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Article Info Abstract

Developments in functional data analysis have attracted considerable attention in recent literature.
This study aims to provide general information about functional data analysis and demonstrate
how it can be enriched with auxiliary tools. When the article is considered as a whole, the results
predominantly pertain to functional linear models. The first section discusses the estimation of
regression model parameters using the Least Squares method. It explains how the Least Squares
method is applied within a functional framework and incorporates auxiliary calculations as part
of the modeling process. At this stage, the Error Sum of Squares, which forms the basis of the
Least Squares method, is represented as a vector field. The second section addresses the interim
estimation problem. In this part, the Bernstein polynomial is combined with the wavelet transform
to address the interim estimation challenge. The final section introduces various types of
functional data analysis. Specifically, the Bernstein polynomial is used in estimating a functional
linear model with functional coefficients. Employing the Bernstein polynomial as a model
component in the linear model offers a simpler and more innovative approach compared to
traditional functional linear model structures. The methods proposed in this study are generally
practical and compatible with the classical framework of functional data analysis.
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1. INTRODUCTION

Although the origins of data science are difficult to trace precisely, the field is generally considered to have
emerged in the early eighteenth century, particularly with the development of probability theory. Ronald
Aymler Fisher (1890-1962) is one of the pioneers of statistical science in the modern sense. He broke many
grounds, including descriptive statistics for data and the relationship between data sets [1]. However, at the
time, statistical science primarily served as a supporting tool in fields such as genetics, biology,
demography, and public health. Consequently, its development was largely driven by the need to
understand data structures. After reaching a certain level of maturity, the focus shifted from population
characteristics to data sources, and from data structure to event structure. From this point onward, data
analysis evolved into a functional data structure. One of the simplest examples of this is time series data.
For a long time, time series data were often interpreted as being lagged in itself. Analysts searched for
recurring periods within the data, with the assumption that these periods would continually repeat.
Meteorological data, in particular, serve as a prime example of this due to their inherently cyclical structure
[2]. Later, as time series data analysis expanded beyond weather forecasting, many techniques employed
in Fourier analysis were found to yield significant results in this context [2-5].

Indeed, in some cases, a dataset should not be regarded as independent from its data source. Here, when we
refer to the data source, we do not only mean the audience. By audience, we traditionally mean the
community in which the data is observed. In contrast, when we discuss the data source, we are referring to
the origin from which the data emerges, shaped by the functional structure of the event. Naturally, not all
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datasets are influenced by this distinction. The same conceptual difference applies to the definitions of
random variables and stochastic variables. Although many researchers consider both terms to have the same
meaning, a stochastic variable carries more meaning than a random variable. A stochastic variable
participates in a sequence of events and characterizes their structure. In this sense, it defines a more specific
subset within the concept of a random variable [6].

In this context, the interpolation problem is directly related to the functional data structure. There are many
interpolation estimators in use today. Examining these estimators reveals an effort to create a functional
form suitable for the data structure within a localized region. It is challenging to categorize these methods
under a single framework. However, one prominent method in this regard is kernel estimation. This method
is used to estimate the density function. Instead of performing traditional predictions using the data
histogram, researchers can conduct a more refined analysis through kernel density estimation. Unlike the
histogram, the kernel technique provides a smooth estimate of the density function [7]. Two key concepts
govern kernel estimation: the kernel function and the smoothing parameter. In general, terms such as
smoothing function, smoothing method, and smoothness are commonly used in this context. To clarify, a
scatter plot is typically considered rough, whereas a polynomial curve is perceived as smooth. In this sense,
a scatter plot or histogram of the data represents a rough graph, while the probability density function of a
polynomial or continuous distribution representing the data presents a smooth graph. Naturally, a function
with an analytical expression can effectively convey comprehensive information. A classic example is the
sensitivity of the arithmetic mean to extreme outliers in the data. Rather than calculating the mean directly
from the raw data, it is often more practical to compute it from the existing density function.

As emphasized at the outset, the use of probability theory in data analysis has led to the development of
numerous methods. There are many commonly used concepts in this field. For instance, when referring to
the distribution of data, we often mean the percentiles of grouped data. The same applies to the density or
distribution function. The distribution function expresses cumulative percentiles. If the distribution function
has an analytical expression, the variable represents the numerical value of the data, while the function's
output corresponds to the cumulative probability. In such cases, the inverse of the distribution function is
effectively used as a data generator,

X=F'p), O0<p<Ll
As you can see, the most basic functional data structure is a data generator. Similarly, let us imagine that

we are trying to extract data from normal distributions. There are certainly many ways to generate data
from a normal distribution today [8]. Simply way we can also follow the following method,

—ays

X=u+xo/-2lnp.

As can be seen here, the data source can be easily expressed with the help of a parameter. Table 1 presents
the means and variances obtained from datasets generated for different means and standard deviations.

