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INTRODUCTION

ABSTRACT

Air pollution, more specifically Particulate Matter (PM2.5 - particulate matter with diameter less
than 2.5 micrometers), threatens the public health most critically in urban Indian cities, and Del-
hi, among them, presents the most acute challenge. This study predicts the concentrations of PM2.5
using machine learning models using data ranging from 2010 to 2023 and assessing model fit via
R?, RMSE, MAE, and MAPE metrics. Models tested: Random Forest, Gradient Boosting, AdaBoost,
Histogram-Based Gradient Boosting, XGBoost. The Random Forest model is extremely effective for
the training set (R* = 0.99) but shows the highest degree of overfitting, with R* of 0.35 for the test set.
Gradient Boosting has a more balanced result, with R* 0.54 and 0.48, respectively on the training and
test set, as well as fewer errors (RMSE: 56.46, MAE: 39.60, MAPE: 0.50). Hence, it is a good predictor.
AdaBoost performs the worst with an R* of 0.28 on the test set and the highest errors in terms of
RMSE: 66.86, MAE: 52.34, MAPE: 0.94. Histogram Gradient Boosting and XGBoost: both of these
models yield an average accuracy value, but the Gradient Boosting model is still a tad better than the
former ones in terms of RMSE and MAE. Thus, Gradient Boosting happens to be the most accurate
model in light of generalization as well as accuracy for the prediction of the concentration of PM2.5.
These results will be highly beneficial to policymakers to adopt machine learning-based air quality
forecasting for better environmental management and the protection of public health.

Cite this article as: Singh SK, Jain R, Palaniappan D, Parmar K, Premavathi T, Gothania J. Spatio-
temporal analysis and machine learning-based prediction of air quality in Indian urban cities. Environ
Res Tec 2025;8(4) 809-822.

most polluted. It is important to watch for this trend by pre-
dicting the quality of air in order to safeguard public health

One of the strongest concerns associated with urban envi-
ronments is its air quality, especially in developing countries
like India. Intensification of industrial and urbanization
processes yields massive increases in levels of air pollution.
According to reports from the World Health Organization,
air pollution takes millions of lives due to premature deaths,
and cities in India often feature prominently in rankings as
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and inform policy action. Analysis of spatiotemporal data is
important for understanding the dynamic traits of air quality
within the Indian urban domain. This provides spatial and
temporal information with respect to explaining the prevail-
ing trends, patterns, and hotspots of pollution in relation to
variables such as seasonal flux and urban expansion. It inte-
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grates data sources to create comprehensive maps and time
series that illustrate pollutant spreading, enables the identi-
fication of suboptimal areas of air quality, and assesses man-
agement strategies. This analysis delved into the relationship
between air quality and a chain of environmental and anthro-
pogenic variables, thus providing much-needed knowledge
for targeted interventions and evidence-based policymaking
in rapidly urbanizing Indian cities. Combining these analyt-
ical methods with monitoring efforts will help policymakers
and urban planners develop effective models of prediction
for air quality and management strategies toward more sus-
tainable urban environments that center on public health.

Recent advancements in machine learning (ML) and deep
learning (DL) techniques have thrown open new avenues
in air quality analysis and prediction. Different studies are
proving the efficiency of this approach in the medium-range
prediction of concentrations of different air pollutants, in-
cluding PM2.5, PM10 (particulate matter less than 10 mi-
crometers in diameter), NOx, and O3, by using past data and
meteorological parameters. For instance, Support Vector Re-
gression has been utilized promisingly to make high-accura-
cy forecasts of air quality indices (AQI). Furthermore, Long
Short-Term Memory networks have been employed in an
effort to successfully capture the time dependencies between
air quality data, thus enhancing the predictive capabilities of
traditional statistical models [1-4].

Although there have been great strides in the very recent
past toward harnessing machine learning for air-quality pre-
diction, gaps still exist in the current landscape of research.
Most of the studies focused on short-term predictions
or relied on data from a few monitoring stations, limiting
their generalizability. This narrow focus usually misses the
much-needed interplay between geographical and temporal
variations in air pollution, thereby stalling the development
of comprehensive predictive models [1, 5]. However, big cit-
ies continue facing hazardous levels of air pollution, notably
during winter when adverse meteorological conditions trap
pollutants near the ground. Delhi takes one of the top places
among other polluted cities in the world's list, so determin-
ing the spatiotemporal dynamics of air pollution and making
predictions about the expected trends is very important. This
challenge requires innovative approaches that combine his-
torical data with predictive modeling techniques to provide
actionable insights [5-7].

