
International Journal of Engineering and Geosciences, 2025, 10(3), 352-363 

352 
 

 

 

International Journal of Engineering and Geosciences 

https://dergipark.org.tr/en/pub/ijeg 

e-ISSN 2548-0960 

 
 
 

The Role of Ensemble Deep Learning for Building Extraction from VHR Imagery 
 

Nuran Aslantas 1 , Tolga Bakirman *2 , Mahmut Oğuz Selbesoğlu 3 , Bülent Bayram2  
 
1 Yildiz Technical University, Geomatics Engineering Department, Türkiye, nuranaslantas25@gmail.com 
2 Yildiz Technical University, Geomatics Engineering Department, Türkiye, bakirman@yildiz.edu.tr 

3 Istanbul Technical University, Geomatics Engineering Department, Türkiye, selbesoglu@itu.edu.tr 
4 Yildiz Technical University, Geomatics Engineering Department, Türkiye, bayram@yildiz.edu.tr 
 

Cite this study: Aslantas, N., Bakirman, T., Selbesoğlu, M.O. & Bayram, B. (2024). The Role of Ensemble Deep 
Learning for Building Extraction from VHR Imagery. International Journal of Engineering and 
Geosciences, 10(3), 352-363. 

 
https://doi.org/10.26833/ijeg.1587798 
 
 

Keywords  Abstract 
Remote Sensing 
Deep Learning 
Building Extraction 
VHR Imagery 
Ensemble Model 
 

 In modern geographical applications, the demand for up-to-date and accurate building maps 
is increasing, driven by essential needs in sustainable urban planning, sprawl monitoring, 
natural hazard mitigation, crisis management, smart city initiatives, and the establishment of 
climate-resilient urban environments. The unregulated growth in urbanization and settlement 
patterns poses multifaceted challenges, including ecological imbalances, loss of arable land, 
and increasing risk of drought. Leveraging recent technologies in remote sensing and artificial 
intelligence, particularly in the fields of very high-resolution satellite imagery and aerial 
photography, presents promising solutions for rapidly acquiring precise building maps. This 
research aims to investigate the efficiency of an ensemble deep learning framework 
comprising DeepLabV3+, UNet++, Pix2pix, Feature Pyramid Network, and Pyramid Scene 
Parsing Network architectures for the semantic segmentation of buildings. By employing the 
Wuhan University Aerial Building Dataset, characterized by a spatial resolution of 0.3 meters, 
as the training and testing dataset, the study assesses the performance of the proposed 
ensemble model. The findings reveal notable accuracies, with intersection over union metrics 
reaching 90.22% for DeepLabV3+, 91.01% for UNet++, 83.50% for Pix2pix, 88.90% for FPN, 
88.20% for PSPNet, and finally at 91.06% for the ensemble model. These results reveal the 
potential of integrating diverse deep learning architectures to enhance the precision of 
building semantic segmentation.   
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1. Introduction  
 

The exponential growth of the global population, 
surpassing 8 billion individuals, has precipitated a 
significant shift towards urbanization, with more than 
half of humanity now concentrated in urban 
environments—a stark departure from the mere 2% 
recorded in 1800 [1]. While urban centers serve as hubs 
for governance, economic vitality, cultural exchange, and 
collective learning [2], the unbounded expansion of 
urban populations has engendered unsustainable 
urbanization practices, adversely impacting species 
diversity [3], wildlife habitats [4], climate stability [5], 
and critical ecosystem services [6]. In light of these 
challenges, maintaining accurate and up-to-date 
information regarding urban infrastructure, particularly 
buildings, assumes vital importance for effective urban 
planning, infrastructure development, and timely 
emergency response to natural disasters [7-13] 

Furthermore, optimizing building density and 
distribution emerges as a crucial strategy in fostering 
climate-resilient and smart urban development [14,15]. 