Table 1. Means for datasets generated from a normal distribution

n u o X X(polynomial)
50 10 5 9.999 9.879
50 10 10 9.999 9.597
50 10 15 9.999 9.693

The rightmost column of the table above is the average obtained from the polynomial approximation of the
generated data. The materials in functional data analysis are representative even for small datasets that are
randomly generated from normal distributions, as demonstrated by the straightforward example presented
here.
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The most fundamental principle in functional data analysis is to express the analytical structure of the data
source using a functional form. The functional structure employed for the data source can adequately
represent the data insofar as it aligns with the nature of the data source. A well-designed functional structure
tailored to the data source undoubtedly ensures the accurate derivation of all statistics relevant to the
research. However, not all variables and their corresponding data necessarily conform to the functional data
structure. In reality, the functional structure of the data source may not always exist. Therefore, functional
data analysis is applicable to specific data types. The independent variable space, as defined by the
differential structure, naturally establishes the statistical model. Similarly, the differential characteristics
provided by explanatory variables delineate the differential structure of the event. This study aims to
examine several structures employed in functional data analysis. A historical review of the literature reveals
that the most significant motivation during the formative phase of this theory was the advantages offered
by basis functions within Hilbert space [9]. Notably, Ramsey, one of the pioneering researchers in this area,
made significant contributions to this field. Commonly utilized basis functions in functional data analysis
and functional linear models include trigonometric, exponential, and polynomial functions. Among these,
Fourier-type bases—especially trigonometric and exponential—are particularly favored. In recent years,
spline bases have also become increasingly popular, especially within the context of functional linear
modeling. This study highlights the practical benefits of various auxiliary tools that can be interchangeably
utilized in functional data analysis.

2.MATERIAL-METHOD
2.1. An Auxiliary Material in Functional Data Structure: Bernstein Polynomial

There are multiple ways to build a functional framework for data. However, in this paper, we will only be
interested in longitudinal data. The first explanatory variable of a longitudinal observed dataset is the time
parameter. The source of the observed data is therefore a parametric function. In general, equally spaced
observations are an important advantage for longitudinal data. Thus, a family of Berstein-type polynomials
can be easily used to represent the data source. An n-th order Bernstein polynomial is defined as follows
[9-10]

B.(t) = Zn (;-l)thj(l o, 0<t<1. )

j=0

This polynomial has many important applications in the literature [11] used the polynomial for a growth
curve model [12] used the approximation properties of the Bernstein polynomial to estimate the pause
moments in a growth curve model. The approximation properties of the polynomial can be found mainly
in [13].

Different types of polynomials can also be used, although in general a continuous data structure. Naturally,
these polynomials can be compared in terms of fit. However, it is natural that the Bernstein polynomial is
preferred in many places for ease of use.

2.2. Differential Forms

A continuous random variable has a continuous distribution function, even if not explicitly stated. This
crucial property ensures that the distribution function can be derived as the integral of another function. At
first glance, this might appear as an unnecessary detail. Indeed, by differentiating the distribution function,
we obtain the density function, and conversely, by integrating the density function, we retrieve the
distribution function. However, there is a significant paradox related to the normal distribution. If we only
possess the density function without the distribution function, it may seem that the normal distribution lacks
a distribution function altogether—Ilet alone an absolutely continuous distribution function. However, this
assertion is inaccurate. The fact that we cannot obtain the distribution function analytically does not imply
its non-existence. Therefore, the probabilities associated with the normal distribution are calculated
numerically by integrating the density function and then tabulated. In summary, we can state that the
derivative of any known elementary function does not yield the density function of the normal distribution.
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A similar non-solution is found in regression analysis. Even in a simple linear model, there are as many
equations for two unknowns as there are data to solve. However, it is not possible to satisfy all of these
equations with only two constants. Ideally, we assume that such an equation exists. We just have to capture
this equation with a small error. The construction and solution of this problem are discussed in detail in
[14].

In this case, suppose that our ideal model is as follows,
z= f(xy,,xp). (2)

Here (xl, ---,xp) a vector of our explanatory variables z is the response variable. Obtained from the
response variable

o 0z 0z 3
z= 0x," '0x,) ®

The line integral of the vector field over the parametric vector of explanatory variables will give us the
model equaiton we are looking for,

t

z= 55 Vzd7 (t). (4)
0

Here 7(t) has the following parametric form,

7(6) = (x0(), -+, 2, (0)). (%)

For example z = ¢;x; + -+ + ¢pxp model. In this case Vz = (cl, ---,cp) and we can easily write the
following equation

2= (cr,¢)d (21 (0,2, (8) = 121 () + -+ + (1),

This equation gives us a parametric form of the linear regression model. The calculation of the coefficients
can be done by the least squares method or by using the constants required by the differential structure.

2.3. Estimation of Regression Parameters: Least Squares Method

The least squares method (LSM), which is considered one of the most significant methods developed in the
last century, is an optimization problem. Finding the regression parameters that minimize the loss function
generated through the regression equation enables the construction of the estimation equation. Generally,
the estimation of the utility model can serve several purposes. Two primary applications include:
approximating a transcendental equation with a polynomial over a closed interval, and modeling a dataset
with an uncertain transcendental structure using a linear model. The least squares method has been
successfully applied to both problems. In general, the loss function for these two problems can be expressed
as follows [14-17]
[0¢]

U= f(y — P,(X))?dx. (6)

Regression coefficients are obtained from the solution of the system of equations (system of normal
equations) formed by setting the first derivatives of the loss function concerning the regression coefficients
equal to zero.
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Illustrative Example 1: Y = expx function [2,3] in the range of the predictor P(x) = a + bx + cx?
polynomial. For this, let us construct the loss function given by Equation (6) and its derivatives
3
U= f(expx — (a + bx + cx?) )?dx
2

3
ou 5
%zf(expx—a—bx—cx )dx =0
2

3

aU—f b dx =0

T x(expx —a — bx — cx*)dx =
2

ou :

. 200X _ g — by — cx2 _

PP fx (e a—bx —cx*)dx = 0.