This paper seeks to utilize spatiotemporal analysis and ma-
chinelearning models in the prediction of air quality based on
arobust dataset from 2010 to 2023. Advanced ML techniques
such as Random Forest, Gradient Boosting, AdaBoost, and
XGBoost are used for predicting future concentration of the
key pollutants in particular PM2.5 as it possesses the high-
est adverse health effects. The suggested model encompasses
feature engineering with lag variables in combination with
meteorological parameters to extract seasonal and long-term
patterns of pollution in the air. Using cross-validation and
an optimization procedure for the hyperparameters, this sys-
tem expects to provide a more accurate prediction regarding
the trend of air quality for the year 2024. The results of the
present research complement the available body of knowl-
edge about air quality management in India. The results of

this study will be useful in setting up a predictive framework
for future research and arm policymakers with data-driven
insights to mitigate the public health impacts of air pollution
in Indian urban cities.

LITERATURE REVIEW

Existing studies on the prediction of air quality applied vari-
ous machine learning methods with no exception to unearth
their applicability in dealing well with the specifics in this
problem. Furthermore, deep learning technologies have
demonstrated impressive performance for predicting urban
air quality models. Here, both Convolutional Neural Net-
works and Long Short-Term Memory achieved the state-of-
the-art results [8]. These models can better determine spatial
and temporal dependencies in air pollution data, hence mak-
ing it possible to obtain higher predictive accuracy.

The hybrid approach was proposed by [3], which includes
the combination of Discretized Regression and Least Square
Support Vector Machines for air pollution prediction. Their
method sought to handle the problem of missing data and
provides the necessary accuracy in estimating the quality
of the air. The study of [9] proposed an extensive review of
applications of machine learning algorithms, especially re-
gression techniques and deep learning models, for air qual-
ity forecasting. Authors brought out several methodologies
in terms of strengths and weaknesses, thus giving an idea of
which models are there based on a particular requirement
concerning the problem at hand [2]. Many researchers in the
Indian scenario have studied the use of machine learning for
predicting air quality in cities such as Delhi, Kolkata, and
Bangalore.

Spatiotemporal Analysis of Air Pollution

Spatiotemporal analysis becomes very important in observ-
ing how variations of air pollution occur in both space and
time. Many works have implemented spatial and temporal
models that aimed to capture changes in pollutant concen-
trations and pinpoint high-risk zones in urban areas. Such
as [10], which integrated a spatial interpolation method
with temporal models for mapping levels of PM2.5 and NOx
across various cities in China. This approach provided an
overall view of pollution patterns and helped identify the
sources of pollution. Similar to this, [11] reviewed seasonal
air quality trends in Indian cities, showing the vital need to
understand the spatiotemporal variations in designing inter-
ventions.

Air pollution in Indian cities and seasons varies significantly
due to climate, industrialized activities, and transport pat-
terns. Studies like [12] and [13] have pointed out how pol-
lution peaks during the winter months in cities like Delhi
often due to crop burning and lower wind speed and higher
vehicle emission. These spatiotemporal dynamics highlight
the need for predictive models sensitive to seasonal and lo-
cation-based variations in air quality to invoke pro-active
measures.

Machine Learning and Air Quality Prediction
Machine learning (ML) is the latest tool used in making
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air-quality forecasts because conventional statistical models
fail to adequately explain the complex, nonlinear effects of
air pollutants caused by other factors, including atmospheric
conditions. Increasing environmental databases would facil-
itate research where ML could be trained in both forecast-
ed pollutant concentrations and on the identification of the
driving factors behind the air quality. In [3] exposed that,
particularly, models like Support Vector Regression and
Random Forests are capable of precise predictions of air
pollutant levels compared to the traditional models in accu-
racy and speed. In a similar fashion, [14] also used LSTM
networks in dependency analysis along the temporal lines
found in the air quality data. In this manner, deep learning
has presented some interesting results for long-term fore-
casting. The LSTM networks fall under the category of the
subtypes of recurrent neural networks and have emerged as
a significant tool in the domain of researching predictions
regarding air quality. These networks excel in extracting
temporal dependencies within air quality datasets, thereby
particularly showing excellence in long-term forecasting ef-
forts. In addition, LSTMs have been proven to enhance the
predictive capability of statistical models by accurately mod-
eling complicated time-related dependencies involved in air
quality information.

Many machine learning algorithms have been applied to air
quality prediction; each has its merits and demerits. These
include decision trees, gradient boosting, and also ensem-
ble techniques like Random Forests and XGBoost, generally
much stronger at handling high-dimensional data and non-
linear relations among variables. Of late, a number of stud-
ies by [5] and [15] have depicted that these models help in
predictions for the accurate concentration level of PM2.5-
PM10, NOx, and O;. These models utilize historical data re-
lated to air pollution, besides meteorological variables such
as temperature, humidity, and wind speed to gain a detailed
view of pollution dynamics.

In the Indian context, several studies have concentrated on
air quality prediction using machine learning. [16] imple-
mented an in-depth analysis of pollution data from 23 Indi-
an cities by using regression techniques and feature selection
methods to improve model performance. Their findings, in
fact, show that the models could predict AQI well and illus-
trated the influence of external factors such as the increase
in traffic emissions and weather patterns on the levels of pol-
lution. In addition, usage of IoT sensors has also enhanced
the ability for real-time monitoring of air quality. IoT sensor
data has been found effective when used for integrating with
machine learning models, because such integration can en-
hance timeliness and accuracy of the predictions made [15].

