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• This article presents an alternative perspective on functional regression analysis. 

• Findings are supported by the literature and offer practical suggestions for existing studies. 

• The advantages of using Bernstein polynomials in functional data analysis are thoroughly discussed. 

 

 

Article Info  Abstract 

Developments in functional data analysis have attracted considerable attention in recent literature. 

This study aims to provide general information about functional data analysis and demonstrate 

how it can be enriched with auxiliary tools. When the article is considered as a whole, the results 

predominantly pertain to functional linear models. The first section discusses the estimation of 

regression model parameters using the Least Squares method. It explains how the Least Squares 

method is applied within a functional framework and incorporates auxiliary calculations as part 

of the modeling process. At this stage, the Error Sum of Squares, which forms the basis of the 

Least Squares method, is represented as a vector field. The second section addresses the interim 

estimation problem. In this part, the Bernstein polynomial is combined with the wavelet transform 

to address the interim estimation challenge. The final section introduces various types of 

functional data analysis. Specifically, the Bernstein polynomial is used in estimating a functional 

linear model with functional coefficients. Employing the Bernstein polynomial as a model 

component in the linear model offers a simpler and more innovative approach compared to 

traditional functional linear model structures. The methods proposed in this study are generally 

practical and compatible with the classical framework of functional data analysis. 
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1. INTRODUCTION 

 

Although the origins of data science are difficult to trace precisely, the field is generally considered to have 

emerged in the early eighteenth century, particularly with the development of probability theory. Ronald 

Aymler Fisher (1890-1962) is one of the pioneers of statistical science in the modern sense. He broke many 

grounds, including descriptive statistics for data and the relationship between data sets [1]. However, at the 

time, statistical science primarily served as a supporting tool in fields such as genetics, biology, 

demography, and public health. Consequently, its development was largely driven by the need to 

understand data structures. After reaching a certain level of maturity, the focus shifted from population 

characteristics to data sources, and from data structure to event structure. From this point onward, data 

analysis evolved into a functional data structure. One of the simplest examples of this is time series data. 

For a long time, time series data were often interpreted as being lagged in itself. Analysts searched for 

recurring periods within the data, with the assumption that these periods would continually repeat. 

Meteorological data, in particular, serve as a prime example of this due to their inherently cyclical structure 

[2]. Later, as time series data analysis expanded beyond weather forecasting, many techniques employed 

in Fourier analysis were found to yield significant results in this context [2-5]. 

 

Indeed, in some cases, a dataset should not be regarded as independent from its data source. Here, when we 

refer to the data source, we do not only mean the audience. By audience, we traditionally mean the 

community in which the data is observed. In contrast, when we discuss the data source, we are referring to 

the origin from which the data emerges, shaped by the functional structure of the event. Naturally, not all 
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datasets are influenced by this distinction. The same conceptual difference applies to the definitions of 

random variables and stochastic variables. Although many researchers consider both terms to have the same 

meaning, a stochastic variable carries more meaning than a random variable. A stochastic variable 

participates in a sequence of events and characterizes their structure. In this sense, it defines a more specific 

subset within the concept of a random variable [6]. 

 

In this context, the interpolation problem is directly related to the functional data structure. There are many 

interpolation estimators in use today. Examining these estimators reveals an effort to create a functional 

form suitable for the data structure within a localized region. It is challenging to categorize these methods 

under a single framework. However, one prominent method in this regard is kernel estimation. This method 

is used to estimate the density function. Instead of performing traditional predictions using the data 

histogram, researchers can conduct a more refined analysis through kernel density estimation. Unlike the 

histogram, the kernel technique provides a smooth estimate of the density function [7]. Two key concepts 

govern kernel estimation: the kernel function and the smoothing parameter. In general, terms such as 

smoothing function, smoothing method, and smoothness are commonly used in this context. To clarify, a 

scatter plot is typically considered rough, whereas a polynomial curve is perceived as smooth. In this sense, 

a scatter plot or histogram of the data represents a rough graph, while the probability density function of a 

polynomial or continuous distribution representing the data presents a smooth graph. Naturally, a function 

with an analytical expression can effectively convey comprehensive information. A classic example is the 

sensitivity of the arithmetic mean to extreme outliers in the data. Rather than calculating the mean directly 

from the raw data, it is often more practical to compute it from the existing density function. 

 

As emphasized at the outset, the use of probability theory in data analysis has led to the development of 

numerous methods. There are many commonly used concepts in this field. For instance, when referring to 

the distribution of data, we often mean the percentiles of grouped data. The same applies to the density or 

distribution function. The distribution function expresses cumulative percentiles. If the distribution function 

has an analytical expression, the variable represents the numerical value of the data, while the function's 

output corresponds to the cumulative probability. In such cases, the inverse of the distribution function is 

effectively used as a data generator, 

 

𝑋 = 𝐹−1(𝑝), 0 ≤ 𝑝 ≤ 1. 
 

As you can see, the most basic functional data structure is a data generator. Similarly, let us imagine that 

we are trying to extract data from normal distributions. There are certainly many ways to generate data 

from a normal distribution today [8]. Simply way we can also follow the following method, 

 

𝑝 = 𝑒𝑥𝑝 {−
1

2
(
𝑋 − 𝜇

𝜎
)2} 

 

𝑋 = 𝜇 ± 𝜎√−2𝑙𝑛𝑝. 

 

As can be seen here, the data source can be easily expressed with the help of a parameter. Table 1 presents 

the means and variances obtained from datasets generated for different means and standard deviations. 

 

Table 1. Means for datasets generated from a normal distribution 

𝑛 𝜇 𝜎 𝑋̅ 𝑋̅(𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙) 

50 10 5 9.999 9.879 

50 10 10 9.999 9.597 

50 10 15 9.999 9.693 

 

The rightmost column of the table above is the average obtained from the polynomial approximation of the 

generated data. The materials in functional data analysis are representative even for small datasets that are 

randomly generated from normal distributions, as demonstrated by the straightforward example presented 

here. 
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The most fundamental principle in functional data analysis is to express the analytical structure of the data 

source using a functional form. The functional structure employed for the data source can adequately 

represent the data insofar as it aligns with the nature of the data source. A well-designed functional structure 

tailored to the data source undoubtedly ensures the accurate derivation of all statistics relevant to the 

research. However, not all variables and their corresponding data necessarily conform to the functional data 

structure. In reality, the functional structure of the data source may not always exist. Therefore, functional 

data analysis is applicable to specific data types. The independent variable space, as defined by the 

differential structure, naturally establishes the statistical model. Similarly, the differential characteristics 

provided by explanatory variables delineate the differential structure of the event. This study aims to 

examine several structures employed in functional data analysis. A historical review of the literature reveals 

that the most significant motivation during the formative phase of this theory was the advantages offered 

by basis functions within Hilbert space [9]. Notably, Ramsey, one of the pioneering researchers in this area, 

made significant contributions to this field. Commonly utilized basis functions in functional data analysis 

and functional linear models include trigonometric, exponential, and polynomial functions. Among these, 

Fourier-type bases—especially trigonometric and exponential—are particularly favored. In recent years, 

spline bases have also become increasingly popular, especially within the context of functional linear 

modeling. This study highlights the practical benefits of various auxiliary tools that can be interchangeably 

utilized in functional data analysis. 

