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 ABSTRACT  

 

Breast cancer is one of the five most common types of cancer that occurs when breast tissue 

turns into a tumor and mainly affects women. Early diagnosis of the disease is crucial for the 

patient's lifespan. However, misclassification of malignancy may result in treatment delays and 

initiate an irreversible process for the patient. This study proposes an approach for classifying 

ultrasound breast images into malignant, benign, and healthy categories, with a particular 

emphasis on minimizing false-negative outcomes. The BUSI dataset, characterized by 

imbalanced class distributions, was used for the breast cancer detection. The dataset was 

augmented to enhance feature representations using contrast-limited adaptive histogram 

equalization (CLAHE) to address the class imbalance issue, creating the BUSICL dataset. 

Features extracted from both datasets with the VGG16 and ResNet50 models were then 

classified using a support vector machine (SVM). Following the results analysis, the SVM 

algorithm's cost matrix values were adjusted according to the inverse proportions of class 

distributions applying a cost-sensitive approach. In addition, the robustness of the proposed 

methodology is compared with the K-Means SMOTE algorithm. The proposed method achieved 

an overall accuracy of 99.36%, surpassing the performance of previous comprehensive 

classification studies using the BUSI dataset. 
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1 INTRODUCTION 

Breast cancer is a type of cancer in which abnormal breast cells in the milk-producing 

tissue of the breast turn into a tumor and spread throughout the body if precautions are not 

taken, with approximately 99% of the cases seen in women [1]. According to data from 2022, 

of the 2.3 million women diagnosed with breast cancer worldwide, 670,000 have died. This 

disease is one of the five most common cancers in our country, and the disease is responsible 

for around 5% of deaths in women [2]. Although breast cancer, like many cancers, has no 

symptoms in the early stages, swelling in the breast, changes in the appearance of the breast or 

abnormal fluids secreted from the nipple are symptoms that may be observed by the patient in 

the later stages. 

The American College of Radiology has established the protocols for the assessment of 

images obtained through mammography, magnetic resonance imaging (MRI), and ultrasound 

(US) devices employed in the radiological diagnosis of breast cancer, ensuring standardized 

reporting procedures for radiologists [3]. This protocol, which evaluates six scenarios to detect 

the presence of a benign or malignant tumor obtained from imaging devices, is known as the 

Breast Imaging Reporting and Data System. In the radiological diagnosis of the disease, 

mammography, MRI, and ultrasound devices are employed according to the structured protocol. 

Among these, ultrasound imaging is a real-time diagnostic method that provides a cost-effective 

and safe approach for diagnosis, as it does not involve radiation and is available in the inventory 

of almost every healthcare facility. However, unlike mammography and MRI devices, this 

method is physician-dependent because a radiologist must perform the scan with an ultrasound 

device to diagnose. 

On the other hand, the effectiveness of ultrasound examinations can vary due to several 

factors, including challenges such as unwanted interferences and speckle noise inherent to the 

device's operating principles, as well as the physician's proficiency in effectively utilizing the 

device. These variables collectively influence the accuracy and success of the diagnostic 

process. To overcome these difficulties, computer-aided diagnostic systems assist physicians in 

interpreting medical images, thereby reducing the risk of potential errors stemming from 

radiologists' fatigue, mental state, and experience. For this purpose, these systems have long 

been supported by mostly artificial intelligence (AI) based algorithms. The inception of 

research utilizing the detection of breast cancer from ultrasound images using AI is discernible 

within the literature commencing in the latter part of the 1990s. During this period, scientific 
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attention has been devoted to breast cancer classification studies that employ machine learning 

algorithms to classify features obtained through various feature extraction methodologies, some 

of which are the following. In the study, [4] used  the k-means method for the classification of 

breast lesions. They applied morphology operations and histogram equalization methods to a 

dataset of proven pathology, consisting of 110 malignant and 140 benign tumors, for breast 

cancer classification. The study achieved 88.8% binary classification accuracy. [5] utilized 

Support Vector Machines (SVM) to classify 87 malignant and 303 benign ultrasound images, 

all confirmed through pathology assessment. Textual features were employed for this purpose. 

The study yielded a success rate of 93.20%.  [6] proposed a study wherein 19 morphological 

features were extracted from a dataset comprising 34 malignant and 84 benign breast tumors 

for the classification of breast cancer. Extracted morphological features underwent principal 

component analysis to reduce dimensionality. Subsequently, SVM was employed to classify the 

dataset. In the training phase, the study achieved an accuracy of 82% using a 10-fold validation 

approach.  

