y7 are 8+-vertices. Since v is weak-adjacent to seven 8+-vertices, we
conclude that there exist two consecutive faces fi, fi+1 for i ∈ [8] such that each of them is either a 5-face having two adjacent 8+-vertices or
a 6+-face. Similarly as above, v receives totally at least 1

3 from its incident faces by R10-R13. Thus, µ∗(v)≥ 17
2 + 1

3 −7×1−2× 5
6 > 0

after v sends 1 to each xi by R1 and at most 5
6 to each of its other neighbour by R2-R7.

Let n2(v) ≥ 8. If two of the xi’s are light, then v has neither 3(1)- nor 4(2)-neighbour by Lemmas 2.1 and 2.3. In this case, µ∗(v) ≥
17
2 − 8× 1− 1

2 = 0 after v sends 1 to each of its 2-neighbour by R1 and at most 1
2 to its other neighbour R3-R4, R8. Suppose now that

at most one of the xi’s is light, say x1 (if exists). Clearly, y2,y3, . . . ,y8 are 8+-vertices. Since v is weak-adjacent to seven 8+-vertices, we
conclude that there exist two consecutive faces fi, fi+1 for i ∈ [8] such that each of them is either a 5-face having two adjacent 8+-vertices or
a 6+-face. Similarly as above, v receives totally at least 1

3 from its incident faces by R10-R13. Thus, µ∗(v)≥ 17
2 + 1

3 −7×1−2× 5
6 > 0

after v sends 1 to each xi by R1 and at most 5
6 to each of its other neighbour by R2-R7.

(9). Let k ≥ 10. The initial charge of v is µ(v) ≥ 3d(v)
2 − 5 ≥ 10. By R9, v sends 1 to each of its 8−-neighbour. Besides, if v has a

9+-neighbour u, then v sends 1
2 to each face containing vu by R12. Therefore, v sends exactly 1 charge for each of its neighbours. On the

other hand, if v is a 12+-vertex, then v sends 1
12 to its each weak neighbour, and so µ∗(v)≥ 3d(v)

2 −5−d(v)×1−d(v)× 1
12 ≥ 0.

We obtain a non-negative charge on each vertex and face, which contradicts the fact that the total charge is negative. Thus, G cannot exist.
This concludes the proof of Theorem 1.2.
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