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ABSTRACT

Air pollution, more specifically Particulate Matter (PM2.5 - particulate matter with diameter less 
than 2.5 micrometers), threatens the public health most critically in urban Indian cities, and Del-
hi, among them, presents the most acute challenge. This study predicts the concentrations of PM2.5 
using machine learning models using data ranging from 2010 to 2023 and assessing model fit via 
R², RMSE, MAE, and MAPE metrics. Models tested: Random Forest, Gradient Boosting, AdaBoost, 
Histogram-Based Gradient Boosting, XGBoost. The Random Forest model is extremely effective for 
the training set (R² = 0.99) but shows the highest degree of overfitting, with R² of 0.35 for the test set. 
Gradient Boosting has a more balanced result, with R² 0.54 and 0.48, respectively on the training and 
test set, as well as fewer errors (RMSE: 56.46, MAE: 39.60, MAPE: 0.50). Hence, it is a good predictor. 
AdaBoost performs the worst with an R² of 0.28 on the test set and the highest errors in terms of 
RMSE: 66.86, MAE: 52.34, MAPE: 0.94. Histogram Gradient Boosting and XGBoost: both of these 
models yield an average accuracy value, but the Gradient Boosting model is still a tad better than the 
former ones in terms of RMSE and MAE. Thus, Gradient Boosting happens to be the most accurate 
model in light of generalization as well as accuracy for the prediction of the concentration of PM2.5. 
These results will be highly beneficial to policymakers to adopt machine learning-based air quality 
forecasting for better environmental management and the protection of public health.

Cite this article as: Singh SK, Jain R, Palaniappan D, Parmar K, Premavathi T, Gothania J. Spatio-
temporal analysis and machine learning-based prediction of air quality in Indian urban cities. Environ 
Res Tec 2025;8(4) 809-822.

INTRODUCTION

One of the strongest concerns associated with urban envi-
ronments is its air quality, especially in developing countries 
like India. Intensification of industrial and urbanization 
processes yields massive increases in levels of air pollution. 
According to reports from the World Health Organization, 
air pollution takes millions of lives due to premature deaths, 
and cities in India often feature prominently in rankings as 

most polluted. It is important to watch for this trend by pre-
dicting the quality of air in order to safeguard public health 
and inform policy action. Analysis of spatiotemporal data is 
important for understanding the dynamic traits of air quality 
within the Indian urban domain. This provides spatial and 
temporal information with respect to explaining the prevail-
ing trends, patterns, and hotspots of pollution in relation to 
variables such as seasonal flux and urban expansion. It inte-
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grates data sources to create comprehensive maps and time 
series that illustrate pollutant spreading, enables the identi-
fication of suboptimal areas of air quality, and assesses man-
agement strategies. This analysis delved into the relationship 
between air quality and a chain of environmental and anthro-
pogenic variables, thus providing much-needed knowledge 
for targeted interventions and evidence-based policymaking 
in rapidly urbanizing Indian cities. Combining these analyt-
ical methods with monitoring efforts will help policymakers 
and urban planners develop effective models of prediction 
for air quality and management strategies toward more sus-
tainable urban environments that center on public health.
Recent advancements in machine learning (ML) and deep 
learning (DL) techniques have thrown open new avenues 
in air quality analysis and prediction. Different studies are 
proving the efficiency of this approach in the medium-range 
prediction of concentrations of different air pollutants, in-
cluding PM2.5, PM10 (particulate matter less than 10 mi-
crometers in diameter), NOx, and O3, by using past data and 
meteorological parameters. For instance, Support Vector Re-
gression has been utilized promisingly to make high-accura-
cy forecasts of air quality indices (AQI). Furthermore, Long 
Short-Term Memory networks have been employed in an 
effort to successfully capture the time dependencies between 
air quality data, thus enhancing the predictive capabilities of 
traditional statistical models [1-4].
Although there have been great strides in the very recent 
past toward harnessing machine learning for air-quality pre-
diction, gaps still exist in the current landscape of research. 
Most of the studies focused on short-term predictions 
or relied on data from a few monitoring stations, limiting 
their generalizability. This narrow focus usually misses the 
much-needed interplay between geographical and temporal 
variations in air pollution, thereby stalling the development 
of comprehensive predictive models [1, 5]. However, big cit-
ies continue facing hazardous levels of air pollution, notably 
during winter when adverse meteorological conditions trap 
pollutants near the ground. Delhi takes one of the top places 
among other polluted cities in the world's list, so determin-
ing the spatiotemporal dynamics of air pollution and making 
predictions about the expected trends is very important. This 
challenge requires innovative approaches that combine his-
torical data with predictive modeling techniques to provide 
actionable insights [5-7].
This paper seeks to utilize spatiotemporal analysis and ma-
chine learning models in the prediction of air quality based on 
a robust dataset from 2010 to 2023. Advanced ML techniques 
such as Random Forest, Gradient Boosting, AdaBoost, and 
XGBoost are used for predicting future concentration of the 
key pollutants in particular PM2.5 as it possesses the high-
est adverse health effects. The suggested model encompasses 
feature engineering with lag variables in combination with 
meteorological parameters to extract seasonal and long-term 
patterns of pollution in the air. Using cross-validation and 
an optimization procedure for the hyperparameters, this sys-
tem expects to provide a more accurate prediction regarding 
the trend of air quality for the year 2024. The results of the 
present research complement the available body of knowl-
edge about air quality management in India. The results of 