In the following years, with the development of deep learning algorithms, many studies 

have been carried out in the field of classification and segmentation with the help of models 

that automatically extract features in breast cancer detection with high success. These studies 

have been proposed entirely with deep learning models only or as hybrid models with machine 

learning and traditional feature extraction methods, and some of them are given. [7] proposed 

a study on breast cancer diagnosis and classification using the Breast Ultrasound Image (BUSI) 

dataset. The workflow included preprocessing, segmentation, feature extraction, and 

classification. They utilized Wiener filtering and contrast enhancement for preprocessing, the 

Krill swarm algorithm for segmentation, and deep learning models such as Vgg16, Vgg19, and 

SqueezeNet for feature extraction. In the study, Ragab and colleagues achieved a remarkable 

success rate of 97.52%. In the [8]’s research, utilizing datasets BUSI and UDIAT in the realm 

of breast cancer study, is proposed to overcome the challenges posed by class imbalance and 

the limitations associated with relying solely on global or local features for achieving definitive 

tumor classification. For this purpose, the study employed the BSMOTE method to generate 

synthetic data, utilized the ResNet50 model to capture global information, and incorporated the 

Histogram of Oriented Gradients (HOG) technique to capture local information. This approach 

yielded a satisfactory performance of 99.14% for the BUSI dataset.  [9]  introduced a framework 

comprising a robust deep-learning model with 24 layers designed for the BUSI dataset 

employed in breast cancer detection. The proposed model includes six convolutional layers, 
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nine inception modules, and one fully connected layer. Additionally, it consists of the clipped 

Rectified Linear Unit activation function and cross-channel normalization techniques. This 

model demonstrated an impressive accuracy rate of 99.35%.  

The primary objective of the previously mentioned studies is the classification of breast 

cancer; however, the vast majority of them include strategies aimed at mitigating the challenges 

posed by the limited availability of ultrasound images, particularly in cases of malignant class 

imbalance. Unfortunately, openly shared datasets used for AI-based breast cancer detection 

from ultrasound images cannot meet the high data demand of deep learning. These datasets are 

also known to be imbalanced between classes and contain insufficient data. Moreover, models 

trained on imbalanced data tend to be dominated by samples from the majority class. Machine 

learning algorithms assign equal weight to misclassification errors, but this can be very 

problematic, especially in medical diagnosis, because misclassifying a positive case is always 

more costly than misclassifying a negative case. To solve these problems, research mainly uses 

data augmentation methods to increase the amount of data. However, the data augmentation 

technique may result in the loss of the region of interest where the cancerous area is located due 

to incorrect magnification techniques. This imbalance challenge often requires addressing 

overfitting or underfitting issues in classification studies. A most commonly employed strategy 

to address the misclassification challenges associated with minority classes in imbalanced 

datasets involves the use of synthetic data generation or majority class reduction techniques. 

The relevant studies conducted in this context are outlined below. 

In the study [10], addressing the class imbalance problem, a model is presented that 

generates heuristic synthetic data using SMOTE-based k-means clustering, aiming to avoid the 

influence of unnecessary noise. The experimental results of the model, evaluated on 90 datasets, 

demonstrate an improvement in classification performance. The study [11], proposes a cluster-

based oversampling method for imbalanced data, combining the SMOTE and k-means 

algorithms. In this work, the Random Forest algorithm is used as the classifier. The model, 

validated with various UCI datasets, achieves Sensitivity and Specificity values of 99.84% and 

99.56%, respectively. In the study presented as Reduced Noise-SMOTE (RN-SMOTE) to 

address the class imbalance, the synthetic instances generated by SMOTE were subsequently 

subjected to denoising using Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN) [12]. RN-SMOTE was applied to nine different datasets and classifiers, and it was 

reported that the proposed approach enhances classifier performance. In another study [13], a 

transfer learning approach was used for feature extraction in detecting melanoma, a type of skin 
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cancer. The artificial samples generated using K-Means SMOTE were then classified with the 

XGB classifier. Using the ISIC Challenge 2018-19 datasets, the study achieved an accuracy 

(ACC) of 0.941. Nonetheless, common challenges arise from oversampling methods change 

the distribution of different classes, potentially leading to the exclusion of valuable data or the 

generation of unnecessary data.  