2

In this way, the normal equations can be obtained as follows,
12.7 =a+ 2.5b + 6.33c
32.78 = 2.5a + 6.33b + 16.25¢
85.65 = 6.33a + 16.25b + 42.2c.
From the solution of these equations a = —19.04, b = 12.535, ¢ = 0.064 coefficients are obtained.
Table 2 below $ = —19.04 + 12.535x + 0.064x? prediction equation and the actual values.

Table 2. Estimated and error values of the function

x y Y Error=y—9
2 7.38 6.286 1.094
2.1 8.16 7.565 0.595
22 9.02 8.847 0.173
2.3 9.97 10.129 -0.159
24 11.02 11.412 -0.392
2.5 12.18 12.69 -0.51
2.6 13.46 13.983 -0.523
2.7 14.87 15.271 -0.401
2.8 16.44 16.559 -0.119
29 18.17 17.849 0.321
3 20.08 19.141 0.939

The above example is quite classic for functional regression. It should be noted that the coefficients are
directly dependent on the range of integration. If the model equation can be constructed, this model is quite
open to be estimated with the help of a simpler model. In the classical linear model, the normal equations
are obtained by sums instead of integrals. The classical regression equation is given by the following
expected value

Model := E(Y|X = x). @)
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The above model has both a probabilistic and a functional structure. To understand these structures more
easily, let us give two important properties of the expected value

EE(Y|X =x) = EY (8
E(XE(Y|X = x)) = EXY. 9

Proof. (for Equation (9))

E(XE(Y|X =x)) = H xEY|X = x)f(x, E(Y|X = x))dxdt

= ff x(f yf lx)dy) f(x, E(Y]X = x))dxdt

_ ff xyf](:(c;g) F(x, E(YIX = x))dxdydt

ko

f f( JI)

(f f(x, E(Y|X = x))dt)dxdy

f(x)dxdy

= f f xyf (x, y)dxdy

= EXY
Now assume that the model equation is simply linear. In this case, Equation (7) is as follows,
EY|X =x)=a+bX
EE(Y|X =x) =EY =a+ bEX (10)
E(XE(Y|X = x)) = EXY = aEX + bEX?. (11)

The last two equations obtained are normal least squares equations. Indeed, considering the right-hand
sides, we can easily write the following

EX EXZHb] [EXY

If both sides of the equation are multiplied by the number of observations, the normal least squares

equations are obtained
n z X z Y
Z X Z X2 z xy|

In normal equations, E (Y |X = x) the fact that it is obtained from the conditional expected value emphasizes
the importance of using Kernel estimators in model estimation [18,19]. It is important to note that the
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conditional expected value is a random variable. The functional structure of the conditional expected value
corresponds to the functional structure of the regression source.

2.4. Two Important Tools in the Forecasting Problem: Taylor Series and Bernstein Polynomial

Why does the researcher seek to determine the equation representing the relationship between two
correlated or regressive variables? The answer is straightforward: the values in the dataset are inherently
related to one another. However, predicting a value for any explanatory variable not observed in the dataset
can only be achieved by deriving the model equation. Therefore, the interpolation problem is a critical issue
in regression analysis. Two key constraints arise when constructing the model equation: the first is
"minimum error," and the second is "minimum variance." It is nearly impossible to satisfy both
simultaneously. As such, we must determine which of these two constraints holds greater priority in our
analysis. For interpolation to be meaningful, the first requirement is minimizing variance. While achieving
minimum error is possible, we cannot guarantee that the error for intermediate values will remain minimal.
Thus, minimizing variance should be our primary goal. This explains why linear models are so widely used
in regression.

Data with a functional source should follow an acceptable curve between two consecutive observation
values. As a classic example t; instantly y; = 3 and ¢, instantly y;,; = 4. It is quite unreasonable for the
intermediate value of functional data to be infinite. Therefore, it is quite common to use kernels such as B-
splines or Bernstein polynomials that provide smooth transitions when connecting two nodes, i.e.two
consecutive data. Let us briefly emphasize here that the Word “smoothness” stands for what we are
describing.

As the degree of a polynomial increases, the variance in polynomial models also increases, making the error
described above quite common. Polynomial models exhibit a phenomenon similar to inflation. These
models minimize error and may initially appear visually appealing, but they tend to produce significant
errors, particularly at intermediate values. To address this issue, one effective solution is the Taylor
polynomial. To estimate any intermediate value using the Taylor polynomial, the polynomial should be
expanded around a point close to this value. This approach reduces the estimation error. For any given ¢ €
R the Taylor polynomial in the vicinity of the point is defined as follows

FO = @+ FOOE -0 + P L (12)

Here ¢ € R value of t € R is important to minimize the error of the prediction.

This polynomial is named Taylor’s not because of the construction of the polynomial, but because it can
bound the error between the predicted value and the true value. This is because the construction of the
polynomial is quite simple and anonymous. In some studies, it is not enough to bind the error with the
prediction value, but it is also necessary to bind the derivatives of the prediction operator. However, this is
not possible for every estimation polynomial. In particular, Bernstein and Feller polynomials can easily
provide this property [12-20]. Therefore, it is an important tool for finding intermediate values. Let us now
note the following illustrative example of the Taylor polynomial.

