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Abstract 

 

This paper presents an in-depth literature review that comprehensively covers the major developments, methods, architectures 

and datasets used in the field of human pose prediction up to 2025. The review covers a broad spectrum, starting with traditional 

methods, deep learning-based techniques, convolutional neural networks, graph-based approaches and more recently prominent 

transformer-based models. In addition to two-dimensional (2D) and three-dimensional (3D) human pose estimation methods, 

the paper analyses in detail the diversity of data sets, applications of Microsoft Kinect technology, real-time pose estimation 

systems and related architectural designs. Overall, the review of more than 120 papers shows that existing systems have made 

significant progress in terms of accuracy, computational efficiency and practical applications, but that there are still some 

challenges to overcome in complex scenarios such as multiple person detection, occlusion problems and outdoor environments. 

This in-depth analysis highlights current trends in the field, future research directions and potential applications. 
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1.  INTRODUCTION 

Human pose estimation has evolved significantly over time, 

transitioning from conventional methods to advanced deep 

learning techniques. Early approaches utilized pictorial 

structures and traditional convolutional neural networks [1]. 

Since then, the field has progressed to more sophisticated 

methods such as DeepPose, Adversarial PoseNet, and 

OpenPose [2]. Recent advancements include the integration 

of stacked hourglass networks and part proximity fields [3]. 

Researchers have concentrated on enhancing network 

architectures, optimizing training, and developing post-

processing techniques to enhance performance [4]. The field 

has expanded to encompass both 2D and 3D pose estimation, 

with applications ranging from human-computer interaction 

to sports analysis [5]. Notwithstanding the significant 

progress that has been made, challenges remain in pose 

estimation for multiple individuals, especially in outdoor 

environments [6]. Ongoing research continues to address 

these limitations and explore new approaches to improve 

accuracy and robustness [7,8]. 

This study aims to provide a comprehensive overview of 

technological and methodological developments in the field 

of human pose estimation. In this context, seven main 

research questions have been identified and articles retrieved 

from scientific databases have been meticulously analyzed in 

line with these questions. A broad perspective is presented, 

from traditional methods to modern deep learning 

approaches, from model architecture to the diversity of 

datasets, as well as real-time applications and the integration 

of sensor technologies. The results evaluate the current 

application areas and performance criteria of human pose 

estimation and provide important clues to the potential for 

future research and application. 

 

2.  MATERIALS AND METHODS 

Firstly, the research questions were determined, and the 

articles related to the research questions were analyzed by 

accessing the relevant databases through Google Scholar. A 

total of 120 articles were analyzed throughout the study. The 

research questions prepared for the study are presented in 

Table 1. 

https://dergipark.org.tr/en/pub/apjess
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Table 1. Research questions of this study 

 Research questions (RQ) 

RQ1 What are the major developments in human 

pose estimation? 

RQ2 Which models are used for 2-dimensional and 

3-dimensional human pose estimation? 

RQ3 Which data sets are used on human pose 

estimation? 

RQ4 What work is done with Microsoft Kinect 

technology? 

RQ5 Which architectures are related to human pose 

estimation? 

RQ6 Which methods are used in real-time human 

pose estimation studies and what are the 

results? 

RQ7 What are the recent advances in human pose 

prediction and how do they compare with past 

developments? 

 

3.  RESULTS AND DISCUSSION 

Articles related to the identified research questions were 

reviewed. 

 

3.1.  Major Developments in Human Pose Estimation 

The field of Human Pose Estimation (HPE) has evolved 

significantly over the years, driven by advances in computer 

vision and deep learning. Table 2 below provides a 

chronological summary of key developments in Human Pose 

Estimation, highlighting key contributions that have shaped 

the landscape of this field. 

 

3.2.  2-Dimentional and 3-Dimensional Human Pose 

Estimation Models 

Human Posture Prediction: Articulated human postures are 

often represented by a combination of singular terms and 

graphical models that are combinations of body parts or 

visual structures [21,22,23]. Recently, significant progress 

has been made with the introduction of ConvNets to learn 

better feature representation [11,22,24,25]. Figure 1 includes 

images of applications related to recent technological 

advancements and new datasets, reflecting the growing 

interest in this field within the scientific community. 