Air Pollution in Indian Cities

Indian cities, especially Delhi, Mumbai, and Kolkata, are
ranked to be some of the most polluted cities in the world;
in fact, many extreme pollution events are a result of season-
al trends. Delhi severely degrades air quality during winters
due to vehicular emissions, industrial activities, and agricul-
tural residue burning in neighbouring states [17]. Studies
have found the repeated violations of WHO-promoted safe
air standards all over Delhi, making it an appropriate site for

sophisticated modeling techniques intended to predict and
control peaking levels of pollution.

However, one recent study reported machine learning mod-
els capable of predicting air quality trends in Indian cities us-
ing historical pollution data and meteorological variables as
well as emission sources. For instance, [18] and [19] applied
Random Forest and Gradient Boosting algorithms to predict
the level of PM2.5 in Delhi, indicating a high accuracy and
the presence of meteorological conditions influencing the
dynamics of air quality. These studies give an importance to
the application of machine learning techniques to air quality
issues in Indian urban cities because they form a platform for
unique challenges.

Gaps and Future Directions

Although there is significant advancement in the application
of machine learning to air quality prediction, an important
gap still exists in the literature. For one, most current stud-
ies focus on short-term predictions or use data from a few
monitoring stations only, with generalizability highly com-
promised. For another, hardly any study has made it possible
to integrate spatiotemporal analysis with machine learning,
giving less attention to simultaneous geographic and tempo-
ral variations in air pollution. Finally, although promising
results are seen by the machine learning models in capturing
extreme events of pollution going critical to public health
interventions, there are scopes to improve model accuracy.

To fill these gaps, this study combines spatiotemporal analy-
sis with advanced machine learning techniques for predict-
ing air quality in urban areas of India. It focuses on one of
the most polluted cities in the world, Delhi. Proposed sys-
tem attempts to create a framework of prediction such that it
can predict the levels of key pollutants at high accuracy and
incorporates temporal patterns as well as spatial variations.
It will, therefore, include meteorological data and external
factors for an integrated approach towards the pollution dy-
namics giving way to actionable insights for policy direction.
This will not only bridge gaps in the existing literature but
also offer a scalable solution towards future studies on air
quality management in other Indian cities.

METHODOLOGY

This research is a spatiotemporal study combined with ma-
chine learning for the prediction of air quality, integrating
location and time. The study is based on the urban cities of
India from the year 2010 to 2023. The whole methodology
involves key steps such as collection of data, preprocessing,
feature engineering, model selection, and training and eval-
uation with subsequent predictions of air quality, as shown
in Figure 1. The main goal is to develop robust models of
PM2.5 and other important pollutants for more informed
decision-making regarding air quality management.

Mathematical Formulation for the Proposed System

Data preprocessing and feature engineering
The proposed spatiotemporal air quality predictive model
starts with data preprocessing and feature engineering. The
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time stamp extracted in the dataset provides relevant tempo-
ral features, such as hour, day, month, and year. Lag features,
which include pollutant levels from one and two years ago,
have been established to set up the level of dependency be-
tween these temporal features. Next, data groupings based
on different time steps have been made (daily, monthly, year-
ly) to analyze the trends and correlations with target pollut-
ants, especially PM2.5.

Let the dataset be represented as:
D ={(Xuy)li=1,2,....,n} 1)

Where:
X, e R™ is the feature vector for each observation.

y,is the target variable (e.g., air pollutant concentration, such
as PM2.5)

n is the total number of observations.
m is the number of features.

Datetime Features: To capture the temporal dynamics, var-
ious datetime-related features are extracted from the time-
stamp T:

X; = {hour(T),day(T), month(T),year(T),....} (2)
Where:

hour(T) represents the hour of the day.

day(T) is the day of the month.

month(T) is the month.

year(T) is the year.

Lag Features: Lag features for 1 year and 2 years are generat-
ed to capture the temporal dependencies:

pm_lag 1Y (i) = y; — 365 * 24,pm_lag 2Y (i) = y; —
730 x 24 3

Where pm_lag_1Y (i) and pm_lag_2Y (i) represent the lagged
values of the target pollutant for 1 year and 2 years,
respectively.

Spatiotemporal ~ Grouping and  Aggregation:  For

spatiotemporal analysis, the data is grouped at different time
intervals to study trends:

Let G represent the spatiotemporal groups:
G = {daily, monthly, yearly} (4)
The data is aggregated using the mean:

MeanPollutant (G) = l;—lziea Yi ()

Correlation matrix and feature selection

By correlating all the input variables in a matrix, the most
critical features for prediction are determined. To select rele-
vant features, the correlation of the target pollutant with oth-
er features is calculated:

i1 (X=X ) (i=9)
JZ?:NX;':'-X]’)Z L1 vi-y)*

Corr(X;,y) = (6)

Where Corr(Xj,y) is the Pearson correlation coefficient be-
tween feature X and the target y, and X and vare the mean
values of X, and y, respectively.