Ilustrative Example 2: In the Table 3, y = y(x) Let’s examine the data with the functional structure
y(x) =x*/4 +x3/3 + x%/2),

Table 3. First derivative values obtained from the data

x y y®,h = 0.02 y®, h = 0.04 y® h =10.06
1.8 6.1884
1.82 6.408 10.98
1.84 6.6348 11.34 11.16

1.86 6.8669 11.605 11.4725 11.3083
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1.88 7.105 11.905 11.755 11.6166
1.9 7.349 12.2 12.0525 11.9033
1.92 7.5998 12.54 12.37 12.215
1.94 7.8567 12.845 12.6925 12.5283
1.96 8.120 13.165 13.005 12.85
1.98 8.390 13.5 13.3325 13.17
2 8.666 13.8 13.65 13.4883
The second derivative values obtained from the dataset are presented in Table 4.
Table 4. Second derivative values obtained from the data
x y y@® h=0.02 y@® h = 0.04 y®@,h =0.06
1.8 6.1884
1.82 6.408
1.84 6.6348 18
1.86 6.8669 13.25
1.88 7.105 15 14.875
1.9 7.349 14.75 14.5
1.92 7.5998 17 15.375
1.94 7.8567 15.25 16 15.195
1.96 8.120 16 15.875 15.7783
1.98 8.390 16.75 16 15.9166
2 8.666 15 16.125 16

Using the first and second derivative values above y(x) we can only do a trinomial Taylor expansion of
the functional data. y(x) of the data source x = 2 the series expansion in the vicinity is as follows

(for respectively h = 0.02,0.04,0.06)

y(x) = 8.666 + 13.8(x — 2) + 15

y(x) = 8.666 + 13.65(x — 2) + 16.125

y(x) ~ 8.666 + 13.4883(x — 2) + 16

(x - 2)?

2

(x - 2)?

(13)

(14)

(15)

Using the above equations x = 1.98 forecasts are respectively y = 8.393,8.396, 8.399 is obtained as. Note
that the shorter the step interval, the more accurate the predictions are. In Table 5, y(x) observation and
prediction values for the data source are shown.
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Table 5. Error values obtained from the estimation polynomial (13)

X y hY Error=y—9
1.8 6.1884 6.206 -0.0176
1.82 6.408 6.425 -0.017
1.84 6.6348 6.65 -0.0152
1.86 6.8669 6.881 -0.0141
1.88 7.105 7.118 -0.013
1.9 7.349 7.361 -0.012
1.92 7.5998 7.61 -0.0102
1.94 7.8567 7.865 -0.0083
1.96 8.120 8.126 -0.006
1.98 8.390 8.393 -0.003

2 8.666 8.666 0

Errors in the table above x = 2 tends to decrease as it approaches its value. Now, using the same data, let’s
construct the square spline functions with the help of Bernstein polynomial as follows,

y(x) = 6.1884(1 — x)? + 2(6.408)x(1 — x) + 6.6348x2, 1.8<x <184

y(x) = 6.6348(1 — x)? + 2(6.8669)x(1 — x) + 7.105x2, 1.84 <x <188

y(x) = 7.105(1 — x)? + 2(7.349)x(1 — x) + 7.5998x%,  1.88 < x < 1.92

y(x) = 7.5998(1 — x)? + 2(7.8567)x(1 — x) + 8.12x%, 192 <x <1.96
y(x) =8.12(1 — x)? + 2(8.39)x(1 — x) + 8.666x2, 1.96 < x < 2.

Table 6. Prediction values calculated using Spline polynomials

x y ¥ Error=y—9
1.81 6.2978 6.2986 -0.0008
1.82 6.408 6.4098 -0.8818
1.83 6.521 6.5218 -0.0008
1.85 6.7501 6.7512 -0.0011
1.86 6.8669 6.8684 -0.0015
1.87 6.9852 6.9863 -0.0011
1.89 7.2264 7.2274 -0.001
1.9 7.349 7.3507 -0.0017
1.91 7.4738 7.4748 -0.001
1.93 7.7275 7.7286 -0.0011
1.94 7.8567 7.8583 -0.0016
1.95 7.9876 7.9887 -0.0011
1.97 8.2542 8.2553 -0.0011
1.98 8.39 8.3915 -0.0015
1.99 8.5275 8.5228 -0.0047

It is evident from Table 6 above that the errors are close to zero when quadratic spline functions are used.
As the quadratic spline functions obtained using Bernstein polynomials match the observed values at the
extreme points, these estimated values are excluded from the table above. In general, the spline method
yields more consistent estimates in interpolation. Naturally, like any method, it has both advantages and
certain limitations. For this method to be effective, it is crucial that the data is appropriate for the method
and that the intervals between data points are small.
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2.5. Bernstein Window and Windowed Regression

The interpolation problem is more practical than the regression equation. Linear models used to avoid the
problem of high variance do not minimize the amount of error as much as desired. Instead, interpolation
can provide a better fit and avoid the problem of high variance since it is not attributed to the whole data.
However, in this case, we may need to transfer the interpolation problem from a single variable to more
dimensions. In this case, we can develop a useful method called “windowed interpolation”. Let’s call the
method “BW?” for short since we will do this with Bernstein-type polynomials. The basic BW function will
be defined as follows

BW == a(l_tl)(l_t2)+b(1_t1)t2 +Ct1(1_t2) +dt1t2, 0 S tl,tz S 1 (16)

Here the coefficients are the observation values at the corner points of the window. Let’s take a look at the
following short example to see how to apply this method in detail.