this study will be useful in setting up a predictive framework 
for future research and arm policymakers with data-driven 
insights to mitigate the public health impacts of air pollution 
in Indian urban cities.

LITERATURE REVIEW

Existing studies on the prediction of air quality applied vari-
ous machine learning methods with no exception to unearth 
their applicability in dealing well with the specifics in this 
problem. Furthermore, deep learning technologies have 
demonstrated impressive performance for predicting urban 
air quality models. Here, both Convolutional Neural Net-
works and Long Short-Term Memory achieved the state-of-
the-art results [8]. These models can better determine spatial 
and temporal dependencies in air pollution data, hence mak-
ing it possible to obtain higher predictive accuracy.
The hybrid approach was proposed by [3], which includes 
the combination of Discretized Regression and Least Square 
Support Vector Machines for air pollution prediction. Their 
method sought to handle the problem of missing data and 
provides the necessary accuracy in estimating the quality 
of the air. The study of [9] proposed an extensive review of 
applications of machine learning algorithms, especially re-
gression techniques and deep learning models, for air qual-
ity forecasting. Authors brought out several methodologies 
in terms of strengths and weaknesses, thus giving an idea of 
which models are there based on a particular requirement 
concerning the problem at hand [2]. Many researchers in the 
Indian scenario have studied the use of machine learning for 
predicting air quality in cities such as Delhi, Kolkata, and 
Bangalore.

Spatiotemporal Analysis of Air Pollution
Spatiotemporal analysis becomes very important in observ-
ing how variations of air pollution occur in both space and 
time. Many works have implemented spatial and temporal 
models that aimed to capture changes in pollutant concen-
trations and pinpoint high-risk zones in urban areas. Such 
as [10], which integrated a spatial interpolation method 
with temporal models for mapping levels of PM2.5 and NOx 
across various cities in China. This approach provided an 
overall view of pollution patterns and helped identify the 
sources of pollution. Similar to this, [11] reviewed seasonal 
air quality trends in Indian cities, showing the vital need to 
understand the spatiotemporal variations in designing inter-
ventions.
Air pollution in Indian cities and seasons varies significantly 
due to climate, industrialized activities, and transport pat-
terns. Studies like [12] and [13] have pointed out how pol-
lution peaks during the winter months in cities like Delhi 
often due to crop burning and lower wind speed and higher 
vehicle emission. These spatiotemporal dynamics highlight 
the need for predictive models sensitive to seasonal and lo-
cation-based variations in air quality to invoke pro-active 
measures.

Machine Learning and Air Quality Prediction
Machine learning (ML) is the latest tool used in making 
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air-quality forecasts because conventional statistical models 
fail to adequately explain the complex, nonlinear effects of 
air pollutants caused by other factors, including atmospheric 
conditions. Increasing environmental databases would facil-
itate research where ML could be trained in both forecast-
ed pollutant concentrations and on the identification of the 
driving factors behind the air quality. In [3] exposed that, 
particularly, models like Support Vector Regression and 
Random Forests are capable of precise predictions of air 
pollutant levels compared to the traditional models in accu-
racy and speed. In a similar fashion, [14] also used LSTM 
networks in dependency analysis along the temporal lines 
found in the air quality data. In this manner, deep learning 
has presented some interesting results for long-term fore-
casting. The LSTM networks fall under the category of the 
subtypes of recurrent neural networks and have emerged as 
a significant tool in the domain of researching predictions 
regarding air quality. These networks excel in extracting 
temporal dependencies within air quality datasets, thereby 
particularly showing excellence in long-term forecasting ef-
forts. In addition, LSTMs have been proven to enhance the 
predictive capability of statistical models by accurately mod-
eling complicated time-related dependencies involved in air 
quality information.
Many machine learning algorithms have been applied to air 
quality prediction; each has its merits and demerits. These 
include decision trees, gradient boosting, and also ensem-
ble techniques like Random Forests and XGBoost, generally 
much stronger at handling high-dimensional data and non-
linear relations among variables. Of late, a number of stud-
ies by [5] and [15] have depicted that these models help in 
predictions for the accurate concentration level of PM2.5-
PM10, NOx, and O₃. These models utilize historical data re-
lated to air pollution, besides meteorological variables such 
as temperature, humidity, and wind speed to gain a detailed 
view of pollution dynamics.
In the Indian context, several studies have concentrated on 
air quality prediction using machine learning. [16] imple-
mented an in-depth analysis of pollution data from 23 Indi-
an cities by using regression techniques and feature selection 
methods to improve model performance. Their findings, in 
fact, show that the models could predict AQI well and illus-
trated the influence of external factors such as the increase 
in traffic emissions and weather patterns on the levels of pol-
lution. In addition, usage of IoT sensors has also enhanced 
the ability for real-time monitoring of air quality. IoT sensor 
data has been found effective when used for integrating with 
machine learning models, because such integration can en-
hance timeliness and accuracy of the predictions made [15].