Prediction model

Thezlevels of various pollutants are predicted by building
Random Forest, Gradient Boosting, and XGBoost mod-
els. Each of these has its own unique strengths. A Random
Forest Regressor is an ensemble method that creates many
decision trees and averages their prediction for more accu-
racy in reducing overfitting. They work well with large data-
sets and high-dimensional data, making them reliable and
straightforward to interpret. It may become computationally
expensive when the data is sparse and less effective. Random
Forests reduces the effect of overfitting of the model to spe-
cific data instances and noise through the creation of many
subsets of the training dataset using a method called bagging
or bootstrap aggregation. Only a random subset of features
was considered in every split of the decision trees. This leads
to diversity and reduces the model’s reliance on individual
predictors. This average of multiple decision tree final pre-
dictions helps smoothen out the errors of individual trees
and hence reduces the variance. In real-world applications,
Random Forests handles overfitting with out-of-bag error
estimation. Such an estimation is unbiased with respect
to the performance of the model without requiring a sep-
arate validation set, which leads to a more suitable tuning
of hyperparameters. The Gradient Boosting Regressor uses
an approach to build a sequence of decision trees. Each tree
is used to rectify the past ones in terms of errors. It iterates
well enough to capture the intricate data patterns and obtain
highly accurate solutions. Although it performs pretty well in
modeling non-linear relationships, Gradient Boosting, how-
ever, is more prone to overfitting, and it is generally slower
to train than the Random Forest. It requires careful tuning of
its parameters to avoid any performance issues. XGBoost is a
regularized version of Gradient Boosting, which overcomes
many inefficiencies since techniques for regularization are
used to avoid overfitting as it would speed up the process.
XGBoost provides fantastic results and is the key parameter
of use in structured data problems and competition within
machine learning, but is rather complex when compared to
both Random Forest or simple Gradient Boosting, yet it can
be quite versatile as it runs fast and also works well even on
missing data or imbalanced datasets. Although XGBoost has
a good number of strengths, the approach itself still requires
careful tuning to prevent overfitting, and it becomes fairly
complex to implement. Various machine learning models
f(X;0) have used to predict the air quality, where 0 represents
the model parameters:
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Vi = f(Xi;0) )
The models considered include:

Random Forest Regressor:

frr(X;8) = :ng':l he(X; 0¢) (8)
Where each h, is a decision tree.

Gradient Boosting Regressor:

fep(X;60) = Em=1 ¥Ymhm (X; 6m) ©)
Where h,, are weak learners, and y,, are the weights.
XGBoost (Extreme Gradient Boosting):

frop (X; 0) = Efc1 hi(X; 6,) + 411 6, 117

Where A || 8; II? is the regularization term.

Model training and evaluation

All the models that were trained on the data and analyzed
for the use of RMSE, MAE, and R2. The models are trained
using a training set {X .y, . }, and the predictions are eval-

uated on a test set {X_.y, . }-
The performance is measured using several metrics:

Root Mean Squared Error (RMSE)

1 .
RMSE = J;Z?:l(yi - 9i)? (1)
Mean Absolute Error (MAE)
1 .

MAE = n i=1lyi = Fil (12)
R-squared (R?)

L i-90)?
R2 = 1 — &i=1 1

T (-9 (13)

Cross-validation and hyperparameter tuning

The process involves tuning hyperparameters for models us-
ing randomized search together with time series cross-val-
idation. This targets optimization of model performance.
Randomized search is used with cross-validation. The ob-
jective is to minimize the RMSE by using k-fold time se-
ries cross-validation. This study used k-fold time-series
cross-validation, which is crafted with consideration for the
temporal nature of time-series data. As such, this means the

training set will always appear before the validation set so
that the data remains intact. This is contrary to traditional
k-fold cross-validation, which is designed around indepen-
dent and identically distributed data points. The split here
preserves the temporal nature of the data so that no future
results can predict earlier results.

(14)

val’

* o o
6" = argmjn, Ti_ RMSE(y\]), f (X0): 6))

Where X y,fﬂ are the validation splits.

val’

Prediction on future data

These models are then used to forecast air quality over time
within datasets across future time points. The effectiveness
of the models is validated by comparing the predicted val-
ues against the actual pollutant concentrations. For future air
quality predictions, a dataset X_future is created by extrap-
olating datetime features. The future values are predicted as:
ﬁfuture = f(Xfuture; 07) (15)
The results of the model predictions are compared with actu-
al data to evaluate the model's effectiveness in predicting air
quality in future periods.

This approach results in a strong basis for analyzing and pre-
dicting air quality within urban cities based on spatiotempo-
ral data and machine learning methods.