Another method, cost-sensitive learning, aims to address class-imbalanced issue by 

assigning distinct cost values to minority and majority classes, rather than attempting to 

alleviate the misclassification problem through the generation of artificial data. This method 

has been utilized for various datasets in AI-based disease detection to date and has demonstrated 

success, and some of them are as follows. [14], utilized the Pima Indian Diabetes, Haberman 

Breast Cancer, Cervical Cancer Risk Factors, and Chronic Kidney Disease datasets in their 

study, all of which are highly imbalanced datasets. To deal with this problem, they transformed 

the objective function of logistic regression, decision trees, extreme gradient boosting, and 

random forest algorithms into robust cost-sensitive algorithms. They employed the Haberman 

database for breast cancer classification, the focus of their study, and achieved an accuracy of 

80.2%. [15], utilized the Wisconsin Diagnostic Breast Cancer dataset in their classification 

study for breast cancer diagnosis. They employed the Information Gain (IG) algorithm, based 

on the entropy value of the system, to select a compact feature subset with maximal 

discriminative capability from the dataset. They achieved a 98.32% success rate for 

classification by utilizing an improved cost-sensitive Support Vector Machine (SVM) optimized 

with particle swarm optimization. In the study [16], given the limited availability of expert 

dermatologists in developing nations, Ravi has proposed a deep learning-driven model aimed 

at the precise classification of skin diseases. This model relies on feature classification derived 

from fine-tuned cost-sensitive EfficientV2 architecture, utilizing support vector machines 

(SVM) and random forests algorithms. This proposed model attained a remarkable 99% 

classification accuracy.  

This study aims to develop a model for breast cancer detection, focusing on achieving 

minimal misclassification rates when working with imbalanced ultrasound image datasets. The 

open-access dataset employed for this purpose exhibits class imbalance, which can adversely 

impact classification performance. To address this issue, feature enrichment methods and 

transfer learning models were employed, along with cost-sensitive learning techniques to 

mitigate the misclassification of malignant lesions. The highlights of the study are as follows. 
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• To the best of the author’s knowledge, cost-sensitive learning approach has been used for 

the first time in the classification of BUSI dataset. 

• The Contrast-Limited Adaptive Histogram Equalization (CLAHE) enhancement method is 

used to reduce and suppress noise in ultrasound images.  

• An essential aspect of this study was the utilization of rich features extracted from the BUSI 

and BUSICL datasets, which were combined and classified using a machine learning 

approach employing class imbalance handling methods. 

• A key focus of this study was comparing SVM-based breast cancer classification with two 

distinct methods for addressing class imbalance: K-means SMOTE and Cost-Sensitive 

Learning. 

• The cost-sensitive deep learning feature extraction approach achieved the highest accuracy 

in breast cancer classification, surpassing state-of-the-art models. 

The study comprises five sections: the second section detailing the dataset and 

methodology, the third section presenting the experimental analysis, and the following sections, 

which discuss and conclude. 

2 MATERIAL AND METHODS 

2.1 Dataset 

In this study, a publicly available breast ultrasound images dataset (BUSI) [17] was 

obtained from the open data-sharing platform Kaggle, and its relevant link is provided in the 

"Availability of Data and Materials" section. Although the BUSI dataset provides the 

corresponding masks for each image, only the relevant ultrasound images have been used in the 

scope of this study. The dataset consists of three distinct classes: malignant lesions, benign 

lesions, and healthy tissue, comprising 780 images. Specifically, within the benign, malignant 

and normal classes, there are 437 and 210 images, respectively, while the healthy tissue class 

contains 133 images. In particular, the dataset contains a class imbalance problem. Due to the 

data-hungry nature of deep learning algorithms, a new dataset named BUSICL was created by 

applying the CLAHE method to the BUSI dataset, which has limited data, to improve 

classification accuracy. During the model experimental analysis phase, a partitioning ratio of 

80:20 was preferred for the training and test datasets, as higher success rates were achieved 

compared to alternative ratios. The images, although potentially varying in size, exhibit an 
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average resolution of 500x500 pixels, are in .png format, and are represented in grayscale.  

Figure 1 illustrates samples from the distinct classes within the datasets.  

 

Figure 1. BUSI Dataset , (a) Benign Lesion, (b) Malign Lesion, (c) Healthy Lesion, and  

BUSICL Dataset  (d) Benign Lesion, (e) Malign Lesion, (f) Healthy Lesion. 

 

The distribution of images within the classes for the proposed approach can be seen in 

Tables 1. 

Table 1. The utilization numbers of BUSI/BUSICL images in the proposed approach 

Classes Train Images Test Images Total Images 

Benign 350 87 437 

Malign 168 42 210 

Normal(healthy) 106 27 133 

Total Images 624 156 780 

 

2.2 Contrast Limited Adaptive Histogram Equalization  

Image enhancement methods in medical imaging allow medical professionals to identify 

abnormalities, tumors, and other critical details more effectively. Contrast-limited adaptive 

histogram equalization (CLAHE) was developed to address shortcomings in other histogram 

methods by improving local contrast and the definition of edges in every region of the image 

by preventing excessive noise amplification in relatively homogeneous regions [18]. So, many 

studies employing CLAHE for image enhancement aim to improve contrast while minimizing 
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the amplification of noise inherent to medical imaging systems [19]. Considering the image 

details of the resulting dataset, the threshold for the contrast limit was set to ClipLimit 3.0, 

which involves localized changes in contrast. Additionally, tileGridSize, which adjusts the 

number of tiles in rows and columns during image enhancement with CLAHE, was set to 8x8. 