Remote sensing technologies offer a robust solution 
to rapidly acquire high-resolution data across extensive 
geographic areas,  for the mapping and monitoring of 
urban structures [16-21]. However, the extraction of 
buildings from remote sensing imagery remains a 
challenge due to complex backgrounds, diverse roof 
types, and occlusions [22]. To address this challenge, 
researchers have explored various methodologies, 
including physical rule-based approaches, object-
oriented methods, supervised classification, machine 
learning, and deep learning techniques. Recent 
investigations into building extraction methods using 
very high-resolution optical remote sensing imagery 
have been extensively reviewed by [23]. 
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Deep learning methodologies have found widespread 
application across various domains, including building 
extraction, subsequent to their triumph in the ImageNet 
challenge [24]. Notably, researchers have introduced and 
implemented deep learning architectures tailored 
specifically for building extraction applications [25,26]. 
Ensemble deep learning strategies have been adopted to 
integrate multiple models, thereby addressing issues 
related to inaccurate pixel classification [27,28]. [29] 
presents one of the pioneering instances of ensemble 
deep learning applied to building extraction using very 
high resolution (VHR) remote sensing imagery, wherein 
semantic segmentation is integrated with edge detection. 
Their approach involves integrating the Holistically-
Nested Edge Detection network into both SegNet and 
Fully Convolutional Network (FCN), followed by 
ensembling SegNet and two FCN variants, subsequently 
validated with VHR imagery and digital surface models 
from ISPRS Potsdam and Vaihingen datasets. [30] 
devised an ensemble model comprising feature 
extractors from various architectures including AlexNet, 
VGG-Net, GoogLeNet, and SqueezeNet, customized in 
terms of filters, depth, and window size. Their ensemble 
model is proposed for village building identification 
utilizing Google and Bing imagery with 1.2-meter spatial 
resolution. [31] trained four distinct U-Net architectures 
with pansharpened WorldView-3 imagery and a fusion of 
satellite imagery and GIS map images, employing 
rescaled and sliced images for training. The resultant 
probability maps are aggregated through ensemble 
methods to facilitate the final prediction. [27] leveraged 
multiple U-Net architectures with varying parameter 
configurations, encompassing general parameters, 
increased building loss ratio, geometric transformations, 
and stricter building selection criteria. Their approach 
involves integrating prediction outcomes from different 
U-Net architectures trained on SuperView-1 imagery 
with a 50 cm resolution, utilizing a voting method for 
integration. [32] introduced a stacking ensemble model 
comprising U-Net, SegNet, and FCN-8s architectures. 
Their methodology includes conditional random field 
post-processing for each segmentation result, alongside 
sparse autoencoder utilization to encode multilayer 
features and align the primary encoder output with real 
data. Experiments were conducted using WorldView and 
QuickBird series imagery to validate their approach. [33] 
developed an ensemble network consisting of U-Net and 
SegNet named Seg-Unet for building extraction from 
Massachusetts building dataset. [34] utilized ensemble 
techniques for multi-source data for building 
segmentation using various open-access datasets in the 
literature. 

Despite these advancements in the literature, the 
utilization of ensemble deep learning for building 
extraction remains limited, with existing applications 
predominantly relying on conventional models such as 
U-Net, SegNet, and FCN, thereby overlooking recent 
state-of-the-art architectures. 

Addressing this gap, this study aims to develop an 
ensemble deep learning model comprising DeepLabV3+, 
UNet++, conditional generative adversarial network 

(cGAN), Feature Pyramid Network (FPN), and Pyramid 
Scene Parsing Network (PSPNet) architectures for 
building extraction from very high-resolution imagery. 
The primary motivation behind this endeavor lies in 
harnessing the collective power of diverse deep learning 
architectures to enhance the accuracy and robustness of 
building extraction algorithms. By integrating recent 
state-of-the-art models into an ensemble framework, this 
research seeks to push the boundaries of existing 
methodologies and pave the way for more effective and 
efficient urban monitoring and management strategies.  