Data Collection

It is sourced from different platforms, like the air quali-
ty monitoring stations operated by the Indian government
across the country. The dataset contains both hourly and dai-
ly measurements of key pollutants, including PM2.5, PM10,
NOx, CO, SO2, and O3, as well as meteorological parameters
like temperature, humidity, wind speed, and wind direction.
The data ranges between 2010 and 2023 [20]. This has been
aggregated from multiple CSV files whereby each file rep-
resents data from a different monitoring station. Details of
the dataset are outlined in Table 1. To capture well the spa-
tial features, metadata have been included on the location of
the monitoring stations. The dataset was supplemented with
meteorological data sourced from other locations since air
quality is highly exposed to the weather.

Figure 2 displays plots that indicate the time series of four
major indicators of air quality, which include PM2.5, Car-
bon Monoxide (CO), O3 Concentration, and Nitrogen Com-
pounds (NOx), at periodic intervals across several years over
Indian urban cities. Each plot compares daily, monthly, and
yearly groupings to reveal short-term fluctuations and long-
term trends, which form the foundations for spatiotemporal
analysis as well as for machine learning-based prediction of
air quality.

In Figure 2(a) that presents curve of the time series of PM2.5
and PM10 concentrations which show that the variations are
quite large along with high peaks corresponding to strong air
pollution periods. Such periods may coincide with the peak
seasons for celebrations, agricultural burning, and industrial
effluents. Average yearly values have a tendency to decline
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marginally with time, suggesting a probable enhancement in
the quality of air due to regulations or shift in the source of
emissions.

Figure 2(b) Carbon Monoxide The carbon monoxide is a pol-
lutant much more directly associated with vehicle exhausts
and incomplete combustion. Though the concentrations are
not as high as the particulate matter, there are marked spikes
perhaps during periods of heightened traffic or industrial
operations. Annual averages seem quite stable indicating
short term variability exists but the long term concentration
of carbon monoxide has not shifted significantly over time.

Figure 2(c) plots the concentration of ozone, a secondary
pollutant formed through photochemical reactions in the
atmosphere. The pattern of ozone concentrations is strong-
ly seasonal, with periodic peaks that may be associated with
variability in temperature and strength of sunlight, which
are the primary catalysts for ozone formation. The general
downward trend in yearly averages suggests that conditions
or precursors for the formation of ozone may be decreasing,
perhaps because of control measures on emissions of nitro-
gen oxides and volatile organic compounds.

Start

HY

Data Collection

ﬂ

Data
Preprocessing

!

Feature
Engineering

Model

Selection

Finally, Figure 2(d) displays the nitrogen oxides and nitro-
gen dioxide concentrations, both of which are pollutants
closely associated with traffic and industrial activities. The
nitrogen compounds have spiky periodic behaviour that
may reflect periods when vehicles or industrial production
rates are higher. However, the average yearly trend is pret-
ty stable, indicating that despite episodes where emissions
are elevated, long-term levels for the nitrogen compounds
have changed little. These plots collectively shed insight into
the time dependency of air pollutants in urban Indian en-
vironments. The periodic patterns-including seasonal spikes
and event-based pollution peaks-provide valuable input into
developing machine learning models that predict air quality
from historical data.

The Figure 3 is pairplot matrix that shows the correlation of
many air quality variables such as PM2.5, Nitric Oxide (NO),
Nitrogen Dioxide (NO2), CO, O3, and NOx. A histogram of
the individual variables is shown in each diagonal element,
and the pairwise relationships between variables are repre-
sented by scatter plots in the off-diagonal elements.
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Figure 1. Flowchart of the machine learning pipeline for air quality prediction
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Table 1. Description of the dataset used for air quality prediction

Indian Cities No. of Instances Parameters Duration

North India: Delhi, Haryana, Himachal Pradesh, Jam-
mu and Kashmir, Punjab, Uttarakhand, Uttar Pradesh,
Chandigarh (Union Territory) South India: Andhra
Pradesh, Karnataka, Kerala, Tamil Nadu, Telangana,
Puducherry (Union Territory), East India: Arunachal 2796171 57 2010 to 2023
Pradesh, Assam, Bihar, Jharkhand, Odisha, Sikkim,
West Bengal, Manipur, Meghalaya, Mizoram, Naga-
land, Tripura, West India: Goa, Gujarat, Maharashtra,
Rajasthan, Madhya Pradesh, Chhattisgarh

Porfioy b e Alokier by Mo i

TR B T I 1§ - R U,
— T T ] = — U1 1 (N A
s P g g B Vg g ]

Dmem ¥ Eam by B : — e ] o B
o gy mar T g oy
T L — ] R Ty

fc) {d)
Figure 2. Time series plots of four major air quality parameters—(a) Particulate Matter, (b) Carbon Monoxide, (c) Ozone Con-
centration, and (d) Nitrogen Compounds—for years in Indian cities