2.3 Data Augmentation 

Data augmentation is an effective approach to reducing overfitting when working with 

limited datasets. Techniques such as, scaling, cropping, flipping, and rotation can be applied 

individually or in combination. It operates as follows: During model training, mini-batches 

undergo random transformations in each iteration, allowing the network to learn from different 

versions of the same samples. Consequently, while the total number of training samples remains 

unchanged, the model is exposed to diverse representations, thereby improving generalization. 

The classes in the BUSI dataset used in this study contain a limited number of samples and are 

imbalanced. If these issues are not addressed, they may lead to overfitting. In this study, 

reflection, translation, and scaling data augmentation techniques were used to enhance the 

generalization capability of the models. 

2.4 Deep Learning Models and Parameter Selection 

Deep learning models work by extracting features from input images using a sliding 

kernel, then summarizing these outputs with pooling layers to reduce this feature size. 

Moreover, in the model development processes initiated by the ILSVRC competitions, 

numerous models were created with careful consideration of model performance, complexity, 

the vanishing gradient problem, and parameter size. Therefore, selecting the appropriate model 

for a given dataset is closely linked to the model's performance. 

2.4.1 Vgg16 

The Vgg16 [20], a 16-layer deep learning model developed by the Visual Geometry 

Group at Oxford University, achieved a classification success rate of 92.7% in the 2014 Large 

Scale Visual Recognition Competition (ILSVRC) on 1000 images in 1000 different categories, 

and it continues to outperform many models today [21]. VGG16 takes 224x224 tensors as input. 

It consists of a total of 16 learnable layers. Kernel size, max-pooling filter, and stride values are 

fixed to 3x3, 2x2, and 2, respectively. Convolution layers and max-pooling layers are then 

connected to 2 fully connected layers with 4096 channels, and the last output layer evaluates 
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1000 classes. The output size of the previous layer can be redesigned for datasets with a 

different number of classes and can be utilized in various studies. Figure 2 illustrates a general 

representation of the Vgg16 structure. 

 

Figure 2. The Structure of Vgg16. 

2.4.2 Resnet50 

ResNet50 [22] is a deep learning architecture with 50 layers, developed by Microsoft 

Research in 2015. It is a variant of the Residual Network (ResNet) architecture. The key 

innovation that distinguishes ResNet architecture from previous architectures is the residual 

connections. This architectural design incorporates skip connections between the input and 

output to acquire residual functions. This mechanism effectively addresses the issue of 

vanishing gradients by facilitating the flow of information to deeper layers. In the residual 

structure, the convolutional block uses a 1x1 convolutional layer to reduce the number of filters 

before the 3x3 convolutional layer and then adds the input and output together [23]. The 

architecture, where the residual input is now represented by  𝑋   and the output by  𝐹(𝑋) + 𝑋 

is presented below. This architecture, commonly referred to as an identity block, is a standard 

component within ResNet structures. The convolutional block is another type of block used in 

ResNet structures. The convolutional block contains a convolutional layer within the skip 

connection to ensure that the input and output size is adjusted as required. Identity block and 

ResNet50 structures are given in Figure 3 and Figure 4, respectively. 

  

Figure 3. The Structure of Identity Block. 
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Figure 4. The Structure of Resnet50. 

2.4.3 Model Deployment 

In this study, after evaluating the performance of various deep learning models and state-

of-the-art architectures, the decision was made to proceed with VGG16 and ResNet-50 for 

further analysis. The reasons for selecting these models are as follows: 

VGG16 has demonstrated its effectiveness in numerous studies, owing to its stacked 

convolutional blocks, and fine-tuning has been shown to enhance its performance. Moreover, 

ResNet-50 was preferred due to its high accuracy performance, and its ability to overcome the 

vanishing gradient problem in challenging tasks through its residual structure. Additionally, its 

use of the global average pooling mechanism allows for the inclusion of global features in the 

classification process, alongside local features. Upon examining the strengths of both models, 

the features derived from them generate an expectation of high performance when combined.  

On the other hand, due to the limited number of images in the BUSI dataset utilized in 

this study, the issue of overfitting during model training often arises. This challenge is 

particularly evident in datasets with a limited amount of data. To this end, numerous studies 

have highlighted the effectiveness of fine-tuning pre-trained models using weights acquired 

from training on ImageNet to enhance model accuracy. As a result, this study employed a 

transfer learning-based strategy in which the weights of the first ten layers of the VGG16 and 

ResNet50 models were frozen while the remaining layers were trained. The proposed transfer 

learning method can be seen in Figure 5. 