 

2. Method 
 

In this study, we utilized the open-access Wuhan 
University (WHU) building dataset, as detailed in the 
study by [35] . The dataset comprises both aerial and 
satellite images, with a specific focus on the aerial 
building dataset. This subset encompasses 8,189 natural 
image tiles, each measuring 512 × 512 pixels, and 
exhibits a spatial resolution of 0.30 meters, down 
sampled from the original 0.075-meter resolution data. 
Notably, the dataset encompasses 187,000 individual 
buildings located in Christchurch, New Zealand. The 
labels for these buildings were precisely generated 
through manual editing of the original vector data 
obtained from the land information service of New 
Zealand. Importantly, the dataset offers comprehensive 
coverage of diverse urban landscapes, encompassing 
rural, residential, cultural, and industrial areas within the 
city. For visual reference, sample image tiles and their 
corresponding labels from the dataset is provided in 
Figure 1. 
 

 

 
Figure 1. Sample 512 x 512 pixels size image tiles and 
corresponding building labels from the WHU buildings 
 

During this investigation, we partitioned the WHU 
dataset into distinct subsets designated for training, 
validation, and testing purposes. The training set 
comprises 4,736 image tiles, encompassing 130,500 
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building labels, while the validation set consists of 1,036 
image tiles containing 14,500 building labels. 
Additionally, the test set comprises 2,416 image tiles, 
containing a total of 42,000 building labels.  

We employed five distinct deep learning 
architectures, specifically DeepLabv3+, UNet++, Pix2Pix, 
Feature Pyramid Network (FPN), and Pyramid Scene 
Parsing Network (PSPNet). Notably, [25] conducted a 
comprehensive assessment of DeepLabv3+, U-Net, 
UNet++, FPN, and PSPNet architectures for building 
segmentation, utilizing a proprietary dataset from 
Istanbul. Their findings demonstrated promising 
performance across various datasets, thus motivating 
our adoption of DeepLabv3+, UNet++, FPN, and PSPNet 
architectures. Furthermore, instead of the U-Net 
architecture, we opted for the Pix2Pix model owing to its 
demonstrated efficacy in prior studies, leveraging its 
conditional generative adversarial network (cGAN) 
structure. 

DeepLab represents a sophisticated semantic 
segmentation model developed under Google, 
constituting an open-source framework. The evolution of 
the DeepLab architecture has been notable, transitioning 
from its initial version in 2014 [36] to the more recent 
DeepLabV3+ iteration introduced in 2018 [37]. 
Distinguished by its fusion of encoder-decoder network 
principles and spatial pyramid pooling techniques, 
DeepLabV3+ capitalizes on a modified Xception 
architecture, strategically employing atrous 
convolutions to improve issues associated with low-
resolution features. Furthermore, the model 
incorporates atrous spatial pyramid pooling, facilitating 
the comprehensive representation of objects across 
multiple scales. Depth wise separable convolution, 
integral to both Atrous Spatial Pyramid Pooling (ASPP) 
and decoder modules, enhances network efficiency and 
robustness. ASPP comprises multiple layers of parallel 
convolutions with varying dilation rates, each generating 
distinct feature maps, subsequently associated into a 
cohesive final feature map. This multiplicity of parallel 
convolution layers enables the model to perceive objects 
and contextualize images across diverse scales. To refine 
segmentation outcomes and delineate object boundaries 
more precisely, a dedicated decoder module is 
introduced. Through this intricate design, DeepLabV3+ 
exhibits a high capacity for accurate image segmentation, 
particularly in the delineation of fine boundaries. 

The UNet++ architecture, proposed by [38], 
constitutes a deep-trained encoder-decoder network 
characterized by a complex arrangement of nested and 
dense skip connections linking the encoder and decoder 
subnetworks. Unlike its predecessor, the original U-Net, 
UNet++ distinguishes itself through three key 
modifications: redesigned skip pathways, incorporation 
of dense skip connections, and implementation of deep 
supervision mechanisms. In the redesigned skip 
pathways of the UNet++ architecture, the output from the 
preceding convolution layer within the same dense block 
is fused with the upsampled output of the corresponding 
lower dense block. Dense skip connections are 
strategically integrated into the skip pathways between 

the encoder and decoder components, drawing 
inspiration from DenseNet [39] to enhance segmentation 
accuracy and optimize gradient flow. Notably, dense 
scatter connections facilitate the aggregation of all 
preceding feature maps, ensuring their propagation to 
the current node through dense convolution blocks along 
each jump link, thereby generating multiple full-
resolution feature maps. Deep supervision is a pivotal 
design aspect of UNet++, involving the creation of multi-
resolution segmentation maps. This deep supervision 
mechanism serves as an effective regularization 
technique, fostering classification accuracy and 
facilitating feature learning in scenarios characterized by 
limited training data and relatively shallow network 
architectures. 