 

2.MATERIAL-METHOD 

 

2.1. An Auxiliary Material in Functional Data Structure: Bernstein Polynomial 

 

There are multiple ways to build a functional framework for data. However, in this paper, we will only be 

interested in longitudinal data. The first explanatory variable of a longitudinal observed dataset is the time 

parameter. The source of the observed data is therefore a parametric function. In general, equally spaced 

observations are an important advantage for longitudinal data. Thus, a family of Berstein-type polynomials 

can be easily used to represent the data source. An n-th order Bernstein polynomial is defined as follows 

[9-10] 

 

𝐵𝑛(𝑡) = ∑ (
𝑛
𝑗 ) 𝑋𝑗𝑡𝑗(1 − 𝑡)𝑛−𝑗

𝑛

𝑗=0
,   0 ≤ 𝑡 ≤ 1.                                                                                                 (1) 

 

This polynomial has many important applications in the literature [11] used the polynomial for a growth 

curve model [12] used the approximation properties of the Bernstein polynomial to estimate the pause 

moments in a growth curve model. The approximation properties of the polynomial can be found mainly 

in [13]. 

 

Different types of polynomials can also be used, although in general a continuous data structure. Naturally, 

these polynomials can be compared in terms of fit. However, it is natural that the Bernstein polynomial is 

preferred in many places for ease of use. 

 

2.2. Differential Forms 

 

A continuous random variable has a continuous distribution function, even if not explicitly stated. This 

crucial property ensures that the distribution function can be derived as the integral of another function. At 

first glance, this might appear as an unnecessary detail. Indeed, by differentiating the distribution function, 

we obtain the density function, and conversely, by integrating the density function, we retrieve the 

distribution function. However, there is a significant paradox related to the normal distribution. If we only 

possess the density function without the distribution function, it may seem that the normal distribution lacks 

a distribution function altogether—let alone an absolutely continuous distribution function. However, this 

assertion is inaccurate. The fact that we cannot obtain the distribution function analytically does not imply 

its non-existence. Therefore, the probabilities associated with the normal distribution are calculated 

numerically by integrating the density function and then tabulated. In summary, we can state that the 

derivative of any known elementary function does not yield the density function of the normal distribution. 
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A similar non-solution is found in regression analysis. Even in a simple linear model, there are as many 

equations for two unknowns as there are data to solve. However, it is not possible to satisfy all of these 

equations with only two constants. Ideally, we assume that such an equation exists. We just have to capture 

this equation with a small error. The construction and solution of this problem are discussed in detail in 

[14]. 

 

In this case, suppose that our ideal model is as follows, 

 

𝑧 = 𝑓(𝑥1, ⋯ , 𝑥𝑝).                                                                                                                                                         (2) 

 

Here (𝑥1, ⋯ , 𝑥𝑝) a vector of our explanatory variables z is the response variable. Obtained from the 

response variable 

 

∇𝑧 = (
𝜕𝑧

𝜕𝑥1
, ⋯ ,

𝜕𝑧

𝜕𝑥𝑝
).                                                                                                                                                (3) 

 

The line integral of the vector field over the parametric vector of explanatory variables will give us the 

model equaiton we are looking for, 

 

𝑧 = ∮ ∇𝑧𝑑𝑟(𝑡)
𝑡

0

.                                                                                                                                                          (4) 

 

Here 𝑟(𝑡) has the following parametric form, 

 

𝑟(𝑡) = (𝑥1(𝑡), ⋯ , 𝑥𝑝(𝑡)).                                                                                                                                          (5) 

 

For example 𝑧 = 𝑐1𝑥1 + ⋯ + 𝑐𝑝𝑥𝑝 model. In this case ∇𝑧 = (𝑐1, ⋯ , 𝑐𝑝) and we can easily write the 

following equation 

 

𝑧 = ∮ (𝑐1, ⋯ , 𝑐𝑝)𝑑 (𝑥1(𝑡), ⋯ , 𝑥𝑝(𝑡))
𝑡

0
= 𝑐1𝑥1(𝑡) + ⋯ + 𝑐𝑝𝑥𝑝(𝑡). 

 

This equation gives us a parametric form of the linear regression model. The calculation of the coefficients 

can be done by the least squares method or by using the constants required by the differential structure. 

 

2.3. Estimation of Regression Parameters: Least Squares Method 

 

The least squares method (LSM), which is considered one of the most significant methods developed in the 

last century, is an optimization problem. Finding the regression parameters that minimize the loss function 

generated through the regression equation enables the construction of the estimation equation. Generally, 

the estimation of the utility model can serve several purposes. Two primary applications include: 

approximating a transcendental equation with a polynomial over a closed interval, and modeling a dataset 

with an uncertain transcendental structure using a linear model. The least squares method has been 

successfully applied to both problems. In general, the loss function for these two problems can be expressed 

as follows [14-17] 

𝑈 = ∫(𝑌 − 𝑃𝑛(𝑋))2𝑑𝑥

∞

−∞

.                                                                                                                                          (6) 

 

Regression coefficients are obtained from the solution of the system of equations (system of normal 

equations) formed by setting the first derivatives of the loss function concerning the regression coefficients 

equal to zero. 
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Illustrative Example 1: 𝑌 = 𝑒𝑥𝑝𝑥 function [2,3] in the range of the predictor 𝑃(𝑥) = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 

polynomial. For this, let us construct the loss function given by Equation (6) and its derivatives 

 

𝑈 = ∫(𝑒𝑥𝑝𝑥 − (𝑎 + 𝑏𝑥 + 𝑐𝑥2) )2𝑑𝑥

3

2

 

 

𝜕𝑈

𝜕𝑎
= ∫(𝑒𝑥𝑝𝑥 − 𝑎 − 𝑏𝑥 − 𝑐𝑥2)𝑑𝑥

3

2

= 0 

 

𝜕𝑈

𝜕𝑏
= ∫ 𝑥(𝑒𝑥𝑝𝑥 − 𝑎 − 𝑏𝑥 − 𝑐𝑥2)𝑑𝑥

3

2

= 0 

 

𝜕𝑈

𝜕𝑐
= ∫ 𝑥2(𝑒𝑥 − 𝑎 − 𝑏𝑥 − 𝑐𝑥2)𝑑𝑥

3

2

= 0. 

 

In this way, the normal equations can be obtained as follows, 

 

12.7 = 𝑎 + 2.5𝑏 + 6.33𝑐 

 

32.78 = 2.5𝑎 + 6.33𝑏 + 16.25𝑐 

 

85.65 = 6.33𝑎 + 16.25𝑏 + 42.2𝑐. 

 

From the solution of these equations 𝑎 = −19.04, 𝑏 = 12.535, 𝑐 = 0.064 coefficients are obtained.  

 

Table 2 below 𝑦̂ = −19.04 + 12.535𝑥 + 0.064𝑥2 prediction equation and the actual values. 