 

The human body, with its lots of limbs and joints, forms a 

sophisticated system, and ascertaining their 3D spatial 

positions accurately can be a demanding task, not only for 

artificial systems but also for humans. Marinoiu and the team 

have investigated how humans grasp the 3D visual position 

space and how this understanding can be related to the 

physical 3D space in which we live [27]. In this study, the 

researchers created a dataset that not only encompassed 2D 

and 3D positions but also included synchronized eye 

movement recordings. They displayed various human body 

configurations and measured how accurately the 3D 

positions were reconstructed. On average, they discovered 

that people's ability to reconstruct 3D positions based on 

visual stimuli provided in laboratory environments was not 

significantly better than existing computer vision algorithms 

[27]. 

 

Despite the encountered challenges, automatic methods 

provide valuable solutions for executing a specific task. 

Approaches based on modelling aim to surmount these 

obstacles by utilizing human body models grounded on prior 

knowledge. Figure 2 represents the most common 3D human 

body models, which are skeletal models encompassing both 

shape and structural features, and both types of models 

delineate kinematic details. 

 

Conventional approaches typically address 2D human pose 

estimation using tree-based models. These models include 

two components: one for identifying body joints and another 

for characterizing binary relationships between pairs of body 

joints [28]. 

 

In the past ten years, various methods, many of which 

employ deep learning techniques, have been devised and 

have significantly enhanced performance on established 

benchmarks [29]. 

 

 
Figure 1. A comprehensive review of real-world 

applications related to human motion analysis and pose 

estimation [26] 

 

 
Figure 2. Body model with 15 joints and tree structure [26] 
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Table 2. Major developments in human pose estimation 

Year Method / Approach Contributions / Explanations 

2014 DeepPose: Deep Neural 

Network Based Pose 

Estimation 

Utilizing deep neural networks (DNNs), the author approached pose estimation as a 

regression problem. Considerable advancement has been made in the realm of 

predicting joint positions through the utilization of cascade regression [9]. 

2016 DeeperCut: Multi-Person 

Pose Prediction 

The integration of large-scale datasets and deep learning architectures has been 

demonstrated to present an effective approach to overcoming overlap and proximity 

problems in crowded scenes [10].  

2016 Stacked Hourglass Networks The innovative convolutional architecture of the model enabled the capture of spatial 

relationships at different scales, with the result that more accurate pose estimation 

was achieved by preserving spatial hierarchies [11]. 

2016 Convolutional Pose Machines The introduction of a sequential prediction framework has been demonstrated to 

indirectly model long-range dependencies between body joints, thereby enhancing 

the accuracy of articulated pose prediction [12]. 

2017 Weakly-Supervised 2D & 3D 

Pose Estimation 

Large-scale 2D annotation data was utilized to develop a unified framework 

integrating 2D and 3D pose estimation tasks [13]. 

2017 3D Pose Estimation from 2D 

Data 

As demonstrated in [14], a significant reduction in error rates has been achieved in 

the estimation of 3D human poses from a single image, through the implementation 

of a volumetric approach that progresses from coarse to fine. 

2018 Simple Baselines It is evident that the adoption of simplified and optimized architectures has enabled 

COCO to attain competitive outcomes on the benchmark, thereby substantiating the 

hypothesis that attaining high performance is indeed feasible through the utilization 

of model simplicity [15]. 

2019 High-Resolution Networks Sun et al. presented a detailed method that improves the accuracy of key point heat 

maps by preserving high-resolution representations in the pose estimation process 

[16]. 

2020 Graph Convolutional 

Networks 

In the field of video-based pose estimation, the study employed graph convolutional 

networks to model the structural relationships between body joints, thereby 

facilitating integrated pose prediction with realistic frame reproduction [17]. 

2021 Decoupled Representations 

for Motion Forecasting 

Parsaeifard et al. developed a novel and effective approach to human motion 

prediction by utilizing decoupled representations to capture complex spatiotemporal 

interactions [18]. 

2022 Bilateral Pose Transformers Yen et al. presented a pioneering model that facilitates more precise detection of 

human anatomical key points by integrating advanced transformer architectures [19]. 