Air Pollution in Indian Cities
Indian cities, especially Delhi, Mumbai, and Kolkata, are 
ranked to be some of the most polluted cities in the world; 
in fact, many extreme pollution events are a result of season-
al trends. Delhi severely degrades air quality during winters 
due to vehicular emissions, industrial activities, and agricul-
tural residue burning in neighbouring states [17]. Studies 
have found the repeated violations of WHO-promoted safe 
air standards all over Delhi, making it an appropriate site for 

sophisticated modeling techniques intended to predict and 
control peaking levels of pollution.
However, one recent study reported machine learning mod-
els capable of predicting air quality trends in Indian cities us-
ing historical pollution data and meteorological variables as 
well as emission sources. For instance, [18] and [19] applied 
Random Forest and Gradient Boosting algorithms to predict 
the level of PM2.5 in Delhi, indicating a high accuracy and 
the presence of meteorological conditions influencing the 
dynamics of air quality. These studies give an importance to 
the application of machine learning techniques to air quality 
issues in Indian urban cities because they form a platform for 
unique challenges.

Gaps and Future Directions
Although there is significant advancement in the application 
of machine learning to air quality prediction, an important 
gap still exists in the literature. For one, most current stud-
ies focus on short-term predictions or use data from a few 
monitoring stations only, with generalizability highly com-
promised. For another, hardly any study has made it possible 
to integrate spatiotemporal analysis with machine learning, 
giving less attention to simultaneous geographic and tempo-
ral variations in air pollution. Finally, although promising 
results are seen by the machine learning models in capturing 
extreme events of pollution going critical to public health 
interventions, there are scopes to improve model accuracy.
To fill these gaps, this study combines spatiotemporal analy-
sis with advanced machine learning techniques for predict-
ing air quality in urban areas of India. It focuses on one of 
the most polluted cities in the world, Delhi. Proposed sys-
tem attempts to create a framework of prediction such that it 
can predict the levels of key pollutants at high accuracy and 
incorporates temporal patterns as well as spatial variations. 
It will, therefore, include meteorological data and external 
factors for an integrated approach towards the pollution dy-
namics giving way to actionable insights for policy direction. 
This will not only bridge gaps in the existing literature but 
also offer a scalable solution towards future studies on air 
quality management in other Indian cities.

METHODOLOGY

This research is a spatiotemporal study combined with ma-
chine learning for the prediction of air quality, integrating 
location and time. The study is based on the urban cities of 
India from the year 2010 to 2023. The whole methodology 
involves key steps such as collection of data, preprocessing, 
feature engineering, model selection, and training and eval-
uation with subsequent predictions of air quality, as shown 
in Figure 1. The main goal is to develop robust models of 
PM2.5 and other important pollutants for more informed 
decision-making regarding air quality management.

Mathematical Formulation for the Proposed System

Data preprocessing and feature engineering
The proposed spatiotemporal air quality predictive model 
starts with data preprocessing and feature engineering. The 
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time stamp extracted in the dataset provides relevant tempo-
ral features, such as hour, day, month, and year. Lag features, 
which include pollutant levels from one and two years ago, 
have been established to set up the level of dependency be-
tween these temporal features. Next, data groupings based 
on different time steps have been made (daily, monthly, year-
ly) to analyze the trends and correlations with target pollut-
ants, especially PM2.5.
Let the dataset be represented as:

Where:
Xi  ε Rm 	 is the feature vector for each observation.
yi is the target variable (e.g., air pollutant concentration, such 
as PM2.5)
n is the total number of observations.
m is the number of features.
Datetime Features: To capture the temporal dynamics, var-
ious datetime-related features are extracted from the time-
stamp T:

Where:
hour(T) 		 represents the hour of the day.
day(T) 		  is the day of the month.
month(T) 	 is the month.
year(T) 		  is the year.
Lag Features: Lag features for 1 year and 2 years are generat-
ed to capture the temporal dependencies:

Correlation matrix and feature selection
By correlating all the input variables in a matrix, the most 
critical features for prediction are determined. To select rele-
vant features, the correlation of the target pollutant with oth-
er features is calculated:

Where Corr(Xj,y) is the Pearson correlation coefficient be-
tween feature Xj and the target y, and Xj and Ȳare the mean 
values of Xj and y, respectively.