 

Table 2. Estimated and error values of the function 

𝑥 𝑦 𝑦̂ 𝐸𝑟𝑟𝑜𝑟 = 𝑦 − 𝑦̂ 

2 7.38 6.286 1.094 

2.1 8.16 7.565 0.595 

2.2 9.02 8.847 0.173 

2.3 9.97 10.129 -0.159 

2.4 11.02 11.412 -0.392 

2.5 12.18 12.69 -0.51 

2.6 13.46 13.983 -0.523 

2.7 14.87 15.271 -0.401 

2.8 16.44 16.559 -0.119 

2.9 18.17 17.849 0.321 

3 20.08 19.141 0.939 

 

The above example is quite classic for functional regression. It should be noted that the coefficients are 

directly dependent on the range of integration. If the model equation can be constructed, this model is quite 

open to be estimated with the help of a simpler model. In the classical linear model, the normal equations 

are obtained by sums instead of integrals. The classical regression equation is given by the following 

expected value 

 

𝑀𝑜𝑑𝑒𝑙 ∶= 𝐸(𝑌|𝑋 = 𝑥).                                                                                                                                              (7) 
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The above model has both a probabilistic and a functional structure. To understand these structures more 

easily, let us give two important properties of the expected value 

 

𝐸𝐸(𝑌|𝑋 = 𝑥) = 𝐸𝑌                                                                                                                                                     (8) 

 

𝐸(𝑋𝐸(𝑌|𝑋 = 𝑥)) = 𝐸𝑋𝑌.                                                                                                                                         (9) 

 

 Proof. (for Equation (9)) 

 

𝐸(𝑋𝐸(𝑌|𝑋 = 𝑥)) = ∬ 𝑥 𝐸(𝑌|𝑋 = 𝑥)𝑓(𝑥, 𝐸(𝑌|𝑋 = 𝑥))𝑑𝑥𝑑𝑡 

 

= ∬ 𝑥(∫ 𝑦𝑓(𝑦|𝑥)𝑑𝑦) 𝑓(𝑥, 𝐸(𝑌|𝑋 = 𝑥))𝑑𝑥𝑑𝑡 

 

= ∭ 𝑥𝑦
𝑓(𝑥, 𝑦)

𝑓(𝑥)
 𝑓(𝑥, 𝐸(𝑌|𝑋 = 𝑥))𝑑𝑥𝑑𝑦𝑑𝑡 

 

= ∬ 𝑥𝑦
𝑓(𝑥, 𝑦)

𝑓(𝑥)
 (∫ 𝑓(𝑥, 𝐸(𝑌|𝑋 = 𝑥))𝑑𝑡)𝑑𝑥𝑑𝑦 

 

= ∬ 𝑥𝑦
𝑓(𝑥, 𝑦)

𝑓(𝑥)
 𝑓(𝑥)𝑑𝑥𝑑𝑦 

 

= ∬ 𝑥𝑦𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 

 

= 𝐸𝑋𝑌   
 

Now assume that the model equation is simply linear. In this case, Equation (7) is as follows, 

 

𝐸(𝑌|𝑋 = 𝑥) = 𝑎 + 𝑏𝑋 

 

𝐸𝐸(𝑌|𝑋 = 𝑥) = 𝐸𝑌 = 𝑎 + 𝑏𝐸𝑋                                                                                                                            (10) 

 

𝐸(𝑋𝐸(𝑌|𝑋 = 𝑥)) = 𝐸𝑋𝑌 = 𝑎𝐸𝑋 + 𝑏𝐸𝑋2.                                                                                                         (11) 

 

The last two equations obtained are normal least squares equations. Indeed, considering the right-hand 

sides, we can easily write the following 

 

[
1 𝐸𝑋

𝐸𝑋 𝐸𝑋2] [
𝑎
𝑏

] = [
𝐸𝑌

𝐸𝑋𝑌
]. 

 

If both sides of the equation are multiplied by the number of observations, the normal least squares 

equations are obtained 

 

[
𝑛 ∑ 𝑋

∑ 𝑋 ∑ 𝑋2
] [

𝑎
𝑏

] = [
∑ 𝑌

∑ 𝑋𝑌
]. 

 

In normal equations, 𝐸(𝑌|𝑋 = 𝑥) the fact that it is obtained from the conditional expected value emphasizes 

the importance of using Kernel estimators in model estimation [18,19]. It is important to note that the 
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conditional expected value is a random variable. The functional structure of the conditional expected value 

corresponds to the functional structure of the regression source. 

 

2.4. Two Important Tools in the Forecasting Problem: Taylor Series and Bernstein Polynomial 

 

Why does the researcher seek to determine the equation representing the relationship between two 

correlated or regressive variables? The answer is straightforward: the values in the dataset are inherently 

related to one another. However, predicting a value for any explanatory variable not observed in the dataset 

can only be achieved by deriving the model equation. Therefore, the interpolation problem is a critical issue 

in regression analysis. Two key constraints arise when constructing the model equation: the first is 

"minimum error," and the second is "minimum variance." It is nearly impossible to satisfy both 

simultaneously. As such, we must determine which of these two constraints holds greater priority in our 

analysis. For interpolation to be meaningful, the first requirement is minimizing variance. While achieving 

minimum error is possible, we cannot guarantee that the error for intermediate values will remain minimal. 

Thus, minimizing variance should be our primary goal. This explains why linear models are so widely used 

in regression. 

 

Data with a functional source should follow an acceptable curve between two consecutive observation 

values. As a classic example 𝑡𝑖 instantly 𝑦𝑖 = 3 and 𝑡𝑖+1 instantly 𝑦𝑖+1 = 4. It is quite unreasonable for the 

intermediate value of functional data to be infinite. Therefore, it is quite common to use kernels such as B-

splines or Bernstein polynomials that provide smooth transitions when connecting two nodes, i.e.two 

consecutive data. Let us briefly emphasize here that the Word “smoothness” stands for what we are 

describing. 

 

As the degree of a polynomial increases, the variance in polynomial models also increases, making the error 

described above quite common. Polynomial models exhibit a phenomenon similar to inflation. These 

models minimize error and may initially appear visually appealing, but they tend to produce significant 

errors, particularly at intermediate values. To address this issue, one effective solution is the Taylor 

polynomial. To estimate any intermediate value using the Taylor polynomial, the polynomial should be 

expanded around a point close to this value. This approach reduces the estimation error. For any given  𝑐 ∈
𝑅 the Taylor polynomial in the vicinity of the point is defined as follows 

 

𝑓(𝑡) = 𝑓(𝑐) + 𝑓(1)(𝑐)(𝑡 − 𝑐) + 𝑓(2)(𝑐)
(𝑡 − 𝑐)2

2!
+ ⋯   .                                                                               (12) 

 

Here 𝑐 ∈ 𝑅 value of 𝑡 ∈ 𝑅 is important to minimize the error of the prediction. 

 

This polynomial is named Taylor’s not because of the construction of the polynomial, but because it can 

bound the error between the predicted value and the true value. This is because the construction of the 

polynomial is quite simple and anonymous.  In some studies, it is not enough to bind the error with the 

prediction value, but it is also necessary to bind the derivatives of the prediction operator. However, this is 

not possible for every estimation polynomial. In particular, Bernstein and Feller polynomials can easily 

provide this property [12-20]. Therefore, it is an important tool for finding intermediate values. Let us now 

note the following illustrative example of the Taylor polynomial. 