 
Figure 5. Transfer Learning Approach for the Proposed Model. 
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Determination of the hyperparameters is also essential for model performance. While a 

learning rate of 1𝑥10−4 is commonly used in many deep learning studies, experimental results 

from this study indicated that starting with a learning rate of 3𝑥10−4 and halving it after 50 

epochs led to a more precise convergence to the local minimum. Moreover, the SGD [24] 

optimization algorithm, which has demonstrated superior generalization performance in 

numerous studies, was employed to optimize the model's cost function towards the local 

minimum. Additionally, based on the results of the experimental studies, it was determined that 

training the model for 100 epochs would be both sufficient and beneficial. In addition, the batch 

size is defined based on the computational capacity of the available hardware. Hyperparameters 

settings used in the training process are shown in Table 2. 

Table 2. Hyperparameters settings for the Models. 

Hyperparameter Settings 

Optimizer SGD 

Batch Size 32 

Epoch 100 

Train / Test Split Ratio 80:20 

Initial Learning Rate 3𝑥10−4 

Reduced Learning Rate 15𝑥10−5 

2.5 Cost-Sensitive Support Vector Machine 

So far, successful results have been achieved in binary and multi-class classification 

applications using SVMs [25]. SVM operates within a cost-insensitive framework, which  seeks 

to minimize the loss function and assigns equal cost values to false positives and false negatives 

[14]. However, this approach can yield costly outcomes, mainly when dealing with imbalanced 

medical datasets during classification tasks. In medical diagnosis, particularly, the equality of 

cost values for false negatives (incorrectly categorizing an individual as healthy despite their 

illness) and false positives (erroneously classifying an individual as sick despite their health) 

may result in circumstances challenging to rectify due to treatment delays[15]. In cost-

insensitive methods, the cost of all true positive values is zero, while the costs of other 

misclassified results are set to one. On the other hand, the penalization of incorrect 

classifications based on the parameters 𝝃 and 𝑪 to ensure both the maximum margin value, and 

the minimum classification error of the SVM algorithm, where ∥w∥ is the norm of the weight. 

This relationship can be defined within the cost matrix, represented as a square matrix in SVM, 

and is regulated by a parameter 𝐂, as shown in Equation 1. 
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Min  
1

2
  ||w||2 + C ∑ ξi

n

i=1

 (1) 

In cost-sensitive learning, these cost values are often adjusted by considering the reverse 

class distribution in the cost matrices. Cost matrix values are determined as follows: The cost 

matrix values with correctly classified diagonal elements 𝐶(𝑖, 𝑖) are set to 0, and the FN and FP 

values, representing malignant and benign classes, are assigned as one and 𝑐, respectively, 

where FN, representing the minority class, must have 𝑐 > 1 [26]. Here, 𝐶 denotes the 

regularization parameter and also serves as a regularizer to prevent overfitting [27]. Thus, the 

objective is to mitigate misclassification induced by imbalanced data classes by minimizing the 

total misclassification cost of the model. 

2.6 K-Means Synthetic Minority Oversampling Technique  

Maintaining a balance between classes is critical for optimal model performance in 

classification tasks. A dataset is considered imbalanced when the number of examples in one or 

more classes significantly exceeds that of others. In such cases, models trained on imbalanced 

datasets may lack sufficient information about the minority class, leading to biased predictions 

favoring the majority class. To address this issue, the Synthetic Minority Over-sampling 

Technique (SMOTE), which increases the number of minority class examples, has been 

effectively utilized in numerous studies. Although various variants of the SMOTE method exist, 

its core principle focuses on identifying the k-nearest neighbors of a minority class sample and 

generating a synthetic sample as a linear combination of the sample and its neighbors [10]. One 

such variant is K-SMOTE, introduced by Douzas, Bacao, and Last in 2018, which integrates k-

means clustering with the SMOTE technique to generate synthetic samples for the minority 

class[12]. In the K-Means SMOTE method, the k nearest neighbors of the selected sample is 

determined from the same cluster. Thus, the aim is to mitigate the drawbacks of SMOTE, 

specifically the generation of noisy artificial examples, by generating synthetic data from more 

reliable regions identified through clusters determined by the k-means algorithm. 

2.7 Proposed Method 

Since it is more costly to misclassify a malignant case than to recognize a benign case 

as positive, a cost-sensitive hybrid deep learning structure is proposed in this study as a solution 

to this problem. The BUSI dataset utilized for breast cancer classification exhibits class 
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imbalance. Initially, a supplementary dataset named BUSICL was generated by applying the 

CLAHE image enhancement technique to acquire diverse features for classification purposes. 