Prediction model
Thezlevels of various pollutants are predicted by building 
Random Forest, Gradient Boosting, and XGBoost mod-
els. Each of these has its own unique strengths. A Random 
Forest Regressor is an ensemble method that creates many 
decision trees and averages their prediction for more accu-
racy in reducing overfitting. They work well with large data-
sets and high-dimensional data, making them reliable and 
straightforward to interpret. It may become computationally 
expensive when the data is sparse and less effective. Random 
Forests reduces the effect of overfitting of the model to spe-
cific data instances and noise through the creation of many 
subsets of the training dataset using a method called bagging 
or bootstrap aggregation. Only a random subset of features 
was considered in every split of the decision trees. This leads 
to diversity and reduces the model’s reliance on individual 
predictors. This average of multiple decision tree final pre-
dictions helps smoothen out the errors of individual trees 
and hence reduces the variance. In real-world applications, 
Random Forests handles overfitting with out-of-bag error 
estimation. Such an estimation is unbiased with respect 
to the performance of the model without requiring a sep-
arate validation set, which leads to a more suitable tuning 
of hyperparameters. The Gradient Boosting Regressor uses 
an approach to build a sequence of decision trees. Each tree 
is used to rectify the past ones in terms of errors. It iterates 
well enough to capture the intricate data patterns and obtain 
highly accurate solutions. Although it performs pretty well in 
modeling non-linear relationships, Gradient Boosting, how-
ever, is more prone to overfitting, and it is generally slower 
to train than the Random Forest. It requires careful tuning of 
its parameters to avoid any performance issues. XGBoost is a 
regularized version of Gradient Boosting, which overcomes 
many inefficiencies since techniques for regularization are 
used to avoid overfitting as it would speed up the process. 
XGBoost provides fantastic results and is the key parameter 
of use in structured data problems and competition within 
machine learning, but is rather complex when compared to 
both Random Forest or simple Gradient Boosting, yet it can 
be quite versatile as it runs fast and also works well even on 
missing data or imbalanced datasets. Although XGBoost has 
a good number of strengths, the approach itself still requires 
careful tuning to prevent overfitting, and it becomes fairly 
complex to implement. Various machine learning models 
f(X;θ) have used to predict the air quality, where θ represents 
the model parameters:
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Model training and evaluation
All the models that were trained on the data and analyzed 
for the use of RMSE, MAE, and R2. The models are trained 
using a training set {Xtrain,ytrain }, and the predictions are eval-
uated on a test set {Xtest,ytest }.

The performance is measured using several metrics:

Root Mean Squared Error (RMSE)

Cross-validation and hyperparameter tuning
The process involves tuning hyperparameters for models us-
ing randomized search together with time series cross-val-
idation. This targets optimization of model performance. 
Randomized search is used with cross-validation. The ob-
jective is to minimize the RMSE by using k-fold time se-
ries cross-validation. This study used k-fold time-series 
cross-validation, which is crafted with consideration for the 
temporal nature of time-series data. As such, this means the 

training set will always appear before the validation set so 
that the data remains intact. This is contrary to traditional 
k-fold cross-validation, which is designed around indepen-
dent and identically distributed data points. The split here 
preserves the temporal nature of the data so that no future 
results can predict earlier results.

Prediction on future data
These models are then used to forecast air quality over time 
within datasets across future time points. The effectiveness 
of the models is validated by comparing the predicted val-
ues against the actual pollutant concentrations. For future air 
quality predictions, a dataset X_future is created by extrap-
olating datetime features. The future values are predicted as:

The results of the model predictions are compared with actu-
al data to evaluate the model's effectiveness in predicting air 
quality in future periods.
This approach results in a strong basis for analyzing and pre-
dicting air quality within urban cities based on spatiotempo-
ral data and machine learning methods.

