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 Image colorization is the process of obtaining colored images by assigning RGB color values to 
a grayscale or panchromatic image. This technique has an important place in the field of 
computer vision because colored images provide a better visual experience and are widely 
used in areas such as image recognition and object detection. It also has many practical 
applications such as coloring historical photographs, adding colors to be used in the analysis 
of medical images, and improving the analysis of satellite images. Colorization methods are 
divided into two main categories: brush coloring and sample-based coloring. Both methods 
have certain limitations. The performance of these methods depends on the selected reference 
images and may sometimes contain false colors or significant errors. While these methods 
require operator intervention or pre-defined rules, deep learning based methods are largely 
automated and uses neural networks to understand the global and local context of an image, 
leading to more realistic and contextually accurate colorizations. 

The presented study uses the Denoising Diffusion Null-Space Model (DDNM) architecture. 
DDNM is a method that aims to obtain more efficient and high-quality results compared to the 
coloring approaches available in literature. In the study, the weight data of the DDNM 
architecture was used to predict colored images from panchromatic images using the 
SpaceNet 6 open access dataset. The SpaceNet 6 dataset includes a combination of Capella 
Space 0.5m Synthetic Aperture Radar (SAR) imagery and Maxar's 0.5m electro-optical (EO) 
imagery. In order to assess the results, Peak Signal-to-Noise Ratio (PSNR) and Structural 
Similarity Index Measure (SSIM) accuracy metrics are calculated. 
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1.Introduction 
 
Image colorization, a fundamental problem in 

computer vision, is the process of converting gray-scale 
or single-band images into color (RGB) images. With this 
method, the visual interpretation of images is enhanced 
and their features are more clearly revealed [8]. (Anwar 
et al., 2025). Conventional colorization methods fall into 
two main categories: brush-based colorization and 
sample-based colorization. Both methods have certain 
limitations. The performance of these methods depends 
on the reference images selected and can sometimes 
contain false colors or significant errors. The diversity of 
features and the extensive area covered by remote 
sensing images make colorization a particularly 
challenging task. 

Deep learning has emerged as a powerful tool for 
image colorization, addressing the challenges posed by 

traditional methods  [1]. Deep learning-based image 
colorization methods demonstrate significant 
advantages over conventional techniques. These 
approaches operate with minimal human intervention, 
leveraging automated processes to enhance efficiency. 
By learning and incorporating both global and local 
image context, they generate realistic and contextually 
accurate color predictions. Unlike traditional methods, 
they generalize effectively across diverse and complex 
image datasets, producing vibrant and natural results. 
Furthermore, deep learning models exhibit scalability, 
enabling them to process large datasets and adapt to 
specific tasks with minimal manual adjustments. Their 
ability to emulate various artistic styles offers added 
flexibility for creative applications. The use of pretrained 
models facilitates transfer learning, reducing data 
requirements and computational effort during training. 
Additionally, these methods possess semantic 
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understanding, allowing for object recognition and the 
application of contextually appropriate colors. Their 
robustness in handling novel or unseen data further 
underscores their versatility and superiority over 
traditional methods [2]. In this context, it has been 
determined that the use of deep learning models, which 
are a part of our lives, in image colorization studies has 
increased and different techniques are included in the 
literature. [3].   Li proposed a generative model with 
multi-discriminator for colorizing high resolution 
grayscale satellite images. [4].   Wu aimed to colorize 
remote sensing data by combining the DCGAN model, 
which is one of the leading generative models, with the 
multi-scale convolution Squeeze-and-Excitation 
Networks (SEnet) structure. [5].    Ji et al. proposed the 
MR-GAN architecture based on the CycleGan model for 
SAR image enhancement. The MR-GAN architecture aims 
to minimize the error by repeating the synthesis stage of 
SAR and optical satellite images multiple times using 3 
CNNs in forward propagation[6]. Wu et al. converted 
RGB images into YUV images and aimed to produce UV 
bands using the Y band. In this context, they obtained 
good results with the DCGAN model with a deep 
convolution layer. Wang  integrated their low-level 
correlation feature extraction (LCFE) module into the 
DCGAN model to create a model that preserves salient 
shallow detail features [7].. Bose et al. (2022) proposed 
an innovative dual attention fusion of receptive kernels 
(DARK) framework for coloring panchromatic images 
from color images using only a few training data[9]. Fu et 
al. (2024) developed the U-VIT model, a transformer-
based generative model that aims to overcome the 
challenging training conditions in existing generative 
networks for coloring satellite images and the efficiency 
problem of Reducing Diffusion Probability Models 
(DDPM) requiring multiple samples. [10].   

 
Deep learning architectures for satellite image 

colorization are often subject-specific and lack 
sustainability. In this context, the use of the Diffusion 
Null-Space Model (DDNM) architecture, which is a zero-
shot colorization model that does not require training, 
was tested in the colorization of satellite images. Aim of 
the study: 

-  To demonstrate that high-resolution 
Panchromatic images can be colored with artificial 
intelligence, 

- Evaluating the sustainability of a DDNM 
architecture that operates without the need for training, 

- Identifying potential challenges in colorizing 
satellite images with diverse objects. 