2023 Transformers in Pose 

Estimation 

The employment of transformer architectures in both 2D and 3D pose estimation has 

facilitated the development of efficient solutions to increasingly complex and 

challenging pose estimation tasks [20]. In recent times, this approach has been 

adopted in numerous novel studies. 

 

Table 3. Datasets used in the literature on human pose estimation 

Name of study Year Datasets used 

DeepPose: Human Pose Estimation via Deep Neural 

Networks [9] 

2014 Frames Labeled In Cinema (FLIC) - Leeds Sports Pose 

(LSP) 

2D Human Pose Estimation: New Benchmark and State of 

the Art Analysis [30] 

2014 MPII Human Pose 

Multi-source Deep Learning for Human Pose Estimation 

[31] 

2014 Leeds Sports Pose (LSP) - PARSE UIUC People 

3D Pictorial Structures for Multiple Human Pose 

Estimation [32] 

2014 HumanEva-I - KTH Multiview Football Dataset II 

Flowing ConvNets for Human Pose Estimation in Videos 

[33] 

2015 BBC Pose - Extended BBC Pose - ChaLearn - Poses in 

the wild (PiW) - Frames Labeled in Cinema (FLIC) 

Stacked Hourglass Networks for Human Pose Estimation 

[11] 

2016 Frames Labeled in Cinema (FLIC) - MPII Human Pose 

Structured Feature Learning for Pose Estimation [34] 2016 Frames Labeled in Cinema (FLIC) - Leeds Sports Pose 

(LSP) 

Convolutional Pose Machines [35] 2016 MPII Human Pose - Leeds Sports Pose (LSP) - Frames 

Labeled in Cinema (FLIC) 
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Name of study Year Datasets used 

End-to-End Learning of Deformable Mixture of Parts and 

Deep Convolutional Neural Networks for Human Pose 

Estimation [36] 

2016 Leeds Sports Poses (LSP) - Frames Labeled in Cinema 

(FLIC) - The Image Parse (PARSE) 

Human Pose Estimation with Iterative Error Feedback [37] 2016 MPII Human Pose - Leeds Sports Pose (LSP) 

Realtime Multi-Person 2D Pose Estimation using Part 

Affinity Fields [38] 

2017 MPII human multi-person - COCO 2016 

Multi-Context Attention for Human Pose Estimation [39] 2017 MPII Human Pose - Extended Leeds Sports Poses (LSP) 

Learning Feature Pyramids for Human Pose Estimation 

[40] 

2017 MPII Human Pose - Leeds Sports Pose (LSP) 

Recurrent Human Pose Estimation [41] 2017 MPII Human Pose - Leeds Sports Pose (LSP) 

Vnect: Real-time 3D Human Pose Estimation with a Single 

RGB Camera [42] 

2017 H3.6M dataset - MPI-INF-3DHP dataset 

DensePose: Dense Human Pose Estimation In The Wild 

[43] 

2018 Dense-Pose-COCO (Common Objects in Context) 

PoseTrack: A Benchmark for Human Pose Estimation and 

Tracking [44] 

2018 MPII Human Pose - Posetrack: Joint multi-person pose 

estimation and tracking. 

Simple Baselines for Human Pose Estimation and Tracking 

[45] 

2018 Dense-Pose-COCO(Common Objects in Context) 

Posetrack: Joint multi-person pose estimation and 

tracking. 

3D Human Pose Estimation in the Wild by Adversarial 

Learning [46] 

2018 Human3.6M - MPI-INF3DHP - MPII Human Pose 

Exploiting temporal information for 3D human pose 

estimation [47] 

2018 Human3.6M 

Fast Human Pose Estimation [48] 2019 MPII Human Pose - Leeds Sports Pose (LSP) 

Deep High-Resolution Representation Learning for 

Human Pose Estimation [16] 

2019 MPII Human Pose - Dense-Pose-COCO (Common 

Objects in Context) - Posetrack: Joint multi-person pose 

estimation and tracking 

Rethinking on Multi-Stage Networks for Human Pose 

Estimation [49] 

2019 COCO - MPII Human Pose 

Distribution-Aware Coordinate Representation for Human 

Pose Estimation [50] 

2020 COCO - MPII Human Pose 

SimPoE: Simulated Character Control for 3D Human Pose 

Estimation [51] 

2021 Human3.6M - In-house human motion 

Deep Dual Consecutive Network for Human Pose 

Estimation [52] 