Figure 3. Pairplot matrix that visualizes the relationships between several air quality parameters, including PM2.5, NO, NO2,
CO, O3, and NOx
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The scatter plots indicate potential correlations between oth-
er pollutants. For example, the upward trend in the scatter
plots suggests positive correlation between NOx and NO2,
and also between PM2.5 and NOx. The diagonal histograms
give an idea of the distribution of each pollutant, some of
which are skewed, such as CO and Os, so that there might
be more extreme values in their distributions for some pol-
lutants. Other relationships seem more scattered, thus more
weakly correlated, such as Os; and PM2.5 or O; and NOx.
This matrix is helpful in identifying a number of key pollut-
ant interactions that could be informative as part of any sort
of multivariate analysis or feature selection aimed at machine
learning models targeted toward the prediction of air quality.

Data Preprocessing

After collecting the raw data, several preprocessing steps
have been performed to prepare it for analysis. Firstly, the
"From Date" column has been converted into a datetime
index to conduct effective time-series analysis. In addition,
the redundant column "To Date" has been dropped. Finally,
merging of duplicate measurements of the same pollutant.
Under different slightly different names, some of the pollut-
ants were listed as "Xylene" and "MP-Xylene." For consisten-
cy, a specialized function was created that aggregated these
columns. Handling missing data was another pre-processing
task. The two strategies put in place were: in the interpola-
tion and fill-ins, the "pad" method was used for sparse fea-
tures with missing data, and for columns where a feature had
some reasonable percentage of missing values, columns were
dropped where the missingness went above a predefined
threshold. From this point, the dataset was ready to use for
further analysis. From here, cleaned and merged data for fea-
ture extraction and analysis was presented.

Feature Engineering

To enhance the performance of MACHINE learning models,
several new features were engineered out of the existing data-
set. The hour of the day, day of the week, day of the month,
month, and year temporal features were extracted from the
data in order to capture seasonality and daily/weekly pollu-
tion patterns. Figure 4 illustrates detailed analysis of PM2.5
concentrations at different temporal scales integral to feature
engineering process in our study.

Daily trends are evident in "PM2.5 (ug/m?) by day/month,"
which captures the daily periodic feature fluctuations in
pollution. More seasonal trends are present in the "PM2.5
(ug/m’) by month" box plot, clearly making evident the role
of monthly features in this system. The "PM2.5 (ug/m?®) by
weekday" plot illustrates the weekly trends and the good cor-
relation with the day of the week feature to capture pollution
cycles happening based on days of the week. PM2.5 (ug/m?)
by week/year" produces a heatmap-style plot, so that both
weekly and yearly data may be available and thus potential
long-term trends are available to justify lag features from
previous years. Finally, "PM2.5 (ug/m?) by year" shows some
historical levels of pollution, which becomes important as

lag variables in the model for enhancing accuracy. The vi-
sualizations together depict how the engineered features can
capture temporal dependencies, seasonality, and historical
trends and improve the model's ability to predict air quali-
ty in urban cities. Although the inclusion of meteorological
data is not taken as visualization in itself, it is represented
through the seasonal and temporal variations-that reflect the
role of weather in the pollution levels-increased levels. Fur-
thermore, the use of lag features was necessary to capture
temporal dependencies in the data. For instance, the past
year and two years ago were considered as lag variables for
the concentrations of PM2.5 in its trend of historical pollu-
tion in order to improve the accuracy of its prediction. Me-
teorological factors such as temperature, wind speed, wind
direction, and humidity were added as major predictors be-
cause their effects are critical in the dispersion and concen-
tration of pollutants. These feature engineering steps were to
enhance the ability of the model so that it can work better on
predictive abilities of the pollution levels.

Model Selection

Several ensemble-based algorithms for air quality forecast-
ing, focusing on PM2.5 concentrations in particular because
these have the largest health impacts.

Random Forest Regressor [21, 22]: This is a strong, non-lin-
ear model that uses multiple decision trees to produce a pre-
diction by reducing overfitting from averaging the outputs
generated by multiple trees.

Gradient Boosting Regressor [23]: Ensemble learning tech-
nique arranged sequentially where each successive tree cor-
rects the errors made by the previous one.

AdaBoost Regressor [22]: It is an adaptive boosting model
that combines weak learners into a strong predictor, mainly
where lots of noise are found in the data.

Histogram-Based Gradient Boosting Regressor [24]: The op-
timized version of the gradient boosting mechanism, which
uses histograms. The above three models are very efficient,
mainly in computation and utilization of memory instead of
the regular linear regressor.

XGBoost Regressor [22]: This is a high-performance, effi-
cient gradient boosting algorithm. XGBoost is an abbrevia-
tion of "Extreme Gradient Boosting." It creates decision trees
sequentially. New trees correct the residual errors from the
previous trees. Regularization prevents overfitting, parallel
processing makes the computation faster, and the tree-prun-
ing mechanism prevents over-complexity.
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Figure 4. PM2.5 concentrations by hour, day, month, weekday, and year, illustrating the temporal behavior and highlighting

seasonal patterns in pollution levels

RESULTS AND DISCUSSIONS

The dataset splitted into training and test datasets, with 80%
to training and 20% to testing. The following evaluation
metrics would determine the performance of the different
models.