Ilustrative Example 3: Consider the following data
The observation values obtained from the data source are listed in Table 7.

Table 7. Observations from the source

Sequence number: X, X, X5 Code
1 1.25 1 1 (0,0)
2 1.5 1 2 (0,1)
3 4.75 2 3 (1,0)
4 9.75 3 3 (1,1)
5 17.25 4 5
6 37.75 6 7

An arbitrary intermediate value X, = 2.5 and X3 = 2.5 as the first four values. Since these values are
between the first four values for the four corners where we will create the window, the corners should be
chosen as the first four values. In this case BW should be written as follows

BW(1) =1.25(1 —t;)(1 —t,) + 1.5(1 — t;)t, + 4.75t, (1 — t5) + 9.75¢t4 ¢t,.

The interpolation results for selected intermediate values using the BW(1) method are shown in Table 8.

Table 8. BW(1) prediction values for some selected intermediate values

X, X3 t t, X, X, Error

2.5 2.5 0.75 0.75 6.734 6.875 0.141
1.6 2.8 0.3 0.9 3.807 3.26 -0.547
1.06 2.64 0.03 0.82 1.6768 1.7836 0.1068
1.24 2.1 0.12 0.55 2.121 2.062 -0.059

Now let the intermediate values be chosen to be within the last four data. In this case the BW can be
constructed as follows

BW(2) =4.75(1 — t;)(1 — t;) + 9.75(1 — t))t, + 17.25¢, (1 — t,) + 37.75¢t4 t,.

The interpolation results for selected intermediate values using the BW(2) method are presented in Table
9.
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Table 9. BW(2) prediction values for some selected intermediate values

X, X3 t t, X, X, Error

3.5 5.74 0.375 0.685 16.844 13.685 -3.159
2.98 6.56 0.245 0.89 15.642 10.52 -5.121
5.832 6.912 0.958 0.978 36.137 35.74 -0.396
2.008 3.012 0.002 0.003 4.79 4.785 -0.0049

It is possible to increase the intermediate values used in the tables above. When we pay attention to the
interpolation estimates, the estimates have less error at the extremes. This is because the Bernstein
polynomial gives more accurate estimates at the extremes. The EKK estimate of the functional data of
interest in the example is obtained as follows

X1 =-10.189 + 7.006X, + 0.25X3.
The errors of some of the values obtained from this estimation equation are given in the Table 10.

Table 10. EKK estimation values

X2 X3 X; X, Error

2.5 2.5 7.951 6.875 -1.076
1.6 2.8 1.72 3.26 1.54

1.06 2.64 -2.533 1.7836 43166
1.24 2.1 -1.25 2.062 3312

As can be seen from the table above, the errors of the EKK estimates are higher than the errors obtained
from the BW(1) interpolation. The interval length chosen while applying the EKK also effects this result.
The variance will increase as the interval length increases. When the interval length is narrowed, EKK is
already reduced to solving the interpolation problem. In this case, the linear model has no meaning.

2.6. Some Important Results of the Bernstein Polynomial

The primary objective of regression analysis is to develop a model equation that most accurately represents
the data source. As the number of variables increases, it becomes more challenging to achieve this across
the entire dataset, or more precisely, across the defined ranges of the variables. In functional data analysis,
the main objective is to represent the data source with minimal error. In this respect, it is also important to
determine in which type of analysis the functional data will be applied. If our goal is to obtain the regression
model, it is not sufficient to identify the data sources of the variables individually. It is also essential to
determine the functional relationship between the response variable and the explanatory variables. Under
these circumstances, it is natural to incorporate differential structures into the analysis. However, obtaining
an unpredictable differential structure based on the data structure is challenging. In such cases, the data
collection process should be well understood, and the differential structure between variables should align
with the narrative of the data. Many interpolation methods can provide accurate predictions based on the
data range. However, if the data gap is not sufficiently small, the derivative of the estimators may not align
with the derivative of the data source. Naturally, there is no one-size-fits-all approach for the researcher to
make the optimal choice in these cases. The use of Bernstein polynomials in interpolation estimation is
advantageous because the mean of the estimator coincides with the mean of the variable. Let us now
demonstrate how to average a Bernstein polynomial

1
EX = f B, X(t)dt. 17)
0
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Proof.

1 1
anX(t)dt = fzn X(@/n) (;l) t/(1—-t)"Jdt
0 0 J=0

1
n

- X(j/n) (;l) f (1 - )" Ide

o
J 0

= zn X(j/m) (?)B(/ +1n—j+1)

j=0

=" xG/my/n

j=0
1
= ~(X(0) + - X(1)}
=EX

Here B(n, m) is denoted by the beta function.

To make the above proof understandable, we can easily give the following example. A X let the random
variable take the values -2, -1, 1, 2 with equal probability. It is clear that the mean of the variable will be
zero. Now let us take the integral of the polynomial representing this variable below,

[} BoX(®)dt = [[(=2(1 = £)* = 3t(1 — £)? + 3t2(1 — t) + 2t3)dt = 0.

In such examples, it is important to pay attention to the number of repetitions of the values if the
probabilities are not equal. This result allows us to calculate the other moments in this way. In this case, we
can easily write the following equation for the variance,

1
VarX = f B2Xdt — E%X. (18)

0
Proof.
VarX = E(X — EX)?

= E(B,X — EX)?