The concept of utilizing Adversarial Networks to 
generate images was originally introduced by [40]. In the 
training of Generative Adversarial Networks (GANs), two 
networks engage in a simultaneous competition: a 
generator network produces synthetic data intended to 
closely match the distribution of the training data, while 
a discriminator network aims to distinguish between real 
and counterfeit data. In the present study, we have 
employed Pix2Pix [41] for conditional Generative 
Adversarial Network (cGAN) implementation. 

Pix2Pix is designed to learn mapping from an input 
image to generate a corresponding output image, 
employing a defined loss function during training [41]. 
Its adaptability allows it to be applied to a variety of 
problem domains, as it is not constrained to specific 
applications. The architecture of Pix2Pix encompasses a 
U-Net based design for the generator component, while a 
PatchGAN classifier is utilized on the discriminator side. 
To address challenges related to generating high-
resolution output and mitigating bottlenecks associated 
with progressively down sampling inputs, skip 
connections are incorporated between each layer within 
the generator. On the discriminator side, PatchGAN 
operates to distinguish the realness of images based on N 
x N patches, traversing the entire image to compute a 
final output through averaging responses. This approach 
ensures the modelling of high-frequency details by 
leveraging the structural information present in local 
image patches. 

The Feature Pyramid Network (FPN), as introduced 
by [42], represents a fully convolutional neural network 
framework tailored for semantic segmentation tasks. 
FPN integrates feature pyramids, a critical component 
utilized for the detection of objects across varying scales. 
These pyramids facilitate the systematic scanning of the 
model across both spatial locations and pyramid levels, 
thereby enabling the detection of objects across a broad 
spectrum of scales, resulting in the generation of multi-
scale feature maps. Central to the functionality of FPN is 
the fusion of information derived from both lower and 
higher-level features to inform prediction processes. 
This is achieved through a top-down architectural design 
supplemented by lateral connections for the generation 
of high-level multi-scale feature maps. Importantly, each 
pyramid level produced within the FPN architecture 
maintains consistent channel dimensions. While FPN is 



International Journal of Engineering and Geosciences, 2025, 10(3), 352-363 
 

 

355 
 

primarily devised for object identification tasks, its 
adaptability extends to encompassing segmentation 
tasks as well. 

PSPNet proposed by [43] represents a widely 
adopted neural network architecture, commonly 
utilizing ResNet backbones to construct the initial 
feature map. This model capitalizes on the global context 
of input images through the incorporation of a pyramid 
pooling module. Within the encoder subnetwork, 
convolutional neural networks are employed to extract 
feature maps [44]. Subsequently, a pyramid 
decomposition module is applied to gather diverse 
subregion representations, followed by super-sampling 
and merging layers for the generation of a 
comprehensive final feature representation that 
encapsulates both local and global contextual 
information. The pyramid pooling module operates 
across four distinct pyramid scales, facilitating the 
aggregation of features. Subsequently, the feature maps 
are organized into multiple groups and upsampled to 
their original dimensions, before being combined with 
the original feature maps. This strategic integration 
ensures the preservation and fusion of both low-level 
and high-level features, thereby enriching the overall 
representation with a blend of local and global contextual 
characteristics. This sophisticated architecture enables 
PSPNet to effectively capture complex spatial 
relationships and semantic information within images, 
thereby facilitating accurate segmentation outcomes 
across a diverse array of tasks and datasets. 

