
Universal Journal of Mathematics and Applications, 1 (1) (2018) 1-9

Universal Journal of Mathematics and Applications
Journal Homepage: www.dergipark.gov.tr/ujma

The application domain of infinite matrices with algorithms
Murat Kirişçia*
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Abstract

The purpose of this paper is twofold. First, we define the new spaces and investigate some
topological and structural properties. Also, we compute dual spaces of new spaces which
are help us in the characterization of matrix mappings. Second, we give some examples
related to new spaces. A flow chart of the stages of the newly constructed sequence spaces
and the algorithms of the workings at each step are given.

1. Introduction

It is well known that, the ω denotes the family of all real (or complex)-valued sequences. ω is a linear space and each linear subspace of ω

(with the included addition and scalar multiplication) is called a sequence space such as the spaces c, c0 and `∞, where c, c0 and `∞ denote
the set of all convergent sequences in fields R or C, the set of all null sequences and the set of all bounded sequences, respectively. It is clear
that the sets c, c0 and `∞ are the subspaces of the ω . Thus, c, c0 and `∞ equipped with a vector space structure, from a sequence space. By bs
and cs, we define the spaces of all bounded and convergent series, respectively.

A coordinate space (or K−space) is a vector space of numerical sequences, where addition and scalar multiplication are defined pointwise.
That is, a sequence space X with a linear topology is called a K-space provided each of the maps pi : X → C defined by pi(x) = xi is
continuous for all i ∈ N. A K−space is called an FK−space provided X is a complete linear metric space. An FK−space whose topology is
normable is called a BK− space.

Let X be a BK−space. Then X is said to have monotone norm if ‖x[m]‖ ≥ ‖x[n]‖ for m > n and ‖x‖= sup‖x[m]‖. The spaces c0, c, `∞, cs, bs
have monotone norms.

If a normed sequence space X contains a sequence (bn) with the property that for every x ∈ X there is unique sequence of scalars (αn) such
that

lim
n→∞
‖x− (α0b0 +α1b1 + ...+αnbn)‖= 0

then (bn) is called Schauder basis for X . The series ∑αkbk which has the sum x is then called the expansion of x with respect to (bn), and
written as x = ∑αkbk. An FK−space X is said to have AK property, if φ ⊂ X and {ek} is a basis for X , where ek is a sequence whose only
non-zero term is a 1 in kth place for each k ∈ N and φ = span{ek}, the set of all finitely non-zero sequences. An FK−space X ⊃ φ is said to
have AB, if (x[n]) is a bounded set in X for each x ∈ X .

Let A = (ank) be an infinite matrix of complex numbers ank and x = (xk) ∈ ω , where k,n ∈ N. Then the sequence Ax is called as the
A−transform of x defined by the usual matrix product. Hence, we transform the sequence x into the sequence Ax = {(Ax)n} where

(Ax)n = ∑
k

ankxk (1.1)
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Figure 1.1: Flowchart of constructing a new sequence space

for each n ∈ N, provided the series on the right hand side of (1.1) converges for each n ∈ N. Let X and Y be two sequence spaces. If Ax
exists and is in Y for every sequence x = (xk) ∈ X , then we say that A defines a matrix mapping from X into Y , and we denote it by writing
A : X→Y if and only if the series on the right hand side of (1.1) converges for each n∈N and every x∈ X , and we have Ax = {(Ax)n}n∈N ∈Y
for all x ∈ X . A sequence x is said to be A-summable to l if Ax converges to l which is called the A-limit of x. Let X be a sequence space and
A be an infinite matrix. The sequence space

XA = {x = (xk) ∈ ω : Ax ∈ X} (1.2)

is called the domain of A in X which is a sequence space.