Data Collection
It is sourced from different platforms, like the air quali-
ty monitoring stations operated by the Indian government 
across the country. The dataset contains both hourly and dai-
ly measurements of key pollutants, including PM2.5, PM10, 
NOx, CO, SO2, and O3, as well as meteorological parameters 
like temperature, humidity, wind speed, and wind direction. 
The data ranges between 2010 and 2023 [20]. This has been 
aggregated from multiple CSV files whereby each file rep-
resents data from a different monitoring station. Details of 
the dataset are outlined in Table 1. To capture well the spa-
tial features, metadata have been included on the location of 
the monitoring stations. The dataset was supplemented with 
meteorological data sourced from other locations since air 
quality is highly exposed to the weather.
Figure 2 displays plots that indicate the time series of four 
major indicators of air quality, which include PM2.5, Car-
bon Monoxide (CO), O3 Concentration, and Nitrogen Com-
pounds (NOx), at periodic intervals across several years over 
Indian urban cities. Each plot compares daily, monthly, and 
yearly groupings to reveal short-term fluctuations and long-
term trends, which form the foundations for spatiotemporal 
analysis as well as for machine learning-based prediction of 
air quality.
In Figure 2(a) that presents curve of the time series of PM2.5 
and PM10 concentrations which show that the variations are 
quite large along with high peaks corresponding to strong air 
pollution periods. Such periods may coincide with the peak 
seasons for celebrations, agricultural burning, and industrial 
effluents. Average yearly values have a tendency to decline 
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Figure 1. Flowchart of the machine learning pipeline for air quality prediction

marginally with time, suggesting a probable enhancement in 
the quality of air due to regulations or shift in the source of 
emissions.
Figure 2(b) Carbon Monoxide The carbon monoxide is a pol-
lutant much more directly associated with vehicle exhausts 
and incomplete combustion. Though the concentrations are 
not as high as the particulate matter, there are marked spikes 
perhaps during periods of heightened traffic or industrial 
operations. Annual averages seem quite stable indicating 
short term variability exists but the long term concentration 
of carbon monoxide has not shifted significantly over time.
Figure 2(c) plots the concentration of ozone, a secondary 
pollutant formed through photochemical reactions in the 
atmosphere. The pattern of ozone concentrations is strong-
ly seasonal, with periodic peaks that may be associated with 
variability in temperature and strength of sunlight, which 
are the primary catalysts for ozone formation. The general 
downward trend in yearly averages suggests that conditions 
or precursors for the formation of ozone may be decreasing, 
perhaps because of control measures on emissions of nitro-
gen oxides and volatile organic compounds.

Finally, Figure 2(d) displays the nitrogen oxides and nitro-
gen dioxide concentrations, both of which are pollutants 
closely associated with traffic and industrial activities. The 
nitrogen compounds have spiky periodic behaviour that 
may reflect periods when vehicles or industrial production 
rates are higher. However, the average yearly trend is pret-
ty stable, indicating that despite episodes where emissions 
are elevated, long-term levels for the nitrogen compounds 
have changed little.These plots collectively shed insight into 
the time dependency of air pollutants in urban Indian en-
vironments. The periodic patterns-including seasonal spikes 
and event-based pollution peaks-provide valuable input into 
developing machine learning models that predict air quality 
from historical data.
The Figure 3 is pairplot matrix that shows the correlation of 
many air quality variables such as PM2.5, Nitric Oxide (NO), 
Nitrogen Dioxide (NO2), CO, O₃, and NOx. A histogram of 
the individual variables is shown in each diagonal element, 
and the pairwise relationships between variables are repre-
sented by scatter plots in the off-diagonal elements.
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Indian Cities No. of Instances Parameters Duration
North India: Delhi, Haryana, Himachal Pradesh, Jam-
mu and Kashmir, Punjab, Uttarakhand, Uttar Pradesh, 

Chandigarh (Union Territory) South India: Andhra 
Pradesh, Karnataka, Kerala, Tamil Nadu, Telangana, 

Puducherry (Union Territory), East India: Arunachal 
Pradesh, Assam, Bihar, Jharkhand, Odisha, Sikkim, 
West Bengal, Manipur, Meghalaya, Mizoram, Naga-

land, Tripura, West India: Goa, Gujarat, Maharashtra, 
Rajasthan, Madhya Pradesh, Chhattisgarh

2796171 57 2010 to 2023

Table 1. Description of the dataset used for air quality prediction

Figure 2. Time series plots of four major air quality parameters—(a) Particulate Matter, (b) Carbon Monoxide, (c) Ozone Con-
centration, and (d) Nitrogen Compounds—for years in Indian cities

Figure 3. Pairplot matrix that visualizes the relationships between several air quality parameters, including PM2.5, NO, NO2, 
CO, O₃, and NOx



816 Environ Res Tec, Vol. 8, Issue. 4, pp. 809-822, December 2025

The scatter plots indicate potential correlations between oth-
er pollutants. For example, the upward trend in the scatter 
plots suggests positive correlation between NOx and NO2, 
and also between PM2.5 and NOx. The diagonal histograms 
give an idea of the distribution of each pollutant, some of 
which are skewed, such as CO and O₃, so that there might 
be more extreme values in their distributions for some pol-
lutants. Other relationships seem more scattered, thus more 
weakly correlated, such as O₃ and PM2.5 or O₃ and NOx. 
This matrix is helpful in identifying a number of key pollut-
ant interactions that could be informative as part of any sort 
of multivariate analysis or feature selection aimed at machine 
learning models targeted toward the prediction of air quality.