Ensemble methods deviate from conventional 
learning approaches by constructing a collection of 
models and fusing their outputs, thereby leveraging the 
complementary strengths of individual models to 
enhance predictive performance. Unlike traditional 
methods that aims to formulate a singular model from 
training data, ensemble methods accommodate a 
spectrum of model complexities, ranging from weak 
learners capable of surpassing random guessing to 
potent models adept at delivering precise predictions. 
The significance of ensemble methods dates to seminal 
works by [45] and [46], which laid the foundation for 
their widespread adoption since the 1990s. Typically, the 
construction of an ensemble unfolds in two primary 
stages: first, the development of constituent core models, 
and subsequently, their fusion into a cohesive ensemble. 

In this study, we employed the majority voting 
method to craft our ensemble model. Despite its 
apparent simplicity, the majority voting method has 
exhibited efficacy across diverse applications within the 
literature, as evidenced by studies conducted by [47], 
[48], and [49]. Within the majority voting framework, 
each model contributes a class label vote for every pixel, 
with the final prediction being determined by the class 
that garners more than half of the collective votes. 
Detailed definition of the majority voting processes can 
be found in the seminal work by [50], which offers 
insights into the operational mechanics underlying this 
straightforward yet effective ensemble method. Through 
the adoption of the majority voting approach, our study 
aims to capitalize on its demonstrated efficacy and 

simplicity, thereby yielding robust and reliable ensemble 
predictions in the context of semantic segmentation 
tasks. 

 
3. Results  
 

In this study, the WHU building dataset served as the 
main data source for training, validation, and testing 
procedures, conducted within the Python environment 
utilizing the PyTorch library. The training iterations of 
DeepLabV3+, UNet++, PSPNet, and FPN architectures 
were executed on a computing system equipped with a 
Nvidia Tesla P100 PCIE 16 GB GPU. Conversely, training 
sessions for the Pix2Pix architecture were conducted on 
a separate computing setup featuring an NVIDIA GeForce 
GTX1080 Ti GPU with 11 GB RAM, alongside an Intel® 
CoreTM i7-8700K 3.70GHz processor. A schematic 
representation of the study's workflow is provided in 
Figure 2. Detailed specifications of the hyperparameters 
utilized for each deep learning architecture are 
delineated in Table 1. For Pix2pix, Binary Cross Entropy 
was chosen as it aligns with its adversarial training 
framework, ensuring stable optimization and 
consistency with GAN-based image translation practices. 
 

 
Figure 2. General workflow of the study 

 

Table 1. Hyperparameters used for training process of 
each DL architecture. 

 DeepLabv3+ Unet++ PSPNet FPN Pix2Pix 

Train 4736 4736 

Validation 1036 - 

Test 2416 2416 

Epochs 30 30 

Loss 
Function Dice Loss 

Binary 
Cross 
Entropy 

Activation 
Function 

Sigmoid Sigmoid 

Optimizer Adam Adam 

Batch Size 4 1 

 

Furthermore, an invetigation was conducted on the 
efficiency of various encoders, specifically EfficientNet-
b6, SE-ResNeXt101, and InceptionResNetv2, within the 
context of DeepLabV3+, UNet++, PSPNet, and FPN 
architectures, guided by their documented efficiencies in 
prior literature as highlighted by [25]. Comprehensive 
accuracy metrics related to each architecture as well as 
the ensemble network are detailed in Table 2. The 
EfficientNet encoder exhibited superior performance 
across the DeepLabv3+, UNet++, and FPN architectures. 
Conversely, the SE-ResNext encoder demonstrated a 
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slight advantage over the EfficientNet encoder within the 
PSPNet architecture. 
 
Table 2. Accuracy metrics derived from the evaluation 
with the test dataset.  