This study aims to enhance model performance by utilizing enriched features from both the 

BUSI and BUSCL datasets. Subsequently, Vgg16 and ResNet50 models were employed to 

extract features from both datasets. In the subsequent step, a total of 4000 comprehensive 

features obtained from each dataset through both models were subjected to classification using 

costs-sensitive SVM via 10-fold cross-validation. To identify malignant values with minimal 

misclassification error during training, a cost value inversely proportional to the number of 

classes is assigned in the cost table. For this purpose, the classification performance of the 

model with the standard SVM was first assessed, followed by an update to the default cost table 

to account for the misclassified malignant FN values. Finally, the effectiveness of the proposed 

cost-sensitive approach was compared to the K-Means SMOTE oversampling method, to 

demonstrate its robustness. The illustration of the proposed structure is depicted in Figure 6. 

 

 

Figure 6. The Functional Block Diagram of the Proposed Approach. 
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3 EXPERIMENTAL RESULTS  

The research was conducted utilizing MATLAB 2022 and KERAS, the high-level API 

of TensorFlow. The computational system employed is equipped with an RTX 3070 graphics 

card and 32 GB of RAM on the Windows 10 platform.  

The confusion matrix table was utilized to assess the models' prediction outcomes. 

Subsequently, following the computation of true positive (TP), true negative (TN), false 

positive (FP), and false negative (FN) values, metrics including accuracy, recall, and f-score 

were derived [28]. Accuracy measures the overall correctness of a model, while precision 

measures the accuracy of positive predictions by assessing how many predicted positives are 

actually positive, and recall, also known as sensitivity or true positive rate, evaluates the model's 

ability to correctly identify all positive cases, and the F-score is a performance measure defined 

as the harmonic mean of precision and recall. These metrics can be seen in Equations 2-5. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

F − Scr =
2𝑥𝑇𝑃

2𝑥𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (4) 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (5) 

In the initial phase of the study, the fine-tuned Vgg16 and ResNet50 models were trained 

using the datasets to extract the valuable features with optimal weights. Figure 7 illustrates the 

confusion matrix table corresponding to the training process in which both datasets are used 

separately. Specifically, the Vgg16 model achieved an accuracy of 82.05% on the BUSI dataset 

and 82.69% on the BUSICL dataset. Similarly, the Resnet50 model attained an accuracy of 

83.97% on the BUSI dataset and 85.26% on the BUSICL dataset. The results show that the 

Resnet50 model outperforms Vgg16 in terms of overall accuracy, with further improvement 

observed when using CLAHE for image enhancement. However, as both the VGG16 and 

ResNet50 models exhibit significant misclassification rates, it is evident that the classification 

performance achieved is inadequate for effective breast cancer detection. 
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Figure 7. Confusions Matrixes, (a) Vgg16 BUSI Dataset, (b) Vgg16 BUSICL Dataset, (c) 

ResNet50 BUSI Dataset, (d) ResNet50 BUSICL Dataset. 

In addition, Table 3 shows the precision, recall and f-score values derived from the 

confusion matrix data, which provide additional insight into classification performance. When 

looking at the class-specific evaluations, it is clear that accurately distinguishing malignancy, a 

crucial aspect of breast cancer classification, remains a challenge. On the other hand, despite 

the use of powerful computer hardware, training times are considerably longer for applications 

in daily life. 

Table 3. BUSI, and BUSICL Datasets Classification with Deep Models. 

Models Dataset Classes 
Pre 

(%) 

Recall 

(%) 

F-Scr 

(%) 

Acc 

(%) 

Training 

time(s) 

VGG16 

BUSI 

Benign 86.21 86.21 86.21 

82.05 

 

Malign 66.67 87.50 75.68 3620 

Normal 92.59 67.57 78.13  

BUSICL 

Benign 93.10 81.82 87.10 

82.69 

   

3450 

 Malign 71.43 85.71 77.92 

Normal 66.67 81.82 73.47 

RESNET50 

BUSI 

Benign 86.21 89.29 87.72 

83.97 

 

2340 

 Malign 80.95 75.56 78.16 

Normal 81.48 81.48 81.48 

BUSICL 

Benign 83.91 91.25 87.43 

85.26 

 

2210 

 Malign 88.10 74.00 80.43 

Normal 85.19 88.46 86.79 
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In the second step of the study, the features derived from the BUSI and BUSICL datasets 

were combined using a model-based approach. A total set of 2000 features were then employed 

for training with the SVM algorithm, followed by comprehensive classification procedures. The 

confusion matrix table, resulting from the classification of 2000 features derived from Vgg16 

and Resnet50 models using SVM, along with the precision, recall, F-score, and accuracy values 

derived from this analysis, are given in Figure 8 and Table 4, respectively. It is seen in Figure 

8a and Figure 8b that employing SVM to classify the 2000 features derived from the datasets 

with rich feature space results in an overall accuracy increase of approximately 10% compared 

to using SoftMax. The classification accuracies obtained with the VGG16 and ResNet50 models 

for 2000 features using a standard SVM were 92.95% and 94.87%, respectively. 