2021 PoseTrack2017 - PoseTrack2018 

3D Human Pose Estimation with Spatial and Temporal 

Transformers [53] 

2021 Human3.6M - MPI-INF-3DHP 

MHFormer: Multi-Hypothesis Transformer for 3D Human 

Pose Estimation [54] 

2022 Human3.6M - MPI-INF-3DHP 

ViTPose: Simple Vision Transformer Baselines for 

Human Pose Estimation [55] 

2022 ViTPose 

EHPE: Skeleton Cues-based Gaussian Coordinate 

Encoding for Efficient Human Pose Estimation [56] 

2022 MS COCO - MPII Human Pose 

SportsPose - A Dynamic 3D sports pose dataset [57] 2023 SportsPose 

DiffPose: Toward More Reliable 3D Pose Estimation [58] 2023 DiffPose (Compared with Human3.6M and MPIINF-

3DHP datasets) 

HEViTPose: High-Efficiency Vision Transformer for 

Human Pose Estimation [59] 

2023 HEViTPose (Compared with MPII Human Pose and 

COCO datasets) 

MDST: 2-D Human Pose Estimation for SISO UWB Radar 

Based on Micro-Doppler Signature via Cascade and 

Parallel Swin Transformer [60] 

2024 HPSUR 

End-to-End 3D Human Pose Estimation Network With 

Multi-Layer Feature Fusion [61] 

2024 3DPW, AGORA and MPII Human Pose 

Enhancement and optimization of human pose estimation 

with multi-scale spatial attention and adversarial data 

augmentation [62] 

2024 MS COCO - MPII Human Pose 
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3.3.  Datasets used on Human Pose Estimation 

Data sets come to the forefront in studies on Human Pose 

Estimation. The data sets used in the reviewed studies are 

given in Table 3. 

 

3.4.  An Overview of The Most Widely Employed 

Datasets 

An overview of the most widely employed datasets in the 

research can be outlined as follows: 

 

3.4.1.  MPII Human Pose 

The MPII Human Pose Dataset consists of approximately 

25,000 images, including 15,000 training, 3,000 validation 

and 7,000 test samples [63]. The use of this dataset in articles 

according to years is shown in Figure 3. 

 

 
Figure 3. MPII dataset number of articles by year [63] 

 

3.4.2.  The Leeds Sports Poses (LSP) 

The LSP dataset consists of 2000 athlete images, 1000 for 

testing and 1000 for training, with 14 joint positions in  

each image [64]. The use of this dataset in articles according 

to years is shown in Figure 4. 

 

 
Figure 4. LSP dataset number of articles by year [64] 

3.4.3.  MPI-INF-3DHP 

The MPI-INF-3DHP dataset is designed for 3D human body 

pose estimation, consisting of more than 1.3 million frames 

taken from 14 camera perspectives [65]. The use of this 

dataset in articles according to years is shown in Figure 5. 

 

Figure 5. MPI-INF-3DHP dataset number of articles by year 

[65] 

 

3.4.4.  Human3.6M 

The Human3.6M is a dataset of 3.6 million human poses 

covering the movements of 11 professional actors in 17 

situations [66]. The use of this dataset in articles according 

to years is shown in Figure 6. 

 

 
Figure 6. Human3.6M dataset number of articles by year 

[66] 

 

3.4.5.  PoseTrack 

PoseTrack is a dataset of 514 videos containing 66,374 

frames from 300 training, 50 validation and 208 test sets 

[67]. The use of this dataset in articles according to years is 

shown in Figure 7. 

 

 
Figure 7. PoseTrack dataset number of articles by year [67]  
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3.4.6.  Coco 

The MS COCO (Microsoft Common Objects in Context) 

dataset contains 328,000 images for the detection of key 

points, objects [68]. The use of this dataset in articles 

according to years is shown in Figure 8. 

 

 
Figure 8. Coco dataset number of articles by year [68] 

 

3.4.7.  DensePose (DensePose-COCO) 

The DensePose-COCO dataset contains 50,000 COCO 

images with manual annotations added to it [69]. The use of 

this dataset in articles according to years is shown in Figure 

9. 