 

Illustrative Example 2: In the Table 3, 𝑦 = 𝑦(𝑥) Let’s examine the data with the functional structure 

(𝑦(𝑥) = 𝑥4 4⁄ + 𝑥3 3⁄ + 𝑥2 2⁄ ), 

 

Table 3. First derivative values obtained from the data 

𝑥 𝑦 𝑦(1), ℎ = 0.02 𝑦(1), ℎ = 0.04 𝑦(1), ℎ = 0.06 

1.8 6.1884    

1.82 6.408 10.98   

1.84 6.6348 11.34 11.16  

1.86 6.8669 11.605 11.4725 11.3083 
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1.88 7.105 11.905 11.755 11.6166 

1.9 7.349 12.2 12.0525 11.9033 

1.92 7.5998 12.54 12.37 12.215 

1.94 7.8567 12.845 12.6925 12.5283 

1.96 8.120 13.165 13.005 12.85 

1.98 8.390 13.5 13.3325 13.17 

2 8.666 13.8 13.65 13.4883 

 

  The second derivative values obtained from the dataset are presented in Table 4. 

 

Table 4. Second derivative values obtained from the data 

𝑥 𝑦 𝑦(2), ℎ = 0.02 𝑦(2), ℎ = 0.04 𝑦(2), ℎ = 0.06 

1.8 6.1884    

1.82 6.408    

1.84 6.6348 18   

1.86 6.8669 13.25   

1.88 7.105 15 14.875  

1.9 7.349 14.75 14.5  

1.92 7.5998 17 15.375  

1.94 7.8567 15.25 16 15.195 

1.96 8.120 16 15.875 15.7783 

1.98 8.390 16.75 16 15.9166 

2 8.666 15 16.125 16 

 

Using the first and second derivative values above 𝑦(𝑥) we can only do a trinomial Taylor expansion of 

the functional data. 𝑦(𝑥) of the data source 𝑥 = 2 the series expansion in the vicinity is as follows 

(for respectively ℎ = 0.02, 0.04, 0.06) 

 

𝑦(𝑥) ≈ 8.666 + 13.8(𝑥 − 2) + 15
(𝑥 − 2)2

2
                                                                                                     (13) 

 

𝑦(𝑥) ≈ 8.666 + 13.65(𝑥 − 2) + 16.125
(𝑥 − 2)2

2
                                                                                          (14) 

 

𝑦(𝑥) ≈ 8.666 + 13.4883(𝑥 − 2) + 16
(𝑥 − 2)2

2
.                                                                                             (15) 

 

Using the above equations 𝑥 = 1.98 forecasts are respectively 𝑦 = 8.393, 8.396, 8.399 is obtained as. Note 

that the shorter the step interval, the more accurate the predictions are. In Table 5, 𝑦(𝑥) observation and 

prediction values for the data source are shown. 
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Table 5. Error values obtained from the estimation polynomial (13) 

𝑥 𝑦 𝑦̂ 𝐸𝑟𝑟𝑜𝑟 = 𝑦 − 𝑦̂ 

1.8 6.1884 6.206 -0.0176 

1.82 6.408 6.425 -0.017 

1.84 6.6348 6.65 -0.0152 

1.86 6.8669 6.881 -0.0141 

1.88 7.105 7.118 -0.013 

1.9 7.349 7.361 -0.012 

1.92 7.5998 7.61 -0.0102 

1.94 7.8567 7.865 -0.0083 

1.96 8.120 8.126 -0.006 

1.98 8.390 8.393 -0.003 

2 8.666 8.666 0 

 

Errors in the table above 𝑥 = 2 tends to decrease as it approaches its value. Now, using the same data, let’s 

construct the square spline functions with the help of Bernstein polynomial as follows, 

 

𝑦(𝑥) = 6.1884(1 − 𝑥)2 + 2(6.408)𝑥(1 − 𝑥) + 6.6348𝑥2, 1.8 ≤ 𝑥 ≤ 1.84 

 

𝑦(𝑥) = 6.6348(1 − 𝑥)2 + 2(6.8669)𝑥(1 − 𝑥) + 7.105𝑥2, 1.84 ≤ 𝑥 ≤ 1.88 

 

𝑦(𝑥) = 7.105(1 − 𝑥)2 + 2(7.349)𝑥(1 − 𝑥) + 7.5998𝑥2, 1.88 ≤ 𝑥 ≤ 1.92 

 

𝑦(𝑥) = 7.5998(1 − 𝑥)2 + 2(7.8567)𝑥(1 − 𝑥) + 8.12𝑥2, 1.92 ≤ 𝑥 ≤ 1.96 

 

𝑦(𝑥) = 8.12(1 − 𝑥)2 + 2(8.39)𝑥(1 − 𝑥) + 8.666𝑥2, 1.96 ≤ 𝑥 ≤ 2. 

 

Table 6. Prediction values calculated using Spline polynomials 

𝑥 𝑦 𝑦̂ 𝐸𝑟𝑟𝑜𝑟 = 𝑦 − 𝑦̂ 

1.81 6.2978 6.2986 -0.0008 

1.82 6.408 6.4098 -0.8818 

1.83 6.521 6.5218 -0.0008 

1.85 6.7501 6.7512 -0.0011 

1.86 6.8669 6.8684 -0.0015 

1.87 6.9852 6.9863 -0.0011 

1.89 7.2264 7.2274 -0.001 

1.9 7.349 7.3507 -0.0017 

1.91 7.4738 7.4748 -0.001 

1.93 7.7275 7.7286 -0.0011 

1.94 7.8567 7.8583 -0.0016 

1.95 7.9876 7.9887 -0.0011 

1.97 8.2542 8.2553 -0.0011 

1.98 8.39 8.3915 -0.0015 

1.99 8.5275 8.5228 -0.0047 

 

 

It is evident from Table 6 above that the errors are close to zero when quadratic spline functions are used. 

As the quadratic spline functions obtained using Bernstein polynomials match the observed values at the 

extreme points, these estimated values are excluded from the table above. In general, the spline method 

yields more consistent estimates in interpolation. Naturally, like any method, it has both advantages and 

certain limitations. For this method to be effective, it is crucial that the data is appropriate for the method 

and that the intervals between data points are small. 
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2.5. Bernstein Window and Windowed Regression 

 

The interpolation problem is more practical than the regression equation. Linear models used to avoid the 

problem of high variance do not minimize the amount of error as much as desired. Instead, interpolation 

can provide a better fit and avoid the problem of high variance since it is not attributed to the whole data. 

However, in this case, we may need to transfer the interpolation problem from a single variable to more 

dimensions. In this case, we can develop a useful method called “windowed interpolation”. Let’s call the 

method “BW” for short since we will do this with Bernstein-type polynomials. The basic BW function will 

be defined as follows 

 

𝐵𝑊 = 𝑎(1 − 𝑡1)(1 − 𝑡2) + 𝑏(1 − 𝑡1)𝑡2 + 𝑐𝑡1(1 − 𝑡2) + 𝑑𝑡1𝑡2, 0 ≤ 𝑡1, 𝑡2 ≤ 1.                              (16) 

 

Here the coefficients are the observation values at the corner points of the window. Let’s take a look at the 

following short example to see how to apply this method in detail. 

 

Illustrative Example 3: Consider the following data 

 

The observation values obtained from the data source are listed in Table 7. 