(%) Encoder Acc. IoU Prec. Rec. F1 

DeepLabv3+ EfficientNet 98.86 90.22 95.44 94.25 94.85 

Unet++ EfficientNet 98.96 91.01 95.60 94.98 95.29 

PSPNet SE-ResNeXt 98.62 88.20 94.85 92.62 93.72 

FPN EfficientNet 98.87 90.27 95.30 94.47 94.88 

Pix2Pix - 98.01 83.50 90.97 91.03 91.00 

Emsemble - 98.96 91.06 95.94 94.70 95.32 

 
The comprehensive evaluation of accuracy metrics 

reveals that the proposed ensemble network surpassed 
all individual architecture employed in terms of all 
accuracy metrics, except with a marginal difference in 
recall. Specifically, the ensemble network achieved 
accuracy, IoU, precision, recall, and F1-score values of 
98.96%, 91.06%, 95.94%, 94.70%, and 95.32%, 
respectively.  

 

Notably, while UNet++ achieved the highest scores 
when considered individually, both UNet++ and the 
ensemble network yielded identical accuracy values. 
However, the recall value of UNet++ surpassed that of the 
proposed ensemble network. Example prediction results 
are presented in Figure 3 for reference. 

Visual examination of the prediction outputs 
indicates a degree of similarity among the results 
obtained from DeepLabv3+, UNet++, and FPN. However, 
PSPNet exhibits the tendency to generate false-positive 
pixels, particularly manifesting as connections between 
adjacent buildings, as illustrated in Figure 3(a5). 
Moreover, Pix2Pix manifests small false-positive noisy 
patches, often attributed to vehicles.  

DeepLabv3+ and UNet++ excel in preserving the 
shapes of buildings, particularly with respect to their 
edges and minor protrusions. Furthermore, these 
architectures demonstrate proficiency in accurately 
extracting small structures such as sheds or garages, as 
depicted in Figure 3b. 

Figure 3. Prediction outcomes derived from the evaluation with the test dataset. The figure displays: (1) the original test 
image, (2) the corresponding ground truth, and the segmented predictions generated by (3) DeepLabv3+, (4) UNet++, (5) 
PSPNet, (6) FPN, (7) Pix2Pix, and (8) the Ensemble Network. 



International Journal of Engineering and Geosciences, 2025, 10(3), 352-363 
 

 

357 
 

 
Given UNet++'s superior individual performance, 

comprehensive comparisons were conducted between 
UNet++ and the ensemble network, as depicted in Figure 
4. These comparisons juxtapose the prediction results 
with the ground truth, facilitating a detailed assessment. 
Notably, the ensemble network demonstrates 
competency in accurately delineating irregularly shaped 
buildings, including those with rounded or pointed 
features, as evidenced in Figure 4(c) and 4(d). Despite 
slight distortions along the edges, the network 
successfully captures the general structural attributes of 
rounded buildings (Figure 4c), while also preserving 
sharp edges, even in instances of narrow or pointed 
building segments (Figure 4d). These findings 
underscore the efficacy of the proposed ensemble 
network in extracting buildings with well-preserved 
edges and minimal false-positive identifications. 
 

4. Discussion 
 

To further explore and test generalization the 
capabilities of the ensemble network, additional tests 
were conducted using images independent from the 
WHU dataset. In the initial test, predictions were 
executed on an ortho-photo obtained from an Unmanned 
Aerial Vehicle (UAV) over Istanbul. The raw images were 
captured using a DJI Phantom 4 equipped with a true-
color camera, resulting in an orthophoto with a ground 
sample distance of 3 cm. However, similar to the 
approach adopted for the WHU building dataset, the 
orthophoto image was down sampled to a 30 cm 
resolution. This downsampling process, while necessary 
for consistency with the training data, likely resulted in 
the loss of fine-grained details that are critical for  

 
accurate building extraction in HR imagery. Comparative 
analysis of the results revealed that while the ensemble 
network exhibited a low incidence of false positives, it 
struggled to accurately extract significant portions of 
buildings, resulting in a notable number of false 
negatives (Figure 5). UNet++ demonstrated a similar 
performance, except with a higher occurrence of false 
positives (Figure 5c and 5d). This discrepancy between 
false positives and false negatives is reflected in the 
precision and recall values for each image, as detailed in 
Table 3.  