 

 
Figure 9. DensePose dataset number of articles by year [69] 

 

3.4.8.  Frames Labelled in Cinema (FLIC) 

The FLIC dataset consists of 5,003 Hollywood movie images 

obtained using a person detector on selected frames [70]. The 

use of this dataset in articles according to years is shown in 

Figure 10. 

 

 
Figure 10. FLIC dataset number of articles by year [70] 

 

The number of articles in which the analyzed data sets were 

used in the last 5 years is given in Figure 11. 

 

Figure 11. Number of articles of datasets by year 

 

The visualizations of the MPII, LSP, FLIC, Dense Pose and 

Dense Pose-Coco datasets are shown in Figures 12,13,14,15, 

and 16. 

 

 
Figure 12. MPII [41] 

 

 
Figure 13. LSP [48] 

 

 
Figure 14. Frames Labeled In Cinema (FLIC) [9] 
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Figure 15. DensePose [43] 

 

 
Figure 16. DensePose-COCO [43] 

 

Recent research in human pose estimation (HPE) has 

focused on addressing dataset limitations and improving 

model performance. Existing datasets often lack diversity in 

subjects, poses, and environments, hindering generalization 

to real-world scenarios [71]. To address this, researchers 

have proposed methods like joint harmonization and scale 

normalization to improve cross-dataset performance [71]. 

The field has seen advancements in both 2D and 3D pose 

estimation, with deep learning-based approaches achieving 

high accuracy [4, 72]. However, challenges remain, 

including insufficient training data, depth ambiguities, and 

occlusion [72]. New datasets, such as COCO-WholeBody, 

have been introduced to provide more comprehensive 

annotations for whole-body pose estimation [73]. 

Additionally, self-supervised approaches have been 

developed to address the lack of labeled data for certain 

activities [74]. HPE has found applications in various fields, 

including sports and physical exercise [75]. 

 

3.5.  Works Done with Microsoft Kinect Technology 

Microsoft Kinect technology has been widely applied in 

various fields, including multimedia computing, robotics, 

and healthcare. Zeng and Lun both highlight its potential for 

human-computer interaction and motion recognition [76, 

77]. Chow and Ellaithy discuss its use in improving the 

quality of 3D camera technology and for indoor navigation 

in robotics [78, 79]. Ismail and Chang focus on its 

applications in human motion capture and rehabilitation, 

with the latter comparing its performance to a high-fidelity 

optical system [80, 81]. Molyneaux and Bueno explore its 

use in 3D reconstruction and metrological evaluation, 

respectively [82, 83]. These studies collectively demonstrate 

the versatility and potential of Microsoft Kinect technology 

in various domains. 

 

Information on other studies based on Kinect is given in 

Table 4. 

 

3.6.  Architectures related to Human Pose Estimation 

A range of user-friendly solutions for specific pose detection 

have been developed. Bao introduced PoseNAS, a network 

architecture that simultaneously designs a pose encoder and 

decoder, achieving state-of-the-art performance [91]. Rogez 

proposed the LCR-Net++ architecture for 2D and 3D human 

pose estimation, which shows better results than the methods 

used [92]. Ning presented LightTrack, a framework for 

online human pose tracking that outperforms other online 

methods [93]. Regarding Human Pose Estimation, Dyce on 

the depth of the Kinect camera and Oleinikov on task-based 

methods through a control system and both focusing on user-

friendly interfaces [94, 95]. Dimitrijevic took an approach to 

detecting people’s silhouettes, while Buys took an RGB-D 

based approach to human pose estimation [96, 97]. Cao used 

the OpenPose system for real-time human pose estimation 

[98]. 

 

The names and architectural Information of some of the 

articles analyzed regarding the architectures analyzed or 

used are given in Table 5 

Table 4. Information on other studies based on Kinect 

Name of study Year A brief summary 

Performance Analysis of Body Tracking with the 

Microsoft Azure Kinect [84] 

2021 This paper investigates experimentally by performing body 

tracking with a Kinect camera. 

Human Following Robot using Kinect in Embedded 

Platform [85] 

2022 It tries to detect an individual target by tracking the movements 

in the environment with Kinect technology. 

Virtual Yoga System Using Kinect Sensor [86] 2022 Microsoft Kinect sensor was used to detect, monitor and inform 

the user about the user’s movements related to yoga. 