+R? Score: It means the percentage of the variance in the de-
pendent variable that can be explained by the independent
variables. In simple words, it measures the variance in the
dependent variable which this model explains.

*Root Mean Squared Error (RMSE): It is a measure for the
average magnitude of prediction errors. The better the per-
formance, the smaller the value is.

«Mean Absolute Error (MAE): Average absolute difference
between true values and predicted values.

«Mean Absolute Percentage Error (MAPE): The errors are
usually represented in percent form, which provides under-
standing of relative accuracy due to the model.

Table 2 and Figure 5 will give an overview summary of per-
formance metrics for some of the machine learning models
applied in the prediction of air quality, particularly PM2.5
concentrations.

The Random Forest model gives a very high R* value of 0.99
on the training set, which means an excellent fit, but at the
same time, the other R? value is low at 0.35 for the test, which
would indicate overfitting. It also has a relatively high RMSE
of 63.60, MAE of 44.98, and MAPE of 0.57. The Gradient
Boosting model shows more balanced performance across
folds, with an R? of 0.54 for the training set and 0.48 for the
test set and lower error metrics generally (RMSE: 56.46,
MAE: 39.60, MAPE: 0.50), suggesting better generalization.
Lowest R* was with AdaBoost at 0.27 on the training set and
0.28 on the test set, while having the highest RMSE of 66.86,
MAE of 52.34, and MAPE of 0.94. Histogram GB and XG-
Boost are at a decent point. Histogram GB is at R* = 0.72
training and 0.43 test, and XGBoost is at R* = 0.82 for the
training set and 0.38 on the test set; both of the models have
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related error metrics with a slight edge going to Histogram
GB in RMSE and MAE. The table overall shows a trade-off
between model complexity and generalization, and Gradient
Boosting is relatively robust in this regard.

All models were tuned with the RandomizedSearchCV algo-
rithm. It had found the best combination of hyperparameters
that maximally allowed the optimal model configuration.
Some of the critical features, namely number of trees, learn-
ing rate and maximum depth, were optimized. Cross-val-
idation was also carried out using a time series-split tech-

nique. This ensured robust testing of every model on more
than one-fold. The predictions were evaluated not only on
the test data, but also by visualization methods in order to
estimate the generalization capabilities and the potential for
forecasting into the future. All the ensemble models were
tested for hyperparameter optimization through Random-
ized Search Cross-Validation to fine-tune the models for the
best-performing parameter configurations. The time it took
to fit each model, as well as subsequent prediction times,
was recorded with the view of evaluating efficiency based on
computations.

Table 2. Performance metrics (RMSE, MAE, MAPE, and R?) for machine learning models used in predicting PM2.5 levels

Model RMSE MAE MAPE R? (Train) R? (Test)
AdaBoost 66.86 52.34 0.94 0.27 0.28
Gradient Boosting 56.46 39.6 0.5 0.54 0.48
Random Forest 63.6 44.98 0.57 0.99 0.35
XGBoost 61.72 42.4 0.53 0.82 0.38
Histogram GB 59.17 41.56 0.52 0.72 0.43
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Figure 5. Performance comparison of AdaBoost, Gradient Boosting, Random Forest, XGBoost, and Histogram GB models with
the help of RMSE, MAE, MAPE, and R? for the prediction of the air quality
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Prediction and Visualization

Following model training, the best-performing models ap-
plied towards forecasting future PM2.5 levels from 2023
to 2024. Lag features added and also engineered temporal
variables within the models for a better forecast. Below are
graphical representations of the actual vs. predicted values
as shown in Fig 6, focusing on different time horizons, in-
cluding daily, monthly, and yearly-all concerning assessing
model performance over the horizon of times. Heatmaps

alse produced to denote the interlinkages between diverse
pollutants and meteorological factors.

The Figure 6 compares the prediction of the different con-
centrations of PM2.5 by various machine learning models.
The computed values presented above are plotted on the
same graph as actual values for comparison of which ma-
chine learning model is good at predicting the predicted
PM2.5 concentration levels.
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Figure 6. Comparison of predicted PM2.5 levels for 2023-2024 using machine learning models, highlighting the strengths and

weaknesses of each model in forecasting future air quality trends
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Here, the models under consideration are AdaBoost, Gra-
dient Boosting, Random Forest, XGBoost, and Histogram
Gradient Boosting. The actual and predicted values are dif-
ferentiated in the plot by color representation: actual histor-
ical concentration of PM2.5 is blue, predictions during the
testing phase overlapping the actual data orange, and the fu-
ture predictions, where the models predict the concentration
of PM2.5 beyond the data available - green.