The challenges observed in this test can be attributed 
to several factors specific to high-resolution imagery. 
First, the loss of detail due to downsampling may have 
blurred or eliminated distinguishing features, 
particularly for buildings with concrete roofs, which 
were often entirely missed (Figure 5a). Second, the 
increased complexity of high-resolution imagery, with its 
finer textures and patterns, likely contributed to the 
misclassification of pathways as buildings, especially 
when they exhibited similar spectral or textural 
characteristics to nearby roofs (Figure 5c). Additionally, 
cloud shadows significantly impacted segmentation 
performance, as evidenced in Figure 5b. This sensitivity 
to environmental factors is a known challenge in high-
resolution imagery, where variations in lighting and 
shadows are more pronounced and can adversely affect 
model performance. These findings highlight the 
limitations of the current model when applied to high-
resolution data and underscore the need for future 
improvements.  

Figure 4. Samples illustrating the comparison between the ensemble network and UNet++ (Left: Input Image, Right: 
Prediction comparison). (a), (b), (c) and (d) are examples for different types of buildings. (a) & (b): Residential buildings, 
(c): Round buildings, (d): Industrial buildings 
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Figure 5. Prediction examples for UAV images from 
Istanbul. Left Column: Test Image, Middle Column: 
Ground Truth, Right Column: Prediction Comparison. 
 
Table 3. Accuracy metrics for UAV Images from Istanbul 
using the ensemble network (first line) and UNet++ 
(second line). 

First Line: The Ensemble Network 
Second Line: UNet++ 
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Figure 6. Prediction examples for Pléiades imagery from 
Istanbul. Left Column: Test Image, Middle Column: 
Ground Truth, Right Column: Prediction Comparison. 
 
Table 4. Accuracy metrics for Pléiades imagery from 
Istanbul using the ensemble network (first line) and 
UNet++ (second line). The best results from the Istanbul 
dataset [25] are also given for reference. 

First Line: The Ensemble Network 
Second Line: UNet++ 
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      In the presented study, an ensemble network 
comprising DeepLabv3+, UNet++, PSPNet, FPN, and 
Pix2Pix architectures was developed. The proposed 
network demonstrates commendable performance on 
the trained WHU dataset, yielding precise outcomes 
when compared to recent literature. A comprehensive 
overview of the accuracy results obtained with the WHU 
aerial dataset is presented in Table 5.

 
 



International Journal of Engineering and Geosciences, 2025, 10(3), 352-363 
 

 

359 
 

Table 5. Accuracy metrics derived from evaluations conducted with the WHU aerial dataset as reported in recent 
literature. *Baseline denotes the baseline method. A "-" indicates that the accuracy metric value is not provided in the 
corresponding paper. (Arranged chronologically). 

Architecture IoU (%) Precision (%) Recall (%) F1-Score (%) 
Siamese U-Net* [35] 88.40 93.80 93.90 - 

RFA-UNet [51] 90.02 - - 94.75 
EU-Net [52] 90.56 94.98 95.10 (9th) 95.04 
SRI-Net [53] 89.09 95.21 93.28 94.23 
DE-Net [54] 90.12 95.00 94.60 94.80 
ESFNet [55] 85.34 - - - 
SR-FCN [56] 88.90 94.40 93.90 - 

HFSA-Unet [57] 90.72 95.09 95.18 (8th) 95.13 
ENRU-Net [58] 90.77 - - 95.16 
ARC-Net [59] 91.80 (6th) 96.40 (4th) 95.10 (9th) 95.70 (5th) 
MSCRF [60] 91.99 (5th) 95.07 96.47 (4th) - 

PISANet [61] 87.97 94.20 92.94 93.55 
BuildingNAS [62] 86.95 - - - 

EANet [63] 93.33 (3rd) 98.67 (1st) 96.42 (5th) 97.52 (2nd) 
Attention-Based [64] 90.29 94.97 94.81 (11th) 94.90 

DR-Net [65] 88.30 - - 93.80 
Self-Attention U-Net [66] 89.39 93.25 95.56 (6th) 94.40 