 

Figure 8. SVM Classification of Concatenated Features of BUSI and BUSICL Datasets, (a) 

Vgg16 with 2000 Features, (b) ResNet50 with 2000 Features, (c) Vgg16&ResNet50 with 

4000 Features, (d)Vgg16&ResNet50 with 4000 Features and SMOTE with SVM, (e) 

Vgg16&ResNet50 with 4000 Features and Cost-Sensitive SVM. 

In the third step of the study, a rich feature space was obtained by combining a total of 

2000 features extracted from each model. The primary objective was to minimize 

misclassification errors, which carry high costs for the patient with the combined 4000 features. 

Precision, recall, F-score, and accuracy values calculated from the confusion matrix are 

depicted in Figure 8c and detailed in Table 4 on a class basis. Despite achieving a very high 

success rate compared to previous steps, costly classification error persists since two out of 

three errors are in malignant class when using the default setting of SVM. 
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In the final step of the study, the aim was to minimize misclassification errors, especially 

for FN evaluations, which incur heavy patient costs, by employing the cost-sensitive SVM and 

K-means SMOTE approach. Figure 8d shows that the K-means synthetic data oversampling 

method results in a misclassification error in the non-malignant class. Despite this, the outcome 

aligns well with the study's objectives. In the cost-sensitive approach, cost matrix values for the 

SVM can be manually set by considering the inverse of the class sample distribution. To this 

end, the cell in the cost matrix set by considering the inverse of the class sample distribution. 

To this end, the cell in the cost matrix corresponding to the FN value of the malignant class was 

set to 2, while the other values were kept as default. The classification accuracies obtained with 

the K-means SMOTE and the cost-sensitive approaches for 4000 features were 98.71% and 

99.36%, respectively. Figures 8d and 8e present the confusion matrix table obtained with this 

approach. Moreover, when the training and testing times of the classifier are compared with 

pretrained models, it is noticeable that it provides faster results for use in mobile-based artificial 

intelligence applications. 

Table 4. Comparative analysis of classification results using standard SVM, cost-sensitive 

SVM, and K-means with SMOTE-based SVM for the proposed approach. 

Model Dataset 
Feature 

Size 

Cost-

Sensitive 

Learning 

K-

means 

Smote 

Classes 
Pre 

(%) 

Recall 

(%) 

F-Scr 

(%) 

Acc 

(%) 

Classifier 

training 

time(s) 

Classifier 

testing 

time(s) 

Vgg16 
BUSI& 

BUSICL 
2000 No 

 Benign 96.55 92.31 94.38 

92.95 

  

No Malign 93.02 90.91 91.95 6.02 0.90 

 Normal 80.77 100 89.36   

ResNet5

0 

BUSI& 

BUSICL 
2000 No 

 Benign 94.25 97.62 95.91 

94.87 5.91 

 

No Malign 97.62 91.11 94.25 0.89 

 Normal 92.59 92.59 92.59  

Vgg16& 

ResNet5

0 

BUSI& 

BUSICL 
4000 No 

 Benign 98.85 97.73 98.29 

98.08 

  

No Malign 95.24 100 97.56 10.52 1.20 

 Normal 100 96.43 98.18   

BUSI& 

BUSICL 
4000 No 

 Benign 97.70 100 98.84    

Yes Malign 100 100 100 98.71 10.70 1.10 

 Normal 100 93.10 96.43    

 

    Benign 98.85 100 99.42    

BUSI& 

BUSICL 
4000 Yes No Malign 100 100 100 99.36 10.44 1.09 

    Normal 100 96.43 98.18    

 

On the other hand, to evaluate the proposed model's robustness, artificial samples 

generated using the K-means SMOTE are presented in Figure 9 for comparison with the original 

samples. 
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Figure 9. Feature representation of BUSI and BUSICL after concatenation. (a) Features 

originated from 780 samples from the datasets, (b) The train samples were synthetically 

increased to 1050 by K-means SMOTE. 

The synthetic K-means SMOTE oversampling technique was employed to balance the 

class distribution within the training dataset. In this study, the number of samples in the minority 

classes was increased to match the majority class, which included 350 samples. As a result, the 

total number of samples in the training dataset reached 1050.  

Table 5. Comparison with state-of-the-art studies for BUSI Dataset. 