Classification of human movements by using Kinect 

sensor [87] 

2023 Different methods were proposed by comparing with the 

methods in the literature. 

A real-time multi view gait-based automatic gender 

classification system using Kinect sensor [88] 

2023 An automatic gender classification system was proposed using 

Kinect technology. 

Human–machine interaction and implementation on 

the upper extremities of a humanoid robot [89] 

2024 The paper uses Kinect depth sensor and MediaPipe framework 

to obtain 3D joint positions for controlling the movement of a 

humanoid robot’s upper extremities. 

Engineering User Interfaces for Tailored and 

Monitored Movement Rehabilitation Programs [90] 

2024 The Microsoft Kinect can be used to support tailored and 

monitored movement rehabilitation programs. 



Uğur ÖZBALKAN, Özgür Can TURNA 

Advancements in Human Pose Estimation: A Review of Key Studies and Findings till 2025 

 

Academic Platform Journal of Engineering and Smart Systems (APJESS) 13(3), 94–107, 2025                     101 

Table 5. Architectures used and analyzed 

Name of study Architectures used and analyzed Year 

Pose-native Network Architecture Search for Multi-person Human Pose 

Estimation [91] 

Pose-native Network Architecture Search 

(PoseNAS) 

2020 

PoseTED: A Novel Regression-Based Technique for Recognizing Multiple 

Pose Instances [99] 

PoseTED 2021 

Yoga Pose Detection Using Deep Learning Techniques [100] OpenPose 2021 

Analysis of Deep Learning Based Pose Estimation Techniques for Locating 

Landmarks on Human Body Parts [101] 

BlazePose 2021 

Human Pose Estimation using Deep Learning Techniques [102] MoveNet, Convolutional Pose Machines, 

Hourglass Network 

2022 

ConvPose: A modern pure ConvNet for human pose estimation [103] ConvPose 2023 

AnatPose: Bidirectionally learning anatomy-aware heatmaps for human 

pose estimation [104] 

AnatPose 2024 

Human pose estimation from videos is crucial in a variety of 

applications, including physical exercise measurement, sign 

language recognition, and whole-body control. It can serve 

as the foundation for yoga, dance, and fitness applications. 

Moreover, it can enable the superimposition of digital 

content and information on the physical world through 

augmented reality [105]. 

 

3.7.  Methods used in Real-Time Human Pose Estimation 

Studies 

BlazePose is used in areas such as fitness tracking in real-

time human pose estimation over 33 body key points and is 

shown BlazePose results in yoga and fitness poses in Figure 

17 [105]. 

 

 
Figure 17. BlazePose results in yoga and fitness poses [105] 

 

BlazePose Full has been found to outperform OpenPose in 

Yoga/Fitness use cases, although BlazePose models perform 

slightly worse than OpenPose when working with AR data 

[105]. Additionally, BlazePose can run 25-75 times faster on 

a single midrange phone CPU than OpenPose on a 20-core 

desktop CPU, depending on the level of quality required 

[105]. 

 

The MediaPipe library is used to detect key points of the 

human body in an input image. The output of this process is 

a list of coordinates in the X, Y, and Z axes for 33 main key 

points of the human body. This list of coordinates identifies 

the position of each major body part in the input image, 

enabling the creation of an accurate skeletal orientation of 

the user. Figure 18 shows 33 landmarks, indexed from 0 to 

32, indicating the major joints and locations in the human 

body using the MediaPipe library [105]. 

 

 
Figure 18. Location Signs in MediaPipe [105] 

 

Figure 19 illustrates the MediaPipe graph with transparent 

boxes representing the computational nodes or calculators, 

solid boxes representing the external input/output to the 

graph, and lines entering from above and exiting from below 

the nodes representing the input and output flows, 

respectively. Ports on the left side of some nodes indicate 

ingress-side packets [106]. 

 

 
Figure 19. Object detection using MediaPipe [106] 
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Figure 20. True/False Pose Demo [107] 

 

Providing real-time feedback to a person performing a sports 

movement based on an image can help ensure that the 

movement is performed correctly and prevent injuries 

resulting from incorrect movements. As shown in Figure 20, 

Radha Tawar et al. proposed a Yoga Pose Detection system 

that utilizes OpenCV and MediaPipe with RGB to achieve 

this goal [107]. 