SST [67] 89.01 - - 94.13 
BE Network [68]  86.15 91.76 93.37 91.97 

DLEBFP [69] 85.10 92.60 91.40 - 
CT-Unet [70] 91.00 94.95 94.02 - 

csAG-HRNet [71] - 98.42 (2nd) 98.70 (2nd) 98.55 (1st) 
RU-Net [22] 94.61 (1st) 97.48 (3rd) 96.98 (3rd)  97.23 (3rd) 

GCCINet [72] 78.88 89.09 87.31 88.19 
SCGF ConvNets [73] 90.90 96.00 (5th) 94.60 95.30 

CA-BASNet [74] 93.43 (4th) 90.13 98.79 (1st) 91.35 
MSL-Net [75] 90.40 95.10 94.80 (12th) 95.00 

AEUNet++ [76] 91.08 (7th) 95.23 95.43 (7th) 95.33 (6th) 
STEB-UNet [77] 93.89 (2nd) - - 96.85 (4th) 

Boundary DCNN [78] 89.97 94.99 94.45 94.72 
ASGASN [79] 89.40 93.80 95.10 (9th) 94.40 
CFENet [80] 87.22 - - 92.01 

Unet++ w/ EfficientNet (Ours) 91.01 95.60 94.98 (10th) 95.29 
Ensemble Network (Ours) 91.06 (8th) 95.94 (6th) 94.70 (12th) 95.32 (7th) 

 
Based on the literature review, our proposed 

ensemble model ranked 8th, 6th, 13th, and 7th for IoU, 
precision, recall, and F1-score, respectively, among the 
studies utilizing the WHU aerial building dataset. The 
average deviation between the highest accuracy metric 
value reported in the literature and our findings is 
approximately 3% for all accuracy metrics. This variation 
may be attributed to the utilization of the same 
architecture in the ensemble model without structural 
modifications. Nevertheless, the outcomes remain 
promising and effective, particularly when considering 
the examination of 32 studies published between 2019 
and 2022. 

 
5. Conclusion  
 

The main objective of this study is to generate precise 
building maps from VHR aerial imagery, which constitute 
a fundamental element of digital twin frameworks for 
urban environments. To achieve this goal, we have 
devised an ensemble model leveraging contemporary 
deep learning architectures, utilizing the publicly 

available WHU aerial building dataset. Our findings 
demonstrate the efficiency of ensemble models in 
segmenting buildings from VHR imagery. While our 
proposed ensemble network and UNet++ exhibited 
comparable performance based on accuracy metrics, 
comparative analyses revealed that our ensemble 
network effectively mitigates false positives, a challenge 
encountered with UNet++. Hence, it can be inferred that 
the integration of other architectures contributes to the 
ensemble model's ability to reduce false positives. 

Furthermore, our ensemble model underwent testing 
across various scales and with different sensors. While 
our model, trained on aerial data, exhibited satisfactory 
performance when applied to UAV imagery, similar 
results could not be replicated with VHR optical satellite 
imagery, as the predictions were deemed insufficient for 
further analysis. Consequently, plans are underway to 
conduct experiments using 30cm-resolution VHR 
satellite imagery to address this limitation. 

The implications of our study extend to various 
domains including population growth management, 
disaster preparedness, environmental monitoring, and 



International Journal of Engineering and Geosciences, 2025, 10(3), 352-363 
 

 

360 
 

sustainable resource utilization. Moreover, our 
methodology holds promises for facilitating digital twin 
generation, offering developments that prioritize both 
environmental sustainability and digital transformation. 
The automated analysis of existing settlement patterns 
and building mapping using deep learning techniques 
presents an efficient, rapid, reliable, and labor-saving 
approach that aligns with the objectives of digitalization, 
data reuse, and citizen science. 

In conclusion, while the results obtained in this study 
are promising, our future studies aim to refine our 
approach by developing a novel deep learning ensemble 
model encompassing a broader array of architectures. 
This approach will enable us to achieve superior results 
and facilitate comparative assessments against various 
existing ensemble models in forthcoming studies. 
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