1
= f {B2X — 2B, X + E2X}dt
0

1
= fB,%th — E2X
0

However, when calculating the moment of multiplication, the operation should be performed on the
prediction polynomial of the new variable obtained from the product of the variables, not the product of the
prediction polynomials
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1

EXY = EB,(XY)(t) = f B,(XY)(t)dt. (19)
0

The condition of independence here B, (XY) = B, XB,Y condition can be met. This condition can only be
met by using probability values and not by multiplying polynomial terms.

2.7. Regression of Bernstein Polynomials

Using least squares regression of time-dependent functional structures instead of least squares regression
using measured values of variables in longitudinal observations provides more statistical information to
researchers. However, it should be noted that the functional structure of the variable should be estimated
accurately. When all variables in the model are observed longitudinally, the response variable Y (t) and the
explanatory variables X; (t), -+, X, (t) have a functional structure. In this case, the linear model structure
can be assumed to be as follows

Y(t) = ap + a1 X1 () + -+ apX,(t) + & (20)

Based on this model, EKK estimation of the model coefficients is equivalent to the procedure applied in
multiple regression. The most important contribution of the model is that, unlike the multiple regression
model, when any observation value is taken from outside the dataset, the corresponding value is used for
estimation. t, > 0 parameter can be estimated by finding the parameter. This contribution can provide more
accurate answers to researchers when the data source is selected correctly. This is explained in the example
in the BW model. The important point we would like to emphasize in this subsection is the case where the
explanatory variables are chosen in an orthonormal way. When we pay attention to the matrix form of the
EKK normal equations, the coefficients matrix of the parameter vector consists of the variances on the
prime diagonal and the covariances of the explanatory variables on the diagonal. In the ideal case, when a
standardization and steepening operation is performed on the explanatory variables, the coefficients matrix
turns into a unit matrix. In this case, since there is an ineffective multiplication factor, the vector of
coefficients is directly XY multiplier. In such a case, the regression constant directly depends on the mean
of the responsive variable, and the other coefficients (Y, X;) will be equal to its product

1

@ = [ y©dt = By© @1)
0

1

a; = fy(t)xj(t)dt. (22)

0

As we said at the beginning, this structure constitutes the basic logic of functional data analysis. What is
difficult to recognize here is that once the functional forms of the explanatory variables have been
determined, these variables must satisfy the following orthogonality condition

Different kernels are used when estimating the functional forms of explanatory variables. The popular one
in the literature is the Fourier Kernel given below

{e™:n > 0}. (24)

However, in the case of a polynomial Kernel used in the B-Spline method, the condition that the two
polynomials satisfy the orthogonality condition is not mentioned. Instead of this condition, the condition
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that they are uncorrelated is preferred. As a result, both cases lead to the same door. While the orthogonality
condition is given by (23), the uncorrelatedness condition is given by the following expression

1
(XL,X]) = fxl(t)xj(t)dt ~EXY = 0. (25)
0

The equivalence in the above form is used because it corresponds to the numerical calculation of the
integral. Spline methods are very similar to the Bernstein Kernel. The ease of use that the Bernstein Kernel
offers to researchers in terms of ease of use can make the use of this polynomial widespread. The simplest
definition of interval [0,1] integrals are treated over this unit interval and division by the interval length is
ineffective when calculating averages.

2.8. Functional Linear Model and Different Types

A linear model structure is briefly expressed by the following Equation [21]
Y=ap+(X,A)+¢. (26)

Here A denotes the vector of regression coefficients excluding the constant term. Here, the coefficients
(X, A) the inner product can be expressed in Equation (27) in a suitably chosen functional space

1

(X,A) = fX(t)A(t)dW(t). 27)

0

Here w is a real measure valid in the domain of definition. Due to this property, the model equation
expressed Equation (26) can be conveniently written Equation (28)

1
Y=ay+ -[X(t)A(t)dw(t) +e. (28)
0

In the context of the generalized functional linear model proposed in this study, the model equation is
defined as the conditional mean of the response variable [22]

Y = E{Y|X(t)}. (29)
There are many later studies in the literature on how to choose the expressions in the integral in Equation
(28) above. For example, B-spline bases are an important option adapted to this structure [22]. It is worth

emphasizing that the Fourier basis is the most preferred choice in this type of study. Let us now assume
that the basis system that best represents the explanatory variables in the set of definitions is the following

{¢;:j =0} (30)

In this case X (t) and A(t) functions can be written in terms of this base system
j j

In this case, Equation (27) is reduced to the following form,
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1
(X,4) = fzjxj ¢j(t)ziai ¢i(H)dt
0

1
PN e
0
-3 5o,

If this product is used in Equation (28), it takes the following form,
Yj = ap + xja; + &

Vi — Qo
a=~"——,
Xj

j=1,,n

In short, the model equation takes the Equation (32)

y(t) = ay + A(t)x(t) + &(t). (32)

In this model a, + £(t) = a(t) to use the base system. In this case, however, the error term of the model
will consist only of errors due to the fit of the chosen base system to the variable. It is also possible to write
Equation (33) by assigning a functional structure to all these practically used loops [23].