The matrix Ω = (ank) defined by ank = k, (1≤ k ≤ n) and ank = 0, (k > n), and the matrix Γ = (bnk) defined by by bnk = 1/k, (1≤ k ≤ n)
and bnk = 0, (k > n), respectively, i.e.,

ank =


1 0 0 0 · · ·
1 2 0 0 · · ·
1 2 3 0 · · ·
1 2 3 4 · · ·
...

...
...

...
. . .

 and bnk =


1 0 0 0 · · ·
1 1/2 0 0 · · ·
1 1/2 1/3 0 · · ·
1 1/2 1/3 1/4 · · ·
...

...
...

...
. . .


We can give the matrices Ω−1 = (cnk) and Γ−1 = (dnk) which are inverse of the above matrices by cnk = 1/n, (n = k), cnk = −1/n,
(n−1 = k), cnk = 0, (other) and dnk = n, (n = k), dnk =−n, (n−1 = k), dnk = 0, (other), respectively, i.e.,

cnk =


1 0 0 0 · · ·
−1/2 1/2 0 0 · · ·

0 −1/3 1/3 0 · · ·
0 0 −1/4 1/4 · · ·
...

...
...

...
. . .

 and dnk =


1 0 0 0 · · ·
−2 2 0 0 · · ·
0 −3 3 0 · · ·
0 0 −4 4 · · ·
...

...
...

...
. . .


Now, we show that the matrices Ω and Γ preserve the limits on the set of all convergent sequences.

Theorem 1.1. The matrices Ω and Γ are regular.

Proof. Take a sequence x = (xk). We must show that if for n→ ∞ and some L, limn |xk − L| → 0, then, limn |bnkxk − L| → 0, where
bnk is Γ matrix. Suppose that for n→ ∞ and some L, limn |xk−L| → 0, and choose ε > 0. Then, there exists a positive integer N such
that limn |xk−L|< ε for n≥N. Then, for n≥N and N ∈N, limn |bnkxk−L|= limn |∑n

k=1(k
−1xk−L)|< ε . Therefore the matrix Γ is regular.

Similarly, we can show that the matrix Ω is regular.
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The paper is organized into six sections. After the introduction in Section 1, new sequence spaces are constructed in Section 2. Also, some
topological properties of these new spaces are investigated in Section 2 . Section 3 describes and computes the dual spaces. The dual spaces
are very important for matrix transformations. Section 4 is dedicated to characterization of matrix mappings. Examples related to the new
spaces are in Section 5. Finally, Section 6 presents the conclusion(Figure 1.1).

2. New spaces and topological properties

1: Take an infinite matrix A
2: Apply to the sequence space X
3: If the matrix A is a triangle and f : XA→ X is bijective, then
4: XA and X are linearly isomorphic
5: Investigate the topological properties of XA
6: If A is triangle, then
7: XA is a BK-space
8: Compute the beta- and gamma-duals
9: do
10: Characterize the matrix mappings
11: while(exist beta- and gamma-duals)

Table 1: Algorithm related to the constructing a new space

Now, we introduce the new sequence spaces derived by the Ω− and Γ− matrices as follows:

`∞(Ω) =
{

x = (xk) ∈ ω : Ωx ∈ `∞}

c(Ω) = {x = (xk) ∈ ω : Ωx ∈ c}
c0(Ω) = {x = (xk) ∈ ω : Ωx ∈ c0}

and

`∞(Γ) = {x = (xk) ∈ ω : Γx ∈ `∞}
c(Γ) = {x = (xk) ∈ ω : Γx ∈ c}
c0(Γ) = {x = (xk) ∈ ω : Γx ∈ c0}

Let us define the sequences u = (un) and v = (vn), as the Ω−transform and Γ−transform of a sequence x = (xk), respectively, that is, for
k,n ∈ N, un = (Ωx)n = ∑

n
k=1 |kxk| and vn = (Γx)n = ∑

n
k=1

∣∣k−1xk
∣∣.

Theorem 2.1. The new bounded, convergent and null sequence spaces are norm isomorphic to the classical sets consisting of the bounded,
convergent and null sequences.