 

Table 7. Observations from the source 

Sequence number: 𝑋1 𝑋2 𝑋3 Code 

1 1.25 1 1 (0,0) 

2 1.5 1 2 (0,1) 

3 4.75 2 3 (1,0) 

4 9.75 3 3 (1,1) 

5 17.25 4 5  

6 37.75 6 7  

 

An arbitrary intermediate value 𝑋2 = 2.5 and 𝑋3 = 2.5 as the first four values. Since these values are 

between the first four values for the four corners where we will create the window, the corners should be 

chosen as the first four values. In this case BW should be written as follows 

 

𝐵𝑊(1) = 1.25(1 − 𝑡1)(1 − 𝑡2) + 1.5(1 − 𝑡1)𝑡2 + 4.75𝑡1(1 − 𝑡2) + 9.75𝑡1𝑡2. 

 

The interpolation results for selected intermediate values using the BW(1) method are shown in Table 8. 

 

Table 8. BW(1) prediction values for some selected intermediate values 

𝑋2 𝑋3 𝑡1 𝑡2 𝑋1̂ 𝑋1 Error 

2.5 2.5 0.75 0.75 6.734 6.875 0.141 

1.6 2.8 0.3 0.9 3.807 3.26 -0.547 

1.06 2.64 0.03 0.82 1.6768 1.7836 0.1068 

1.24 2.1 0.12 0.55 2.121 2.062 -0.059 

 

Now let the intermediate values be chosen to be within the last four data. In this case the BW can be 

constructed as follows 

 

𝐵𝑊(2) = 4.75(1 − 𝑡1)(1 − 𝑡2) + 9.75(1 − 𝑡1)𝑡2 + 17.25𝑡1(1 − 𝑡2) + 37.75𝑡1𝑡2. 

 

The interpolation results for selected intermediate values using the BW(2) method are presented in Table 

9. 
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Table 9. BW(2) prediction values for some selected intermediate values 

𝑋2 𝑋3 𝑡1 𝑡2 𝑋1̂ 𝑋1 Error 

3.5 5.74 0.375 0.685 16.844 13.685 -3.159 

2.98 6.56 0.245 0.89 15.642 10.52 -5.121 

5.832 6.912 0.958 0.978 36.137 35.74 -0.396 

2.008 3.012 0.002 0.003 4.79 4.785 -0.0049 

 

It is possible to increase the intermediate values used in the tables above. When we pay attention to the 

interpolation estimates, the estimates have less error at the extremes. This is because the Bernstein 

polynomial gives more accurate estimates at the extremes. The EKK estimate of the functional data of 

interest in the example is obtained as follows 

 

𝑋1 = −10.189 + 7.006𝑋2 + 0.25𝑋3. 
 
The errors of some of the values obtained from this estimation equation are given in the Table 10. 

 

Table 10. EKK estimation values 

𝑋2 𝑋3 𝑋1̂ 𝑋1 Error 

2.5 2.5 7.951 6.875 -1.076 

1.6 2.8 1.72 3.26 1.54 

1.06 2.64 -2.533 1.7836 4.3166 

1.24 2.1 -1.25 2.062 3.312 

 

As can be seen from the table above, the errors of the EKK estimates are higher than the errors obtained 

from the BW(1) interpolation. The interval length chosen while applying the EKK also effects this result. 

The variance will increase as the interval length increases. When the interval length is narrowed, EKK is 

already reduced to solving the interpolation problem. In this case, the linear model has no meaning. 

 

2.6. Some Important Results of the Bernstein Polynomial 

 

The primary objective of regression analysis is to develop a model equation that most accurately represents 

the data source. As the number of variables increases, it becomes more challenging to achieve this across 

the entire dataset, or more precisely, across the defined ranges of the variables. In functional data analysis, 

the main objective is to represent the data source with minimal error. In this respect, it is also important to 

determine in which type of analysis the functional data will be applied. If our goal is to obtain the regression 

model, it is not sufficient to identify the data sources of the variables individually. It is also essential to 

determine the functional relationship between the response variable and the explanatory variables. Under 

these circumstances, it is natural to incorporate differential structures into the analysis. However, obtaining 

an unpredictable differential structure based on the data structure is challenging. In such cases, the data 

collection process should be well understood, and the differential structure between variables should align 

with the narrative of the data. Many interpolation methods can provide accurate predictions based on the 

data range. However, if the data gap is not sufficiently small, the derivative of the estimators may not align 

with the derivative of the data source. Naturally, there is no one-size-fits-all approach for the researcher to 

make the optimal choice in these cases. The use of Bernstein polynomials in interpolation estimation is 

advantageous because the mean of the estimator coincides with the mean of the variable. Let us now 

demonstrate how to average a Bernstein polynomial 

 

𝐸𝑋 = ∫ 𝐵𝑛𝑋(𝑡)𝑑𝑡

1

0

.                                                                                                                                                    (17) 
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Proof. 

 

∫ 𝐵𝑛𝑋(𝑡)𝑑𝑡

1

0

= ∫ ∑ 𝑋(𝑗 𝑛⁄ ) (
𝑛
𝑗 ) 𝑡𝑗(1 − 𝑡)𝑛−𝑗𝑑𝑡

𝑛

𝑗=0

1

0

 

 

= ∑ 𝑋(𝑗 𝑛⁄ ) (
𝑛
𝑗 )

𝑛

𝑗=0
∫ 𝑡𝑗(1 − 𝑡)𝑛−𝑗𝑑𝑡

1

0

 

 

= ∑ 𝑋(𝑗 𝑛⁄ ) (
𝑛
𝑗 )

𝑛

𝑗=0
𝐵(𝑗 + 1, 𝑛 − 𝑗 + 1) 

 

= ∑ 𝑋(𝑗 𝑛⁄ ) 𝑛⁄
𝑛

𝑗=0
 

 

=
1

𝑛
{𝑋(0) + ⋯ 𝑋(1)} 

 

= 𝐸𝑋 

 

Here 𝐵(𝑛, 𝑚) is denoted by the beta function. 

 

To make the above proof understandable, we can easily give the following example. A 𝑋 let the random 

variable take the values -2, -1, 1, 2 with equal probability. It is clear that the mean of the variable will be 

zero. Now let us take the integral of the polynomial representing this variable below, 

 

∫ 𝐵𝑛𝑋(𝑡)𝑑𝑡
1

0
= ∫ (−2(1 − 𝑡)3 − 3𝑡(1 − 𝑡)2 + 3𝑡2(1 − 𝑡) + 2𝑡3)𝑑𝑡

1

0
= 0. 

 

In such examples, it is important to pay attention to the number of repetitions of the values if the 

probabilities are not equal. This result allows us to calculate the other moments in this way. In this case, we 

can easily write the following equation for the variance, 

 

𝑉𝑎𝑟𝑋 = ∫ 𝐵𝑛
2𝑋𝑑𝑡

1

0

− 𝐸2𝑋.                                                                                                                                        (18) 

Proof. 