Data Preprocessing
After collecting the raw data, several preprocessing steps 
have been performed to prepare it for analysis. Firstly, the 
"From Date" column has been converted into a datetime 
index to conduct effective time-series analysis. In addition, 
the redundant column "To Date" has been dropped. Finally, 
merging of duplicate measurements of the same pollutant. 
Under different slightly different names, some of the pollut-
ants were listed as "Xylene" and "MP-Xylene." For consisten-
cy, a specialized function was created that aggregated these 
columns. Handling missing data was another pre-processing 
task. The two strategies put in place were: in the interpola-
tion and fill-ins, the "pad" method was used for sparse fea-
tures with missing data, and for columns where a feature had 
some reasonable percentage of missing values, columns were 
dropped where the missingness went above a predefined 
threshold. From this point, the dataset was ready to use for 
further analysis. From here, cleaned and merged data for fea-
ture extraction and analysis was presented.

Feature Engineering
To enhance the performance of MACHINE learning models, 
several new features were engineered out of the existing data-
set. The hour of the day, day of the week, day of the month, 
month, and year temporal features were extracted from the 
data in order to capture seasonality and daily/weekly pollu-
tion patterns. Figure 4 illustrates detailed analysis of PM2.5 
concentrations at different temporal scales integral to feature 
engineering process in our study.
Daily trends are evident in "PM2.5 (μg/m3) by day/month," 
which captures the daily periodic feature fluctuations in 
pollution. More seasonal trends are present in the "PM2.5 
(μg/m3) by month" box plot, clearly making evident the role 
of monthly features in this system. The "PM2.5 (μg/m3) by 
weekday" plot illustrates the weekly trends and the good cor-
relation with the day of the week feature to capture pollution 
cycles happening based on days of the week. PM2.5 (μg/m3) 
by week/year" produces a heatmap-style plot, so that both 
weekly and yearly data may be available and thus potential 
long-term trends are available to justify lag features from 
previous years. Finally, "PM2.5 (μg/m3) by year" shows some 
historical levels of pollution, which becomes important as 

lag variables in the model for enhancing accuracy. The vi-
sualizations together depict how the engineered features can 
capture temporal dependencies, seasonality, and historical 
trends and improve the model's ability to predict air quali-
ty in urban cities. Although the inclusion of meteorological 
data is not taken as visualization in itself, it is represented 
through the seasonal and temporal variations-that reflect the 
role of weather in the pollution levels-increased levels. Fur-
thermore, the use of lag features was necessary to capture 
temporal dependencies in the data. For instance, the past 
year and two years ago were considered as lag variables for 
the concentrations of PM2.5 in its trend of historical pollu-
tion in order to improve the accuracy of its prediction. Me-
teorological factors such as temperature, wind speed, wind 
direction, and humidity were added as major predictors be-
cause their effects are critical in the dispersion and concen-
tration of pollutants. These feature engineering steps were to 
enhance the ability of the model so that it can work better on 
predictive abilities of the pollution levels.

Model Selection
Several ensemble-based algorithms for air quality forecast-
ing, focusing on PM2.5 concentrations in particular because 
these have the largest health impacts.
Random Forest Regressor [21, 22]: This is a strong, non-lin-
ear model that uses multiple decision trees to produce a pre-
diction by reducing overfitting from averaging the outputs 
generated by multiple trees.
Gradient Boosting Regressor [23]: Ensemble learning tech-
nique arranged sequentially where each successive tree cor-
rects the errors made by the previous one.
AdaBoost Regressor [22]: It is an adaptive boosting model 
that combines weak learners into a strong predictor, mainly 
where lots of noise are found in the data.
Histogram-Based Gradient Boosting Regressor [24]: The op-
timized version of the gradient boosting mechanism, which 
uses histograms. The above three models are very efficient, 
mainly in computation and utilization of memory instead of 
the regular linear regressor.
XGBoost Regressor [22]: This is a high-performance, effi-
cient gradient boosting algorithm. XGBoost is an abbrevia-
tion of "Extreme Gradient Boosting." It creates decision trees 
sequentially. New trees correct the residual errors from the 
previous trees. Regularization prevents overfitting, parallel 
processing makes the computation faster, and the tree-prun-
ing mechanism prevents over-complexity.
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RESULTS AND DISCUSSIONS

The dataset splitted into training and test datasets, with 80% 
to training and 20% to testing. The following evaluation 
metrics would determine the performance of the different 
models.
•R² Score: It means the percentage of the variance in the de-
pendent variable that can be explained by the independent 
variables. In simple words, it measures the variance in the 
dependent variable which this model explains.
•Root Mean Squared Error (RMSE): It is a measure for the 
average magnitude of prediction errors. The better the per-
formance, the smaller the value is.
•Mean Absolute Error (MAE): Average absolute difference 
between true values and predicted values.
•Mean Absolute Percentage Error (MAPE): The errors are 
usually represented in percent form, which provides under-
standing of relative accuracy due to the model.