Proof. We will show that there is a linear isometry between new bounded, convergent, null sequence spaces and classical bounded, convergent
and null convergent sequence space. We consider the transformation defined Φ, from X(Ω) to X by x 7→ u = Φx = ∑

n
k=1 |kxk|, where

X = {`∞,c,c0}. Then, it is clear that the equality Φ(a+b) = Φ(a)+Φ(b) holds. Choose λ ∈ R. Then,

Φ(λa) = Φ(λak) =
n

∑
k=1
|λkak|= λ

n

∑
k=1
|kak|= λΦa.

Therefore, we can say that Φ is linear.

Choose a sequence y = (yk) in X(Ω) and define the sequence x = (xk) such that x = (cnkyk), where cnk is inverse of Ω = (ank) matrix. Then,

‖x‖`∞(Ω) = sup
k
|ankxk|= sup

k
|ankcnkyk|`∞

= ‖y‖`∞
.

Therefore, we can say that Φ is norm preserving.

Similarly, we can also show that the other spaces are norm isomorphic to classical sequence spaces.

Theorem 2.2. The new bounded, convergent and null sequence spaces are BK−spaces with the norms defined by ‖x‖X(Ω) = ‖Ωx‖`∞
and

‖x‖X(Γ) = ‖Γx‖`∞
, respectively, where X = {`∞,c,c0}.

Proof. Take a sequence x = (xk) in X(Ω), where X = {`∞,c,c0} and define fk(x) = xk for all k ∈ N. Then, we have

‖x‖X(Ω) = sup{1|x1|+2|x2|+3|x3|+ · · ·+ k|xk|+ · · ·}

Therefore, k|xk| ≤ ‖x‖X(Ω)⇒ |xk| ≤ K‖x‖X(Ω)⇒ | fk(x)| ≤ K‖x‖X(Ω). From this result, we say that fk is a continuous linear functional for
each k. Then, X(Ω) is a BK−space.

In the same idea, we can prove that the space X(Γ) is a BK−space.
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Remark 2.3. We can give the proof of Theorem 2.2 in a different way: From 4.3.1 of [9], we know that if a sequence space X is BK−space
with respective norm and A is a triangular infinite matrix, then the matrix domain XA is also BK−space with respective norm.

Theorem 2.4. The spaces X(Ω) and X(Γ) have AK−property.

Theorem 2.5. The spaces X(Ω) and X(Γ) have monotone norm.

Theorem 2.4 and 2.5 can be proved as Theorem 2.4., Theorem 2.6. of [5].

Remark 2.6. Any space with a monotone norm has AB(10.3.12 of [9]).

Corollary 2.7. The spaces X(Ω) and X(Γ) have AB.

Theorem 2.8. The following statements hold:

(i) Define a sequence t(k) := {t(k)n }n∈N of elements of the space X(Ω) for every fixed k ∈ N by

t(k)n =

{
(−1)n−kk−1 , (n−1≤ k ≤ n)

0 , (1≤ k ≤ n−1) or (k > n)

Then the sequence {t(k)}k∈N is a basis for the space X(Ω) and if we choose Ek = (Ωx)k for all k ∈N, then any x ∈ X(Ω) has a unique
representation of the form

x := ∑
k

Ekt(k).

(ii) Define a sequence s(k) := {s(k)n }n∈N of elements of the space X(Γ) for every fixed k ∈ N by

s(k)n =

{
(−1)n−kk , (n−1≤ k ≤ n)

0 , (1≤ k ≤ n−1) or (k > n)

Then the sequence {s(k)}k∈N is a basis for the space X(Γ) and if we choose Fk = (Γx)k for all k ∈ N, then any x ∈ X(Γ) has a unique
representation of the form

x := ∑
k

Fks(k).

Remark 2.9. If a space has a Schauder basis, then it is separable.