1

y(t) =ay+ fX(s)A(t, s)dw(s) + €. (33)
0

As aresult, the development of functional linear models or functional regression structures in the literature
has been driven by the development of software techniques and algorithms. In this context, the concept of
appropriate basis, represented by (30), is of great importance. Basis functions are categorized into three
main groups exponential, trigonometric, or polynomial, and different versions of these three main groups
have emerged thanks to the possibility of calculating in infinitely small intervals provided by the form. In
particular, while it was not possible to find polynomial bases, wavelet or window bases can now offer us
this possibility.

3. THE RESEARCH FINDINGS

This study, which examines the use of functional structures mainly in regression models under the
framework of linear models in general, has attempted to address much information in the literature at the
same time in the findings and conclusion sections. Since the findings in the study are presented together
with their equivalents in the literature, they are both supported by their equivalents in the literature and
provide practical suggestions for the information in the literature. In particular, BW regression adapts
window-based analyses to the regression framework, which is an important contribution to the
improvement in both fit and prediction. At this stage, the findings and conclusions of the study need to be
briefly discussed and explained. First, let us talk about the “mother wavelet” adaptations of the mother
wavelet transform.

3.1. Basic Base Function and Its Versions: Infinitesimal Intervals

Without loss of generality t = 0 the function defining the unit interval on the axis can be given Equation
(34)
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0<t<1

vo={; "= 5. (34)

This transform is called the mother wavelet. Graphically, it consists of a unit cube placed at the beginning
of the axis. Instead of the expression “unit cube”, it could also be called “window into the region of interest”
or “focused region of interest”. These expressions serve the purpose better. Therefore, all foreign sources
use the term “window” as in the international scientific literature. Let us also visualize this moving along
the axis. In this case, a wave moving from left to right along the axis gives the appearance of a “wave”. As
aresult, we should not forget that the still state is a window opened in space and the moving state is a wave.

Now let’s narrow the window given by Equation (34) a bit,

1:0<nt<1
lp(nt)z{o: i

_(1:0<t<1/n_
{0 : d.d. = P )

Now let’s move the window given by Equation (34) a little bit,

1: 0<t+a<1
‘/’(Ha):{o: d.d.

_(1: —a<t<a_ ,q
={o : A (36)

Now let’s free the window given by Equation (34) from the center,

Y@ ={3  PSE=0 (37

Now let’s do all these things together

Zf(t—a)_n>

Yapn(t) = 710( bh—a (38)

Here [a, b] of the range 2/ is assumed to be divided into subintervals. n = 0, -+, 2/ to be W 4p, (t) of this
range [a + n((b — a)/2’,a + (n + 1)((b — @)/2/] is in the lower interval. [a, b] = [0,1] then Equation
(38) becomes the following simplification,

t—n27/
Yn() =9 <T> : (39)

It is clear that both Equation (38) and (39) are orthagonal,

1
fw,bn(t)v,bm(t) dt =0, n # m.
0

In addition, they are ensured to be unit-sized, that is, orthanormal, as follows,

,21' 2/(t —a)
lpabn(t)z b—al/)< h—a —Tl)
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—_n2-J
Pu() = V2 (%)

If we pay attention to the form of the Bernstein polynomial, the kernels that make up the sum are basically
of the following form

by () = (Z) (1 ="k k=0,-,n.

It is not possible to write system orthagonally. However n + 1 obtained from the data B, X(t) functional
structure and infinitesimal range ¥ (t), k = 0, -+, 2/ the bases allow us to create the following functional
form

2J

€0 =) BXOW. (40)

Since this type of analysis is very convenient for researchers, it has been used in various fields in the
literature [24-26]. The part that interests us is the detection of similarity between objects by the program,
which is the basis of many learning algorithms. Most nonparametric methods treat similarity as a constant,
but much recent work has shown the advantages of learning it, in particular exploiting local invariances in
the data or capturing the partially nonlinear manifold on which most of the data lie [26]. The secret lies in
this last sentence of Vincent and Bengio. Given a linear prediction model, not all data are included in the
linear regression. The closed model can be in linear form. However, it is important for the accuracy of the
prediction to examine the non-linear structure in narrow regions. BW regression provides an important
convenience in this idea.

4. RESULTS AND DISCUSSION

The first analysis that comes to mind when analyzing time-dependent data is naturally time series. However,
this idea is fundamentally wrong. In time series analysis, the data must be periodic or have the ability to be
periodic to be analyzed. Buys Ballot, the inventor of this work, used the following sentence in his memoirs:
“Every numerical series must have a period. Only if the observation is long enough to catch this period.”
[27]. If not? The sequential correlation model used as the basic understanding of time series remains a
wrongly chosen model. In this case, functional data analysis can best analyze longitudinal data. The first
applications of functional data analysis were already designed for time series data. Although Ramsay did
not include such an understanding when he published his first major work on the subject, the application of
the theory naturally shifted to this type of analysis [28]. Indeed, Ramsay is the most successful functional
techniques researcher of the last century. The main objective of the FDA is to see the projection of the
response variable onto the space of explanatory variables using the bases that best represent the data source.
The resulting relationship is the functional equation of the regression. Therefore, the main direction of the
FDA in the literature is functional linear modeling and estimation [29].

Approximately ninety relevant studies exist in the literature, with over three-quarters of them conducted
after 2005. Overall, there are over seventy publications on base selection. A common view is that the B-
spline method is the most popular of the bases used. Indeed, if one looks at the form or the application
package of the theory, the B-spline basis is at the forefront. However, functional principal component
analysis and linear models are also included in the literature.