 
2. Material and methods 

2.1 SpaceNet-6 Dataset 

Remote sensing methods vary widely in spatial 
resolution, sensor type, and intended application. Optical 
satellites often rely on panchromatic bands to achieve 
high spatial resolution. Pansharpening, a technique that 
combines low-resolution multispectral bands with high-
resolution panchromatic bands, is commonly used to 

generate high-resolution color satellite imagery. 
However, this process can introduce spectral distortions. 

This study explores a novel approach to 
pansharpening by leveraging deep learning techniques 
to colorize satellite images. The MultiSensor All Weather 
Mapping (MSAW) dataset [8], comprising high-
resolution optical and SAR imagery of Rotterdam port, 
was selected for this study. The optical images in the data 
set were obtained from the Maxar Worldview-2 satellite. 
A cloud-free image strip was collected by satellite on 
August 31, 2019 at 10:44 AM, with a 236 km² spatial 
extent and an 18,4° off-nadir viewing angle. The optical 
data set consists of 3 different optical data: 

- one band panchromatic (0.5m),  
- four multi-spectral bands (2.0m): blue, green, 
red,and near-infrared (NIR)  
- four pan-sharpened bands (0.5m): blue, green, red 
and NIR [8]. 
 
 This dataset offers diverse geographical features, 

including dense urban areas, rural landscapes, and 
coastal environments. For our experiments, we focused 
on six specific land cover classes: Industry, Forest, 
Harbor, Road, Building, and Seaside. The dataset, 
originally composed of 900x900 images, was divided into 
smaller 256x256 patches for analysis (Figure 1). 

 

 
Figure 1. RGB(a) and panchromatic(b) imagery within 

the dataset 

 
2.2. Diffusion Null-Space Model  
 

Image Restoration (IR) models are typically tailored 
to specific tasks, limiting their versatility. The Diffusion 
Null-Space Model (DDNM) offers a more general 
approach, addressing various image restoration 
challenges such as resolution enhancement, colorization, 
deformation correction, and blur removal without 
requiring extensive training. 

 
DDNM leverages a pre-trained diffusion model, 

focusing on refining the null-space [15]  (during the 
reverse diffusion process. This approach ensures 
realistic and consistent results without the need for 
optimization, providing a zero-shot solution. 
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ImageNet and CelebA datasets were used in the 
training phase of the DDNM architecture. 

The ImageNet dataset [11] consists of 14,197,122 
images labeled according to the WordNet hierarchy with 
a size of 30x50. It is widely used in image classification 
and object detection studies. 

The CelebA dataset [12]  consists of 202,599 aligned 
and cropped facial images, each with a resolution of 
178x218 pixels, sourced from 10,177 distinct celebrities. 
Each image is associated with a comprehensive set of 40 
binary annotations indicating various facial attributes, 
including hair color, gender, and age. 

The DDNM comprises a forward process that 
gradually adds noise to the data and a reverse process 
that aims to reconstruct the original data from the noisy 
input [13]. A schematic representation of the model is 
illustrated in Figure 2. 
 
 

 

 
 

 
Figure 2. Schematic illustration of the model 

 
The hyperparameters of the DDNM architecture are 

presented in Table 1. 
 

Table 1. Hyperparameters 
Hyperparameters 

Diffusion steps 1000 
Batch size 1 
Beta start 0.0001 

Beta schedule Linear 

Number of channels 128 
Noise schedule Linear 

Attention resolution 16,8 
 
2.3 Accuracy Metrics 
 

 To assess the quality of the colorized images 
generated through the image colorization process, 
accuracy metrics are indispensable. This study employs 
the widely adopted peak signal-to-noise ratio (PSNR) and 
structural similarity (SSIM) metrics, which are prevalent 
in the literature for evaluating image quality and 
similarity, to assess the performance of our deep learning 
model. 

 
2.3.1 Peak Signal-to-Noise Ratio 
 

Peak Signal-to-Noise Ratio (PSNR) is an engineering 
metric employed to quantify the ratio between the 
maximum potential power of a signal and the disruptive 
power of noise that compromises its fidelity. Given the 
extensive dynamic range of many signals, PSNR is 
typically expressed logarithmically in decibels (dB). 

 
PSNR is a widely-used metric for assessing the 

reconstruction quality of images and videos subjected to 
compression-induced loss. It finds application in diverse 
domains such as image compression, enhancement, and 
quality assessment. Image compression, the process of 
reducing image file size, benefits from PSNR evaluation 
to gauge the performance of compression algorithms. A 
high PSNR value indicates effective compression that 
preserves image quality. 

 
Image enhancement, which aims to improve the 

quality of degraded images, also leverages PSNR to 
evaluate the efficacy of enhancement algorithms. By 
effectively removing noise or other artifacts, 
enhancement techniques can yield images with higher 
PSNR values. 

 
PSNR offers a reliable and repeatable method for 

measuring image quality by comparing it against images 
processed with various algorithms [14].  