Corollary 2.10. The spaces X(Ω) and X(Γ) are separable.

1: Take XA

2: Define f : XA→ X
3: If f is an isomorphic and surjective, then
4: the inverse image of basis of X is the basis of XA
5: If X has a Schauder basis, then
6: XA is separable

Table 2: Algorithm for basis and separability

In this section, we have defined the new spaces derived by infinite matrices and examined some structural and topological properties.

3. Dual spaces

In this section, we compute dual spaces of new defined spaces. The beta-, gamma-duals of new defined spaces will help us in the characteri-
zation of the matrix mappings.

From Lemma 5.3 of [4] and Theorem 3.1 of [1], we will give an algorithm, which provides convenience to compute α−, β− and γ− duals
of these new spaces and characterize some matrix transformations.

Let x and y be sequences, X and Y be subsets of ω and A = (ank)
∞
n,k=0 be an infinite matrix of complex numbers. We write xy = (xkyk)

∞
k=0,

x−1 ∗Y = {a ∈ ω : ax ∈ Y} and M(X ,Y ) =
⋂

x∈X x−1 ∗Y = {a ∈ ω : ax ∈ Y for all x ∈ X} for the multiplier space of X and Y . In the
special cases of Y = {`1,cs,bs}, we write xα = x−1 ∗ `1, xβ = x−1 ∗ cs, xγ = x−1 ∗bs and Xα = M(X , `1), Xβ = M(X ,cs), Xγ = M(X ,bs)
for the α−dual, β−dual, γ−dual of X . By An = (ank)

∞
k=0 we denote the sequence in the n−th row of A, and we write An(x) = ∑

∞
k=0 ankxk

n = (0,1, ...) and A(x) = (An(x))∞
n=0, provided An ∈ xβ for all n.
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1: Take the sequence spaces X and Y
2: If the spaces X and Y are BK−spaces, then
3: matrix transformations between X and Y are continuous
4: Choose the triangular matrix T and an infinite matrix A
5: do
6: A ∈ (X : YT )
7: while TA(X : Y )
8: Define the matrix B which is inverse of T
9: If the matrix B depending on a sequence (ak) ∈ ω , then
10: β−dual is defined by Xβ

T = {a = (ak) ∈ ω : BT ∈ (X : c)} and
11: γ−dual is defined by Xγ

T = {a = (ak) ∈ ω : BT ∈ (X : `∞)}

Table 3: Algorithm for dual spaces and matrix transformations

Now, we list the following useful conditions.

sup
n

∑
k
|ank|< ∞ (3.1)

lim
n→∞

ank−αk = 0 (3.2)

lim
n→∞

∑
k

ank exists (3.3)

lim
n→∞

∑
k
|ank|= ∑

k

∣∣∣ lim
n→∞

ank

∣∣∣ (3.4)

lim
n

ank = 0 for all k (3.5)

sup
m

∑
k

∣∣∣∣∣ m

∑
n=0

∣∣∣∣∣< ∞ (3.6)

∑
n

ank is convergent for all k (3.7)

∑
n

∑
k

ank is convergent (3.8)

lim
n

ank exists for all k (3.9)

lim
m ∑

k

∣∣∣∣ ∞

∑
n=m

ank

∣∣∣∣= 0 (3.10)

Lemma 3.1. For the characterization of the class (X : Y ) with X = {c0,c, `∞} and Y = {`∞,c,cs,bs}, we can give the necessary and
sufficient conditions from Table 4, where

1. (3.1) 2. (3.1), (3.9) 3. (3.6) 4. (3.6), (3.7)
5. (3.1), (3.9), (3.3) 6. (3.6), (3.7), (3.8) 7. (3.9), (3.4) 8. (3.10)

To→ `∞ c bs cs
From ↓

c0 1. 2. 3. 4.
c 1. 5. 3. 6.
`∞ 1. 7. 3. 8.