 

3.8.  Recent Advances in Human Pose Estimation and 

Comparisons with Past Developments 

Advances in human pose estimation have significantly 

improved accuracy and efficiency in both 2D and 3D 

domains. Deep learning techniques, particularly 

convolutional neural networks, have revolutionized the field, 

enabling more accurate key point localization and body part 

detection [2, 72]. Researchers have focused on optimizing 

network architectures, refining training methods, and 

developing post-processing strategies to improve 

performance [4]. Significant progress has been made in 

monocular 3D pose estimation, with average joint errors 

reduced to around 20 mm [108]. However, challenges 

remain, including depth ambiguity, occlusion, and 

insufficient training data [72]. Recent studies have explored 

solutions for complex scenarios, such as multi-person pose 

estimation and motion capture [109]. The field has expanded 

to include 3D mesh reconstruction and body shape 

estimation, where both parametric and non-parametric 

approaches have been investigated [110]. These advances 

have broad applications in robotics, entertainment, 

healthcare, and human-computer interaction [111, 112]. 

 

Recent advances in human pose estimation have been driven 

by deep learning techniques, particularly convolutional and 

recurrent neural networks [113]. Research has progressed 

from single-person to multi-person pose estimation, with 

top-down and bottom-up approaches being explored [14]. 

Studies have compared different algorithms and methods in 

both 2D and 3D domains [115], evaluating the robustness of 

models such as Posenet, MediaPipe and BlazePose [116]. 

Improvements in accuracy and computational efficiency 

have been achieved through framework optimizations, such 

as those implemented in MediaPipe [117]. Advanced 

techniques incorporating context-aware features and 

machine learning classifiers such as XGBoost have shown 

promising results in pose estimation and event classification 

tasks [118]. Challenges remain in dealing with occlusions 

and complex scenes, with future research directions focusing 

on improving model architectures and integrating 

multimodal information [119, 120]. 

 

4.  CONCLUSION 

A comprehensive literature review in the field of human pose 

estimation reveals a broad perspective ranging from 

traditional methods to today's deep learning and transformer-

based approaches. The reviewed studies have shown that 

there has been a significant paradigm shift in the field, with 

conventional methods being replaced by advanced neural 

network architectures that provide high accuracy and 

efficiency. In particular, the superior performance of 

convolutional neural networks, graph-based models and 

recently popularized transformer architectures in 2D and 3D 

pose estimation has attracted the attention of researchers and 

practitioners. 

 

The literature reviewed shows that the diversity and 

enrichment of datasets is critical for model training and 

generalization. The use of MPII, LSP, Human3.6M, COCO 

and other datasets plays an important role in testing and 

optimizing models in real-world scenarios. In addition, the 

integration of advanced sensor technologies such as 

Microsoft Kinect is another important factor that improves 

the accuracy and practical applicability of human pose 

estimation, especially in real-time applications. 

 

However, several challenges highlighted in the literature 

show that the field is still evolving. In particular, accurate 

multi-person detection in complex scenes, occlusion 

problems, depth uncertainty, and sustainability of model 

performance under harsh environmental conditions such as 

outdoor environments stand out as the main problems to be 

solved. To overcome such problems, more scalable and 

computationally efficient models, multimodal data 

integration and hybrid methods should be investigated. 

 

Future research is expected to focus on developing further 

innovative solutions from both a theoretical and practical 

perspective. In particular, the integration of deep learning 

methods as well as modern approaches such as data 

augmentation techniques, transfer learning and self-

supervised learning strategies can play an important role in 

overcoming current limitations in human pose prediction. 

Furthermore, the development of algorithms optimized for 

real-time applications and low-power mobile platforms will 

enable wider adoption of advances in the field. 

 

In conclusion, this study provides a comprehensive overview 

of current advances in human pose prediction, while 

providing guidance for future research. The new models to 

be developed are expected to provide more integrated, 

flexible and robust frameworks to address the challenges 
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faced in both academic and industrial applications. In this 

context, advances in human pose estimation will continue to 

provide innovative solutions in a wide range of disciplines 

such as human-computer interaction, health, sports analysis, 

robotics and augmented reality. 
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