𝑉𝑎𝑟𝑋 = 𝐸(𝑋 − 𝐸𝑋)2 

 

= 𝐸(𝐵𝑛𝑋 − 𝐸𝑋)2 

= ∫{𝐵𝑛
2𝑋 − 2𝐵𝑛𝑋 + 𝐸2𝑋}𝑑𝑡

1

0

 

 

= ∫ 𝐵𝑛
2𝑋𝑑𝑡

1

0

− 𝐸2𝑋    

 

However, when calculating the moment of multiplication, the operation should be performed on the 

prediction polynomial of the new variable obtained from the product of the variables, not the product of the 

prediction polynomials 
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𝐸𝑋𝑌 = 𝐸𝐵𝑛(𝑋𝑌)(𝑡) = ∫ 𝐵𝑛(𝑋𝑌)(𝑡)𝑑𝑡

1

0

.                                                                                                             (19) 

 

The condition of independence here 𝐵𝑛(𝑋𝑌) = 𝐵𝑛𝑋𝐵𝑛𝑌 condition can be met. This condition can only be 

met by using probability values and not by multiplying polynomial terms. 

 

2.7. Regression of Bernstein Polynomials 

 

Using least squares regression of time-dependent functional structures instead of least squares regression 

using measured values of variables in longitudinal observations provides more statistical information to 

researchers. However, it should be noted that the functional structure of the variable should be estimated 

accurately. When all variables in the model are observed longitudinally, the response variable 𝑌(𝑡) and the 

explanatory variables 𝑋1(𝑡), ⋯ , 𝑋𝑝(𝑡)  have a functional structure. In this case, the linear model structure 

can be assumed to be as follows 

 

𝑌(𝑡) = 𝑎0 + 𝑎1𝑋1(𝑡) + ⋯ + 𝑎𝑝𝑋𝑝(𝑡) + 𝜀.                                                                                                          (20) 

 

Based on this model, EKK estimation of the model coefficients is equivalent to the procedure applied in 

multiple regression. The most important contribution of the model is that, unlike the multiple regression 

model, when any observation value is taken from outside the dataset, the corresponding value is used for 

estimation. 𝑡0 > 0 parameter can be estimated by finding the parameter. This contribution can provide more 

accurate answers to researchers when the data source is selected correctly. This is explained in the example 

in the BW model. The important point we would like to emphasize in this subsection is the case where the 

explanatory variables are chosen in an orthonormal way. When we pay attention to the matrix form of the 

EKK normal equations, the coefficients matrix of the parameter vector consists of the variances on the 

prime diagonal and the covariances of the explanatory variables on the diagonal. In the ideal case, when a 

standardization and steepening operation is performed on the explanatory variables, the coefficients matrix 

turns into a unit matrix. In this case, since there is an ineffective multiplication factor, the vector of 

coefficients is directly 𝑋𝑡𝑌 multiplier. In such a case, the regression constant directly depends on the mean 

of the responsive variable, and the other coefficients 〈𝑌, 𝑋𝑗〉 will be equal to its product 

 

𝑎0 = ∫ 𝑦(𝑡)𝑑𝑡

1

0

= 𝐸𝑦(𝑡)                                                                                                                                           (21) 

 

𝑎𝑗 = ∫ 𝑦(𝑡)𝑥𝑗(𝑡)𝑑𝑡

1

0

.                                                                                                                                                 (22) 

 

As we said at the beginning, this structure constitutes the basic logic of functional data analysis. What is 

difficult to recognize here is that once the functional forms of the explanatory variables have been 

determined, these variables must satisfy the following orthogonality condition 

 
〈𝑋𝑖, 𝑋𝑗〉 = 0 , 𝑖 ≠ 𝑗 .                                                                                                                                            (23) 

 

Different kernels are used when estimating the functional forms of explanatory variables. The popular one 

in the literature is the Fourier Kernel given below 

 

{𝑒𝑖𝑛𝑡: 𝑛 ≥ 0}.                                                                                                                                                               (24) 

 

However, in the case of a polynomial Kernel used in the B-Spline method, the condition that the two 

polynomials satisfy the orthogonality condition is not mentioned. Instead of this condition, the condition 
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that they are uncorrelated is preferred. As a result, both cases lead to the same door. While the orthogonality 

condition is given by (23), the uncorrelatedness condition is given by the following expression 

 

〈𝑋𝑖, 𝑋𝑗〉 = ∫ 𝑥𝑖(𝑡)𝑥𝑗(𝑡)𝑑𝑡

1

0

~𝐸𝑋𝑌 = 0.                                                                                                             (25) 

 

The equivalence in the above form is used because it corresponds to the numerical calculation of the 

integral. Spline methods are very similar to the Bernstein Kernel. The ease of use that the Bernstein Kernel 

offers to researchers in terms of ease of use can make the use of this polynomial widespread. The simplest 

definition of interval [0,1]  integrals are treated over this unit interval and division by the interval length is 

ineffective when calculating averages. 

 

2.8. Functional Linear Model and Different Types 

 

A linear model structure is briefly expressed by the following Equation [21] 

 

𝑌 = 𝑎0 + 〈𝑋, 𝐴〉 + 𝜀 .                                                                                                                                                 (26) 

 

Here 𝐴 denotes the vector of regression coefficients excluding the constant term. Here, the coefficients 

〈𝑋, 𝐴〉 the inner product can be expressed in Equation (27) in a suitably chosen functional space 

 

〈𝑋, 𝐴〉 = ∫ 𝑋(𝑡)𝐴(𝑡)𝑑𝑤(𝑡)

1

0

.                                                                                                                                    (27) 

 

Here 𝑤 is a real measure valid in the domain of definition. Due to this property, the model equation 

expressed Equation (26) can be conveniently written Equation (28) 

 

𝑌 = 𝑎0 + ∫ 𝑋(𝑡)𝐴(𝑡)𝑑𝑤(𝑡)

1

0

+ 𝜀 .                                                                                                                          (28) 

 

In the context of the generalized functional linear model proposed in this study, the model equation is 

defined as the conditional mean of the response variable [22] 

 

𝑌̂ = 𝐸{𝑌|𝑋(𝑡)} .                                                                                                                                                       (29) 

 

There are many later studies in the literature on how to choose the expressions in the integral in Equation 

(28) above. For example, B-spline bases are an important option adapted to this structure [22]. It is worth 

emphasizing that the Fourier basis is the most preferred choice in this type of study. Let us now assume 

that the basis system that best represents the explanatory variables in the set of definitions is the following 

 

{𝜙𝑗: 𝑗 ≥ 0}.                                                                                                                                                                  (30) 

 

In this case 𝑋(𝑡) and 𝐴(𝑡) functions can be written in terms of this base system 

 

𝑋(𝑡) = ∑ 𝑥𝑗
𝑗

𝜙𝑗 𝑎𝑛𝑑 𝐴(𝑡) = ∑ 𝑎𝑗
𝑗

𝜙𝑗.                                                                                                            (31) 

 

In this case, Equation (27) is reduced to the following form, 
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〈𝑋, 𝐴〉 = ∫ ∑ 𝑥𝑗
𝑗

𝜙𝑗(𝑡) ∑ 𝑎𝑖
𝑖

𝜙𝑖(𝑡)𝑑𝑡

1

0

 

 

= ∑ 𝑥𝑗
𝑗

∑ 𝑎𝑖
𝑖

∫ 𝜙𝑗(𝑡)𝜙𝑖(𝑡)𝑑𝑡

1

0

 

 

= ∑ 𝑥𝑗
𝑗

𝑎𝑗 . 

 

If this product is used in Equation (28), it takes the following form, 

 

𝑦𝑗 = 𝑎0 + 𝑥𝑗𝑎𝑗 + 𝜀𝑗  

 

𝑎𝑗 =
𝑦𝑗 − 𝑎0

𝑥𝑗
  , 𝑗 = 1, ⋯ , 𝑛. 