Authors Methods 
Recall 

(%) 

F-Scr 

(%) 
Classes Names Acc (%) 

[29] 
Multi-Headed CNN, image 

processing, contour detection. 
92 92 

Benign, malign, 

healthy. 
92.31 

[30] CNN, optimizer settings 97.37 97.25 Benign, malign. 96.24 

[31] 
Adaptive Feature fusion, local 

binary pattern features, SVM. 
94.7  97.1 Benign, malign. 96.9 

[32] 

Traditional Feature extraction, 

Grid search optimization, 

Feature selection. 

95.80 95.88 Benign, malign 97.81 

[33] Transfer Larning, Fine tuning.  98.22 98.54 
Benign, malign, 

healthy 
98.73 

[8] 

Over-sampling technique, 

feature fusion with Resnet50 

hog features. 

99.14 99.14 Benign, malign 99.14 

[34] 
Data Augmentation, Transfer 

Learning, Feature Selection. 
99.3 99.3 

Benign, malign, 

healthy 
99.3 

[9] 
CNN, Cross-channel 

normalization techniques 
99.60 99.66 

Benign, malign, 

healthy 
99.35 

Proposed 

approach 

Transfer Learning, K-Means 

SMOTE, Cost-Sensitive SVM, 

CLAHE 

99.38 99.36 
Benign, malign, 

healthy 
99.36 

 

4 DISCUSSION 

Breast cancer classification using ultrasound scans often faces the challenge of class 

imbalance, primarily due to the limited number of malignant class samples in the datasets. The 

https://medium.com/@corymaklin/synthetic-minority-over-sampling-technique-smote-7d419696b88c
https://medium.com/@corymaklin/synthetic-minority-over-sampling-technique-smote-7d419696b88c
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BUSI dataset, which exhibits class imbalance, is one of the most well-known datasets in this 

field. Another notable limitation of the dataset is its insufficiency of samples for data-hungry 

deep learning models across all classes. The proposed model leverages two key approaches to 

address these two critical issues. Firstly, the transfer learning approach addresses underfitting 

issues arising from a limited number of samples during training, thereby enhancing 

classification accuracy. The results obtained using transfer learning methods on the BUSI 

dataset are presented in Table 3. The number of misclassified examples exceeds the acceptable 

threshold for medical studies, making the outcomes costly. In the subsequent step, the enriched 

feature pool addresses the class imbalance through cost-sensitive and oversampling approaches. 

To compare the performance of cost-sensitive and oversampling methods, SVM classifier is 

used for both approaches. Table 4 shows that the cost-sensitive approach is more successful 

than the synthetic oversampling method. Therefore, the success of the proposed model, as 

presented in Table 5, demonstrates that it provides a robust approach for handling imbalanced 

datasets.  

This study successfully classified breast cancer with minimal misclassification errors 

through the proposed approach.  This study's overall accuracy value of 99.36% achieved is 

particularly noteworthy, as it does not contain FN misclassification results. Numerous studies 

have examined the BUSI breast cancer dataset using various methods. However, this study 

emphasizes the necessity of considering the critical distinction of highlighting those approaches 

assuming equal cost values for non-malignant and malignant tumors may be insufficient, as it 

distinguishes it from others. This study emphasizes the classification of breast cancer with high 

accuracy and prioritizes the classification of malignant tumors with minimum misclassification 

errors on a class-specific basis. Upon examination of the study by [9], which yielded results 

closest to those of this study, it is noted that it includes two misclassification errors. 

Consequently, the results of this study suppress previous studies. Table 5 compares studies using 

the BUSI dataset and the recommended approach. 

On the other hand, despite the proposed model's successful results, it is not an end-to-

end system, as it involves multiple steps and requires manual processes. Moreover, the dataset 

comprises malignant, benign, and healthy classes. A more comprehensive breast cancer dataset 

that includes malignancy grade values would be more beneficial for assisting radiologists in 

their evaluations. 
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5 CONCLUSION AND SUGGESTIONS 

The approach proposed for breast cancer classification in this study aims to reduce 

misclassified FN values. FN values pose a more significant challenge than other erroneous 

results because they delay the patient's treatment process. With this method, classification 

success was first increased by obtaining a richer feature pool, and then the focus shifted to 

reducing FN values using a cost-sensitive SVM. To our knowledge, the cost-sensitive SVM 

approach proposed in this study has been used for breast cancer for the first time. The results 

demonstrate that cost-sensitive approaches can yield successful outcomes even in the 

challenges arising from imbalanced datasets, which stands out as the most disadvantageous 

aspect of this study. The successful outcomes of this study have led to plans for further research 

on the cost-sensitive approach in different imbalanced datasets. 
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