Table 2 and Figure 5 will give an overview summary of per-
formance metrics for some of the machine learning models 
applied in the prediction of air quality, particularly PM2.5 
concentrations.
The Random Forest model gives a very high R² value of 0.99 
on the training set, which means an excellent fit, but at the 
same time, the other R² value is low at 0.35 for the test, which 
would indicate overfitting. It also has a relatively high RMSE 
of 63.60, MAE of 44.98, and MAPE of 0.57. The Gradient 
Boosting model shows more balanced performance across 
folds, with an R² of 0.54 for the training set and 0.48 for the 
test set and lower error metrics generally (RMSE: 56.46, 
MAE: 39.60, MAPE: 0.50), suggesting better generalization. 
Lowest R² was with AdaBoost at 0.27 on the training set and 
0.28 on the test set, while having the highest RMSE of 66.86, 
MAE of 52.34, and MAPE of 0.94. Histogram GB and XG-
Boost are at a decent point. Histogram GB is at R² = 0.72 
training and 0.43 test, and XGBoost is at R² = 0.82 for the 
training set and 0.38 on the test set; both of the models have 

Figure 4. PM2.5 concentrations by hour, day, month, weekday, and year, illustrating the temporal behavior and highlighting 
seasonal patterns in pollution levels
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Model RMSE MAE MAPE R² (Train) R² (Test)
AdaBoost 66.86 52.34 0.94 0.27 0.28

Gradient Boosting 56.46 39.6 0.5 0.54 0.48
Random Forest 63.6 44.98 0.57 0.99 0.35

XGBoost 61.72 42.4 0.53 0.82 0.38
Histogram GB 59.17 41.56 0.52 0.72 0.43

Table 2. Performance metrics (RMSE, MAE, MAPE, and R²) for machine learning models used in predicting PM2.5 levels

Figure 5. Performance comparison of AdaBoost, Gradient Boosting, Random Forest, XGBoost, and Histogram GB models with 
the help of RMSE, MAE, MAPE, and R² for the prediction of the air quality

related error metrics with a slight edge going to Histogram 
GB in RMSE and MAE. The table overall shows a trade-off 
between model complexity and generalization, and Gradient 
Boosting is relatively robust in this regard.
All models were tuned with the RandomizedSearchCV algo-
rithm. It had found the best combination of hyperparameters 
that maximally allowed the optimal model configuration. 
Some of the critical features, namely number of trees, learn-
ing rate and maximum depth, were optimized. Cross-val-
idation was also carried out using a time series-split tech-

nique. This ensured robust testing of every model on more 
than one-fold. The predictions were evaluated not only on 
the test data, but also by visualization methods in order to 
estimate the generalization capabilities and the potential for 
forecasting into the future. All the ensemble models were 
tested for hyperparameter optimization through Random-
ized Search Cross-Validation to fine-tune the models for the 
best-performing parameter configurations. The time it took 
to fit each model, as well as subsequent prediction times, 
was recorded with the view of evaluating efficiency based on 
computations. 
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Figure 6. Comparison of predicted PM2.5 levels for 2023-2024 using machine learning models, highlighting the strengths and 
weaknesses of each model in forecasting future air quality trends

Prediction and Visualization
Following model training, the best-performing models ap-
plied towards forecasting future PM2.5 levels from 2023 
to 2024. Lag features added and also engineered temporal 
variables within the models for a better forecast. Below are 
graphical representations of the actual vs. predicted values 
as shown in Fig 6, focusing on different time horizons, in-
cluding daily, monthly, and yearly-all concerning assessing 
model performance over the horizon of times. Heatmaps 