 

In short, the model equation takes the Equation (32) 

 

𝑦(𝑡) = 𝑎0 + 𝐴(𝑡)𝑥(𝑡) +  𝜀(𝑡).                                                                                                                               (32) 

 

In this model 𝑎0 + 𝜀(𝑡) = 𝑎(𝑡) to use the base system. In this case, however, the error term of the model 

will consist only of errors due to the fit of the chosen base system to the variable. It is also possible to write 

Equation (33) by assigning a functional structure to all these practically used loops [23].  

 

𝑦(𝑡) = 𝑎0 + ∫ 𝑋(𝑠)𝐴(𝑡, 𝑠)𝑑𝑤(𝑠)

1

0

+ 𝜀 .                                                                                                                (33) 

 

As a result, the development of functional linear models or functional regression structures in the literature 

has been driven by the development of software techniques and algorithms. In this context, the concept of 

appropriate basis, represented by (30), is of great importance. Basis functions are categorized into three 

main groups exponential, trigonometric, or polynomial, and different versions of these three main groups 

have emerged thanks to the possibility of calculating in infinitely small intervals provided by the form. In 

particular, while it was not possible to find polynomial bases, wavelet or window bases can now offer us 

this possibility.  

 

3. THE RESEARCH FINDINGS 

 

This study, which examines the use of functional structures mainly in regression models under the 

framework of linear models in general, has attempted to address much information in the literature at the 

same time in the findings and conclusion sections. Since the findings in the study are presented together 

with their equivalents in the literature, they are both supported by their equivalents in the literature and 

provide practical suggestions for the information in the literature. In particular, BW regression adapts 

window-based analyses to the regression framework, which is an important contribution to the 

improvement in both fit and prediction. At this stage, the findings and conclusions of the study need to be 

briefly discussed and explained. First, let us talk about the “mother wavelet” adaptations of the mother 

wavelet transform.  

 

3.1. Basic Base Function and Its Versions: Infinitesimal Intervals 

 

Without loss of generality 𝑡 ≥ 0 the function defining the unit interval on the axis can be given Equation 

(34) 
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𝜓(𝑡) = {
1 ∶   0 ≤ 𝑡 ≤ 1
0 ∶              𝑑. 𝑑.

   .                                                                                                                                      (34) 

 

This transform is called the mother wavelet. Graphically, it consists of a unit cube placed at the beginning 

of the axis. Instead of the expression “unit cube”, it could also be called “window into the region of interest” 

or “focused region of interest”. These expressions serve the purpose better. Therefore, all foreign sources 

use the term “window” as in the international scientific literature. Let us also visualize this moving along 

the axis. In this case, a wave moving from left to right along the axis gives the appearance of a “wave”. As 

a result, we should not forget that the still state is a window opened in space and the moving state is a wave. 

 

Now let’s narrow the window given by Equation (34) a bit, 

 

𝜓(𝑛𝑡) = {
1 ∶   0 ≤ 𝑛𝑡 ≤ 1
0 ∶              𝑑. 𝑑.

      

 

 = {
1 ∶   0 ≤ 𝑡 ≤ 1 𝑛⁄
0 ∶                  𝑑. 𝑑.

= 𝜙𝑛(𝑡).                                                                                     (35)                                          

     

 

Now let’s move the window given by Equation (34) a little bit, 

 

𝜓(𝑡 + 𝑎) = {
1 ∶   0 ≤ 𝑡 + 𝑎 ≤ 1
0 ∶                      𝑑. 𝑑.

 

 

= {
1 ∶  −𝑎 ≤ 𝑡 ≤ 𝑎
0 ∶                𝑑. 𝑑.

= 𝜙𝑎(𝑡).                                                                                                                                (36) 

 

Now let’s free the window given by Equation (34) from the center, 

 

𝜓𝑎𝑏(𝑡) = {
1 ∶   𝑎 ≤ 𝑡 ≤ 𝑏
0 ∶              𝑑. 𝑑.

 .                                                                                                                                   (37) 

 

Now let’s do all these things together 

 

𝜓𝑎𝑏𝑛(𝑡) = 𝜓 (
2𝑗(𝑡 − 𝑎)

𝑏 − 𝑎
− 𝑛).                                                                                                                             (38) 

 

Here [𝑎, 𝑏] of the range 2𝑗 is assumed to be divided into subintervals. 𝑛 = 0, ⋯ , 2𝑗 to be 𝜓𝑎𝑏𝑛(𝑡) of this 

range [𝑎 + 𝑛((𝑏 − 𝑎) 2𝑗⁄ , 𝑎 + (𝑛 + 1)((𝑏 − 𝑎) 2𝑗⁄ ] is in the lower interval. [𝑎, 𝑏] = [0,1] then Equation 

(38) becomes the following simplification, 

 

𝜓𝑛(𝑡) = 𝜓 (
𝑡 − 𝑛2−𝑗

2−𝑗
) .                                                                                                                                          (39) 

 

It is clear that both Equation (38) and (39) are orthagonal, 

 

∫ 𝜓𝑛(𝑡)𝜓𝑚(𝑡)

1

0

𝑑𝑡 = 0 , 𝑛 ≠ 𝑚. 

 

In addition, they are ensured to be unit-sized, that is, orthanormal, as follows, 

 

𝜓𝑎𝑏𝑛(𝑡) = √
2𝑗

𝑏 − 𝑎
 𝜓 (

2𝑗(𝑡 − 𝑎)

𝑏 − 𝑎
− 𝑛) 
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𝜓𝑛(𝑡) = √2𝑗  𝜓 (
𝑡 − 𝑛2−𝑗

2−𝑗
). 

 

If we pay attention to the form of the Bernstein polynomial, the kernels that make up the sum are basically 

of the following form 

 

𝑏𝑘(𝑡) = (
𝑛

𝑘
) 𝑡𝑘(1 − 𝑡)𝑛−𝑘 , 𝑘 = 0, ⋯ , 𝑛. 

 

It is not possible to write system orthagonally. However 𝑛 + 1 obtained from the data 𝐵𝑛𝑋(𝑡) functional 

structure and infinitesimal range 𝜓𝑘(𝑡), 𝑘 = 0, ⋯ , 2𝑗 the bases allow us to create the following functional 

form 

 

𝜉(𝑡) = ∑ 𝐵𝑛𝑋(𝑡)𝜓𝑘(𝑡)
2𝑗

𝑘=0
.                                                                                                                                   (40) 

 

Since this type of analysis is very convenient for researchers, it has been used in various fields in the 

literature [24-26]. The part that interests us is the detection of similarity between objects by the program, 

which is the basis of many learning algorithms. Most nonparametric methods treat similarity as a constant, 

but much recent work has shown the advantages of learning it, in particular exploiting local invariances in 

the data or capturing the partially nonlinear manifold on which most of the data lie  [26]. The secret lies in 

this last sentence of Vincent and Bengio. Given a linear prediction model, not all data are included in the 

linear regression. The closed model can be in linear form. However, it is important for the accuracy of the 

prediction to examine the non-linear structure in narrow regions. BW regression provides an important 

convenience in this idea. 