Nearly half of the studies reviewed focus on applications in biostatistics, which justifies a dedicated
discussion of this field. In particular, functional linear models have been employed in diffusion tensor
imaging and fiber imaging, with an emphasis on basis function selection tailored to the data characteristics
[30]. Functional principal component analysis (FPCA) and functional clustering techniques have been
applied to gene expression and microarray data [31]. Locally weighted regression and functional clustering
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were used to analyze the activity of posterior horn neurons in the spinal cord [32]. FPCA has also been used
to study age-specific mortality [33], and a combination of functional principal components and splines has
been applied to age-specific breast cancer mortality rates [34]. Furthermore, FDA methods have been
effectively applied to a wide range of data types, including mortality, fertility, and migration rates; time-
dependent gene expression data; colon cancer incidence; speech variability in individuals with lisps; and
emotional responses to music. Despite the breadth of FDA applications, studies employing Bernstein
polynomials in functional regression analysis remain relatively limited. A notable example is a 2023 study
[35], which introduced a new method for estimating shape-constrained functional regression coefficients
based on the Bernstein polynomial approach. It is important to reiterate that the foundation of FDA lies in
representing elements within a functional space using appropriate basis functions. Once the functional
spaces of the explanatory and response variables are defined, the response variable is projected onto the
space of explanatory variables through these basis functions—most commonly via the least squares method.
In this context, the Bernstein positive operator serves as an effective auxiliary tool, owing to its structural
properties, and forms the foundation of the methodological framework adopted in this study.

Why Bernstein polynomial (Advisor’s comment)? Weierstrass’ brilliant proof is that “the space of
continuous functions is a dense subspace of polynomials”. An extension of this proof is that we can
represent every continuous function by a polynomial of unrestricted degree. For example, as mentioned at
the beginning of the results section, the Taylor polynomial has this representation capability. However,
what is important is the method Weierstrass used to make this proof and Bernstein polynomial, which is a
natural output of this method. This reason alone is enough to answer the question. However, there is
additional information. Bernstein polynomial is simply an operator that converts a function into a
polynomial. From the point of view of probability, its structure is taken from the binomial distribution. It
also represents the core part of the beta distribution. There is no need to talk at length here about the wide
range of applications and properties of the beta distribution. When we add all these features together, the
richness of the interpretation of an estimate using the Bernstein polynomial is also the richness of the
interpretation obtained from the estimate. For example, when we look carefully at the model structure given
by Equation (32) in the results section and before, we see that the ratio of the response variable to the
explanatory variable has an index value. In a linear model structure, we expect this index value to be
constant. In fact, in general, the group of constant index values in regression models are linear models.
Otherwise, the linearity of the equation never requires that the data model be linear. But for some reason,
this subtle point never gets noticed. Another similar example is that in a regression model, the error term is
a random variable. Every researcher of all time says this. However, the error term is a secondary random
variable. The primary random variable is the explanatory and response variable. In this case, one can argue
that the error term is stochastic. The observation values of the error term can be calculated firstly after the
data are collected and secondly, after the regression model is decided and established. This means that it is
somewhat implausible to calculate the probability of an event occurring after the experiment has been
conducted. Probability and randomness exist for experiments that are designed but not implemented.
Naturally, the randomness of the error term is also highly controversial. This idea can easily be used as a
secondary parameter in the calculation of the term excluding the explanatory variables of the regression
model given by Equation (38) in the conclusion. This means replacing the constant term with the variable
in the functional regression model. After the exit of the FDA, the understanding of the constant term in the
linear model should be used as the term excluding the explanatory variable. Finally, I would like to close
this commentary with a rather regrettable piece of literature. Some studies in the literature have attempted
to deform the Kernel part of the Bernstein polynomial slightly to make it orthonormal [36]. I am sure that
Sergey Natanovic Bernstein’s bones ache as the man who solved Hilbert’s ninth problem. The nature of
some things must be preserved as it is. It never occurred to Bernstein to adapt the construction of a
polynomial instead of the orthanormal basis of a functional space. It’s really funny. One should not overdo
things for the sake of doing them. Let’s pay a little attention to the form below because of the nature of both
constructions

t—k/n

X = X(k/n) = (X(0), P (t) = P( 1/n

))-
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The coefficients here are already obtained from the basis of the functional space and are used as multipliers
of the kernels forming the polynomial. It is obvious that the polynomial cannot be written in the following
from,

BaX % ) (X(O),9e()bi.

With Spline b, when we put the Kernels together, it is easily seen that it is already B-spline. This study is
presented from a critical perspective, aiming to contribute new insights to the literature. One of the aspects
that has not been sufficiently addressed is the use of functional basis components. It is deemed important
to explore this area further and bring it to the attention of the academic community. In the context of
functional data analysis, basis components play a crucial role in modeling the relationships among
variables. Therefore, a comprehensive examination of this approach may offer significant contributions to
the field. Let’s take a brief look: we define explanatory variables in general terms as “X” and the response
variable “Y” let’s denote it by. For these two to be regressive, we need X = T¢é% and Y = Tnt in the form
of at least one common T stakeholder. We aim X — Y is to find the model &¢ — nt operation. To be able
to capture this operation representation here is the job of the functional basis components. It is considered
that the Bernstein operator could be a suitable method for achieving this representation.
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