alse produced to denote the interlinkages between diverse 
pollutants and meteorological factors.
The Figure 6 compares the prediction of the different con-
centrations of PM2.5 by various machine learning models. 
The computed values presented above are plotted on the 
same graph as actual values for comparison of which ma-
chine learning model is good at predicting the predicted 
PM2.5 concentration levels. 
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Here, the models under consideration are AdaBoost, Gra-
dient Boosting, Random Forest,  XGBoost, and Histogram 
Gradient Boosting. The actual and predicted values are dif-
ferentiated in the plot by color representation: actual histor-
ical concentration of PM2.5 is blue, predictions during the 
testing phase overlapping the actual data orange, and the fu-
ture predictions, where the models predict the concentration 
of PM2.5 beyond the data available - green.
Now let's examine performance of every model below:
AdaBoost: Test predictions for AdaBoost are very much like 
real data but noisier than that of Gradient Boosting. It shows 
a lot of variability in its future predictions, hence with sharp 
jumps, this must perhaps be a model that will have trouble 
making long-term predictions.
Gradient Boosting: Gradient Boosting exhibits considerably 
more regular patterns when tested and fits the actual pretty 
well. The future predictions are smoother than those from 
Random Forest but still present sudden growths at certain 
periods.
Random Forest: Generally, this model provides a reasonable 
fit to actual data during the forecasted period (blue and or-
ange regions). At the same time its prospects for the future 
(green) are chaotic with deep oscillations and have no trend, 
meaning that it fails to generalize to future PM2.5 concen-
tration.
XGBoost: XGBoost is the best fit for the testing phase, where 
its predictions of the orange curve closely follow actual data 
of the blue curve. The predictive curve of the future tends 
to be relatively smooth and follows logically, which indicates 
good generalization of XGBoost for the concentration of 
PM2.5 in the future.
Histogram Gradient Boosting: Histogram GB predicts even 
better compared to AdaBoost while being relatively less sta-
ble compared to Gradient Boosting. Their subsequent pre-
dictions are smoother and have an upward trend, though 
there still exist some degree of fluctuations.
In a summary, XGBoost is the best model for both short-
term and longer-term predictions of PM2.5 concentrations. 
It has the smoothest prediction and least erratic jump com-
pared to the other models in the future prediction. In terms 
of longer-term predictions, Random Forest and AdaBoost 
are the worst models as they exhibit high variability in future 
predictions.

CONCLUSION

The study proposed applications of machine learning tech-
niques such as Random Forest, Gradient Boosting, Ada-
Boost, Histogram-Based Gradient Boosting, and XGBoost 
in predicting PM2.5 concentrations in Indian urban cities. 
Spatiotemporal analysis integrated with advanced predic-
tive modeling to prove that machine learning does bear high 
potential in accurately forecasting air-quality trends which 
can lead toward more effective decision-making in environ-
mental management. Gradient Boosting had nearly balanced 

performance over folds, with R² values of 0.54 for training 
and 0.48 for test, and lower error metrics, such as RMSE: 
56.46, MAE: 39.60, MAPE: 0.50. Nevertheless, it has its lim-
itations, such as sensitivity to overfitting, the need for hy-
perparameter tuning, and slower training. XGBoost had bet-
ter fit during testing and more smooth, logically consistent 
predictions for future PM2.5 concentrations, which means 
better generalization for long-term forecasting. While Gra-
dient Boosting fairly balanced R² scores pointed to reduced 
overfitting, the XGBoost showed advantages in visualization 
results and thus long-term forecasting. The strengths of the 
model are in handling non-linear associations, resistance to 
anomalies and missing data, and its ability to pick out com-
plex interactions among features. However, despite such ad-
vantages, the model is demanding in terms of adjustment in 
avoiding overfitting and consumes more resources than sim-
pler models, which poses a problem in resource-constrained 
environments. It was noticed that the Random Forest model 
did well for the training data but failed to generalize properly 
for the test data, effectively communicating the issues with 
overfitting in complex environmental datasets. AdaBoost 
was very weak while Histogram-Based Gradient Boosting 
and XGBoost resulted in mediocre accuracy with good pre-
dictive consistency shown by the latter.
Its inclusion of meteorological data and the incorporation 
of temporal feature engineering-by increasing the models' 
capability to capture short-term fluctuations together with 
long-term pollution trends-allowed it to understand better 
the factors degrading air quality in Indian cities. During 
study, seasonal peaks in pollution were also emphasized, 
such as resulting from crop burning along with adverse me-
teorological conditions during winter months.
From a policy point of view, this work shows the potential for 
such machine learning to be an effective tool in managing air 
quality, providing reliable near-real-time forecasts, enabling 
policymakers to intervene proactively and reduce pub-
lic health risks and alleviate the impact of extreme events. 
Furthermore, it opens up possibilities where real-time air 
quality monitoring is to be integrated with machine learning 
models, thereby providing a dynamic and adaptive solution 
for dealing with air pollution in rapidly urbanizing regions.
Future research would focus on widening the scope of this 
study to more cities, with even finer granularities of data. The 
increasing use of more sophisticated machine learning tech-
niques, such as deep learning, or perhaps even hybrid mod-
els that combine the best features of several, could further 
improve predictive accuracy and robustness. These challeng-
es will be significant in the development of scalable, reliable, 
and actionable air quality prediction systems that can func-
tion across diverse urban environments in India and other 
geographies. In order to extend the applicability of the model 
beyond the Indian scenario, it is important to introduce ele-
ments that are specific to local sources of pollution, local en-
vironmental conditions, and regulatory structure. Retraining 
of the model with data from diverse urban locations across 
the world may further improve the generality of the model. 
More importantly, accurate feature engineering needs to be 
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ensured, especially when incorporating city-specific vari-
ables like industrial activities, transportation dynamics, and 
geographical characteristics.
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