 

4. RESULTS AND DISCUSSION 

 

The first analysis that comes to mind when analyzing time-dependent data is naturally time series. However, 

this idea is fundamentally wrong. In time series analysis, the data must be periodic or have the ability to be 

periodic to be analyzed. Buys Ballot, the inventor of this work, used the following sentence in his memoirs: 

“Every numerical series must have a period. Only if the observation is long enough to catch this period.” 

[27]. If not? The sequential correlation model used as the basic understanding of time series remains a 

wrongly chosen model. In this case, functional data analysis can best analyze longitudinal data. The first 

applications of functional data analysis were already designed for time series data. Although Ramsay did 

not include such an understanding when he published his first major work on the subject, the application of 

the theory naturally shifted to this type of analysis [28]. Indeed, Ramsay is the most successful functional 

techniques researcher of the last century. The main objective of the FDA is to see the projection of the 

response variable onto the space of explanatory variables using the bases that best represent the data source. 

The resulting relationship is the functional equation of the regression. Therefore, the main direction of the 

FDA in the literature is functional linear modeling and estimation [29]. 

 

Approximately ninety relevant studies exist in the literature, with over three-quarters of them conducted 

after 2005. Overall, there are over seventy publications on base selection. A common view is that the B-

spline method is the most popular of the bases used. Indeed, if one looks at the form or the application 

package of the theory, the B-spline basis is at the forefront. However, functional principal component 

analysis and linear models are also included in the literature. 

 

Nearly half of the studies reviewed focus on applications in biostatistics, which justifies a dedicated 

discussion of this field. In particular, functional linear models have been employed in diffusion tensor 

imaging and fiber imaging, with an emphasis on basis function selection tailored to the data characteristics 

[30]. Functional principal component analysis (FPCA) and functional clustering techniques have been 

applied to gene expression and microarray data [31]. Locally weighted regression and functional clustering 
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were used to analyze the activity of posterior horn neurons in the spinal cord [32]. FPCA has also been used 

to study age-specific mortality [33], and a combination of functional principal components and splines has 

been applied to age-specific breast cancer mortality rates [34]. Furthermore, FDA methods have been 

effectively applied to a wide range of data types, including mortality, fertility, and migration rates; time-

dependent gene expression data; colon cancer incidence; speech variability in individuals with lisps; and 

emotional responses to music. Despite the breadth of FDA applications, studies employing Bernstein 

polynomials in functional regression analysis remain relatively limited. A notable example is a 2023 study 

[35], which introduced a new method for estimating shape-constrained functional regression coefficients 

based on the Bernstein polynomial approach. It is important to reiterate that the foundation of FDA lies in 

representing elements within a functional space using appropriate basis functions. Once the functional 

spaces of the explanatory and response variables are defined, the response variable is projected onto the 

space of explanatory variables through these basis functions—most commonly via the least squares method. 

In this context, the Bernstein positive operator serves as an effective auxiliary tool, owing to its structural 

properties, and forms the foundation of the methodological framework adopted in this study. 

 

Why Bernstein polynomial (Advisor’s comment)? Weierstrass’ brilliant proof is that “the space of 

continuous functions is a dense subspace of polynomials”. An extension of this proof is that we can 

represent every continuous function by a polynomial of unrestricted degree. For example, as mentioned at 

the beginning of the results section, the Taylor polynomial has this representation capability. However, 

what is important is the method Weierstrass used to make this proof and Bernstein polynomial, which is a 

natural output of this method. This reason alone is enough to answer the question. However, there is 

additional information. Bernstein polynomial is simply an operator that converts a function into a 

polynomial. From the point of view of probability, its structure is taken from the binomial distribution. It 

also represents the core part of the beta distribution. There is no need to talk at length here about the wide 

range of applications and properties of the beta distribution. When we add all these features together, the 

richness of the interpretation of an estimate using the Bernstein polynomial is also the richness of the 

interpretation obtained from the estimate. For example, when we look carefully at the model structure given 

by Equation (32) in the results section and before, we see that the ratio of the response variable to the 

explanatory variable has an index value. In a linear model structure, we expect this index value to be 

constant. In fact, in general, the group of constant index values in regression models are linear models. 

Otherwise, the linearity of the equation never requires that the data model be linear. But for some reason, 

this subtle point never gets noticed. Another similar example is that in a regression model, the error term is 

a random variable. Every researcher of all time says this. However, the error term is a secondary random 

variable. The primary random variable is the explanatory and response variable. In this case, one can argue 

that the error term is stochastic. The observation values of the error term can be calculated firstly after the 

data are collected and secondly, after the regression model is decided and established. This means that it is 

somewhat implausible to calculate the probability of an event occurring after the experiment has been 

conducted. Probability and randomness exist for experiments that are designed but not implemented. 

Naturally, the randomness of the error term is also highly controversial. This idea can easily be used as a 

secondary parameter in the calculation of the term excluding the explanatory variables of the regression 

model given by Equation (38) in the conclusion. This means replacing the constant term with the variable 

in the functional regression model. After the exit of the FDA, the understanding of the constant term in the 

linear model should be used as the term excluding the explanatory variable. Finally, I would like to close 

this commentary with a rather regrettable piece of literature. Some studies in the literature have attempted 

to deform the Kernel part of the Bernstein polynomial slightly to make it orthonormal [36]. I am sure that 

Sergey Natanovic Bernstein’s bones ache as the man who solved Hilbert’s ninth problem. The nature of 

some things must be preserved as it is. It never occurred to Bernstein to adapt the construction of a 

polynomial instead of the orthanormal basis of a functional space. It’s really funny. One should not overdo 

things for the sake of doing them. Let’s pay a little attention to the form below because of the nature of both 

constructions 

 

𝑥𝑘 = 𝑋(𝑘 𝑛⁄ ) = 〈𝑋(𝑡), 𝜓𝑘(𝑡) = 𝜓(
𝑡 − 𝑘 𝑛⁄

1 𝑛⁄
)〉. 
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The coefficients here are already obtained from the basis of the functional space and are used as multipliers 

of the kernels forming the polynomial. It is obvious that the polynomial cannot be written in the following 

from, 

𝐵𝑛𝑋 ≠ ∑ 〈𝑋(𝑡), 𝜓𝑘(𝑡)〉𝑏𝑘 .
𝑘

 

 

With Spline 𝑏𝑘 when we put the Kernels together, it is easily seen that it is already B-spline. This study is 

presented from a critical perspective, aiming to contribute new insights to the literature. One of the aspects 

that has not been sufficiently addressed is the use of functional basis components. It is deemed important 

to explore this area further and bring it to the attention of the academic community. In the context of 

functional data analysis, basis components play a crucial role in modeling the relationships among 

variables. Therefore, a comprehensive examination of this approach may offer significant contributions to 

the field. Let’s take a brief look: we define explanatory variables in general terms as “𝑋” and the response 

variable “𝑌” let’s denote it by. For these two to be regressive, we need 𝑋 = 𝑇𝜉𝑡 and 𝑌 = 𝑇𝜂𝑡 in the form 

of at least one common 𝑇 stakeholder. We aim 𝑋 → 𝑌 is to find the model 𝜉𝑡 → 𝜂𝑡 operation. To be able 

to capture this operation representation here is the job of the functional basis components. It is considered 

that the Bernstein operator could be a suitable method for achieving this representation. 
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