Now let's examine performance of every model below:

AdaBoost: Test predictions for AdaBoost are very much like
real data but noisier than that of Gradient Boosting. It shows
a lot of variability in its future predictions, hence with sharp
jumps, this must perhaps be a model that will have trouble
making long-term predictions.

Gradient Boosting: Gradient Boosting exhibits considerably
more regular patterns when tested and fits the actual pretty
well. The future predictions are smoother than those from
Random Forest but still present sudden growths at certain
periods.

Random Forest: Generally, this model provides a reasonable
fit to actual data during the forecasted period (blue and or-
ange regions). At the same time its prospects for the future
(green) are chaotic with deep oscillations and have no trend,
meaning that it fails to generalize to future PM2.5 concen-
tration.

XGBoost: XGBoost is the best fit for the testing phase, where
its predictions of the orange curve closely follow actual data
of the blue curve. The predictive curve of the future tends
to be relatively smooth and follows logically, which indicates
good generalization of XGBoost for the concentration of
PM2.5 in the future.

Histogram Gradient Boosting: Histogram GB predicts even
better compared to AdaBoost while being relatively less sta-
ble compared to Gradient Boosting. Their subsequent pre-
dictions are smoother and have an upward trend, though
there still exist some degree of fluctuations.

In a summary, XGBoost is the best model for both short-
term and longer-term predictions of PM2.5 concentrations.
It has the smoothest prediction and least erratic jump com-
pared to the other models in the future prediction. In terms
of longer-term predictions, Random Forest and AdaBoost
are the worst models as they exhibit high variability in future
predictions.

CONCLUSION

The study proposed applications of machine learning tech-
niques such as Random Forest, Gradient Boosting, Ada-
Boost, Histogram-Based Gradient Boosting, and XGBoost
in predicting PM2.5 concentrations in Indian urban cities.
Spatiotemporal analysis integrated with advanced predic-
tive modeling to prove that machine learning does bear high
potential in accurately forecasting air-quality trends which
can lead toward more effective decision-making in environ-
mental management. Gradient Boosting had nearly balanced

performance over folds, with R* values of 0.54 for training
and 0.48 for test, and lower error metrics, such as RMSE:
56.46, MAE: 39.60, MAPE: 0.50. Nevertheless, it has its lim-
itations, such as sensitivity to overfitting, the need for hy-
perparameter tuning, and slower training. XGBoost had bet-
ter fit during testing and more smooth, logically consistent
predictions for future PM2.5 concentrations, which means
better generalization for long-term forecasting. While Gra-
dient Boosting fairly balanced R* scores pointed to reduced
overfitting, the XGBoost showed advantages in visualization
results and thus long-term forecasting. The strengths of the
model are in handling non-linear associations, resistance to
anomalies and missing data, and its ability to pick out com-
plex interactions among features. However, despite such ad-
vantages, the model is demanding in terms of adjustment in
avoiding overfitting and consumes more resources than sim-
pler models, which poses a problem in resource-constrained
environments. It was noticed that the Random Forest model
did well for the training data but failed to generalize properly
for the test data, effectively communicating the issues with
overfitting in complex environmental datasets. AdaBoost
was very weak while Histogram-Based Gradient Boosting
and XGBoost resulted in mediocre accuracy with good pre-
dictive consistency shown by the latter.

Its inclusion of meteorological data and the incorporation
of temporal feature engineering-by increasing the models'
capability to capture short-term fluctuations together with
long-term pollution trends-allowed it to understand better
the factors degrading air quality in Indian cities. During
study, seasonal peaks in pollution were also emphasized,
such as resulting from crop burning along with adverse me-
teorological conditions during winter months.

From a policy point of view, this work shows the potential for
such machine learning to be an effective tool in managing air
quality, providing reliable near-real-time forecasts, enabling
policymakers to intervene proactively and reduce pub-
lic health risks and alleviate the impact of extreme events.
Furthermore, it opens up possibilities where real-time air
quality monitoring is to be integrated with machine learning
models, thereby providing a dynamic and adaptive solution
for dealing with air pollution in rapidly urbanizing regions.

Future research would focus on widening the scope of this
study to more cities, with even finer granularities of data. The
increasing use of more sophisticated machine learning tech-
niques, such as deep learning, or perhaps even hybrid mod-
els that combine the best features of several, could further
improve predictive accuracy and robustness. These challeng-
es will be significant in the development of scalable, reliable,
and actionable air quality prediction systems that can func-
tion across diverse urban environments in India and other
geographies. In order to extend the applicability of the model
beyond the Indian scenario, it is important to introduce ele-
ments that are specific to local sources of pollution, local en-
vironmental conditions, and regulatory structure. Retraining
of the model with data from diverse urban locations across
the world may further improve the generality of the model.
More importantly, accurate feature engineering needs to be
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ensured, especially when incorporating city-specific vari-
ables like industrial activities, transportation dynamics, and
geographical characteristics.
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