The mathematical formula for calculating PSNR is 
presented in Equation (1): 

 

𝑃𝑆𝑁𝑅(𝑓, 𝑔) = 10 (
2552

𝑀𝑆𝐸(𝑓,𝑔)
)    (1)   

 
where   

f = reference image, 
g = colorized image, 
255 = maximum grey value of a pixel, 

  MSE = mean squared error, 
Mean squared error (MSE). 
 

2.3.2 Structural Similarity 
Structural Similarity Index Measure (SSIM) is a widely-
used technique for assessing the perceptual quality of 
digital images, including television, cinema, and various 
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other digital media formats. SSIM quantifies the 
similarity between two images. 
 
As a full-reference metric, SSIM relies on an 
uncompressed, distortion-free reference image to 
evaluate the quality of a test image. Unlike other metrics 
such as Mean Squared Error (MSE) or Peak Signal-to-
Noise Ratio (PSNR), which assess absolute error and 
image details, SSIM focuses on the structural similarity 
between images [14].  
The mathematical formula for calculating SSIM is 
presented in Equation (2): 
 
 

𝑆𝑆𝐼𝑀(𝑓, 𝑔) =
(2𝜇𝑓𝜇𝑔+𝑐1)(2𝜎𝑓𝑔+𝑐2)

(𝜇𝑓
2+𝜇𝑔

2+𝑐1)(𝜎𝑓
2+𝜎𝑔

2+𝑐2)
      (2) 

 
where, 
 𝜇𝑓= average of reference image, 

 𝜇𝑔= average of colorized image, 

 𝜎𝑓= variance of reference image, 

 𝜎𝑔= variance of colorized image, 

 𝑐1, 𝑐2 = two variables to stabilize the division    
with weak denominators. 
 
3. Results and Discussion 
 
In this study, a workstation equipped with an 11th-
generation Intel Core i9-11900 2.50-GHz processor and 
an NVIDIA Quadro RTX 5000 16-GB graphics card was 
utilized for the testing of the deep learning architectures. 
 
During the prediction phase, an investigation was 
conducted to identify the optimal data format for the 
satellite image colorization model. Initially, it was aimed 
to use the raw images at their original size (900x900 
pixels) to assess the impact of image resolution on 
colorization accuracy. However, analysis of the results 
revealed that the model was resizing the input images 
during processing, leading to a loss of detail in the 
satellite imagery. Furthermore, it was determined that 
the model encountered integration issues due to the pixel 
depth exceeding 8 bits. Based on these observations, the 
images were pre-processed by performing normalization 
based on their maximum pixel values and conversion to 
8-bit depth. Subsequently, the images were resized into 
smaller tiles of 256x256 pixels for model prediction. 
Table 2 presents the PSNR and accuracy values achieved 
for the colorized satellite images. 
 

Table 2. Accuracy Results 
Class PSNR SSIM 

Industry 9.0685 0.4797 
Forest 7.6632 0.4839 
Harbor 10.6253 0.2373 

Road 20.8840 0.9249 
Building 11.5581 0.1486 
Seaside 14.8631 0.7171 

 
Visual inspection of the generated colorized images 
(Figure 3) revealed inconsistencies in water region 

coloring. While objects on water surfaces exhibited 
homogeneous colorization, the model struggled to 
differentiate objects within dense forest areas, 
successfully coloring only the tree canopy. Conversely, 
the model demonstrated an ability to distinguish objects 
in mixed-class regions, such as images containing 
residential areas, roads, and green spaces. These objects 
were assigned distinct colors, suggesting class-specific 
colorization attempts. 
 
It was determined that SSIM and PSNR values varied for 
different classes, but the road class achieved the highest 
coloring accuracy. Analysis of the prediction images and 
accuracy measurements further confirmed this 
observation. 
 

 
 

Figure 3. Comparison of prediction images 
(Left to Right Panchromatic image, Prediction 

image, RGB image) 
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4. Conclusion 
 
The achieved accuracy metrics indicate the model's 
potential for real-world application due to its class-
agnostic nature, meaning it can process unseen classes. 
However, the current performance falls short of 
expectations. While the model exhibits the capability to 
colorize satellite imagery based on object density, its 
performance deteriorates in regions with dense forests 
and water bodies. This limitation is attributed to the 
potential lack of satellite images containing such features 
within the training data used for the pre-trained weights 
employed during inference.  
 
Additionally, it is hypothesized that preserving the 
original image depth during pre-processing could lead to 
improved results in future experiments. The model's 
high computational cost necessitates further 
investigation into model architecture modifications and 
hyperparameter optimization. Despite these 
shortcomings, the model offers significant advantages 
over traditional methods: faster processing times and the 
ability to directly generate data without extensive 
training, making it suitable for preliminary information 
gathering. This study demonstrates the potential of 
DDNM for colorization tasks. Furthermore, it suggests 
that colorization approaches utilizing smaller, 
regionally-specific datasets for training, as opposed to 
pre-trained models, could potentially yield more 
accurate results. This shows the scalability potential of 
the DDNM model for applicability to other satellite 
datasets and tasks, enabling broader adoption in diverse 
remote sensing applications. These findings highlight the 
potential for sustainable and efficient use of deep 
learning models in real-world applications, particularly 
by reducing reliance on extensive training datasets and 
enabling faster, region-specific colorization processes. 
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