Table 4

For using in the proof of Theorem 3.2, we define the matrices U = (unk) and V = (vnk) as below:

unk =


ak
k −

ak+1
k+1 , (k < n)

an
n , (k = n)
0 , (k > n)

(3.11)

vnk ==


kak− (k+1)ak+1 , (k < n)

nan , (k = n)
0 , (k > n)

(3.12)
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Theorem 3.2. The β− and γ− duals of the new sequence spaces defined by

[c0(Ω)]β = {a = (ak) ∈ ω : U ∈ (c0 : c)}

[c(Ω)]β = {a = (ak) ∈ ω : U ∈ (c : c)}

[`∞(Ω)]β = {a = (ak) ∈ ω : U ∈ (`∞ : c)}
[c0(Ω)]γ = {a = (ak) ∈ ω : U ∈ (c0 : `∞)}
[c(Ω)]γ = {a = (ak) ∈ ω : U ∈ (c : `∞)}
[`∞(Ω)]γ = {a = (ak) ∈ ω : U ∈ (`∞ : `∞)}

Proof. We will only show the β− and γ− duals of the new null convergent sequence spaces. Let a = (ak) ∈ ω . We begin the equality

n

∑
k=1

akxk =
n

∑
k=1

akk−1(yk− yk−1) =
n−1

∑
k=1

(
ak

k
− ak+1

k+1

)
yk +

an

n
yn = (Uy)n (3.13)

where U = (unk) is defined by (3.11). Using (3.13), we can see that ax = (akxk) ∈ cs or bs whenever x = (xk) ∈ c0(Ω) if and only if Uy ∈ c
or `∞ whenever y = (yk) ∈ c0. Then, from the algorithm in Table 3 , we obtain the result that a = (ak) ∈ (c0(Ω))β or a = (ak) ∈ (c0(Ω))γ if
and only if U ∈ (c0 : c) or U ∈ (c0 : `∞), which is what we wished to prove.

Theorem 3.3. The β− and γ− duals of the new sequence spaces defined by

[c0(Γ)]
β = {a = (ak) ∈ ω : V ∈ (c0 : c)}

[c(Γ)]β = {a = (ak) ∈ ω : V ∈ (c : c)}

[`∞(Γ)]
β = {a = (ak) ∈ ω : V ∈ (`∞ : c)}

[c0(Γ)]
γ = {a = (ak) ∈ ω : V ∈ (c0 : `∞)}

[c(Γ)]γ = {a = (ak) ∈ ω : V ∈ (c : `∞)}
[`∞(Γ)]

γ = {a = (ak) ∈ ω : V ∈ (`∞ : `∞)}

where V = (vnk) is defined by (3.12).

4. Matrix mapping

Let X and Y be arbitrary subsets of ω . We shall show that, the characterizations of the classes (X ,YT ) and (XT ,Y ) can be reduced to that of
(X ,Y ), where T is a triangle.

It is well known that if hc0(∆
(m))∼= c0, then the equivalence

x ∈ hc0(∆
(m))⇔ y ∈ c0

holds. Then, the following theorems will be proved and given some corollaries which can be obtained to that of Theorems 4.1 and 4.2. Then,
using the algorithm in Table 3, we have:

Theorem 4.1. Consider the infinite matrices A = (ank) and D = (dnk). These matrices get associated with each other in the following
relations:
These matr

dnk =
ank

k
−

an,k+1

k+1
(4.1)

for all k,m,n ∈ N. Then, the following statements are true:
i. A ∈ (c0(Ω) : Y ) if and only if {ank}k∈N ∈ [c0(Ω)]β for all n ∈ N and D ∈ (c0 : Y ), where Y is any sequence space.
ii. A ∈ (c(Ω) : Y ) if and only if {ank}k∈N ∈ [c(Ω)]β for all n ∈ N and D ∈ (c : Y ), where Y is any sequence space.
iii. A ∈ (`∞(Ω) : Y ) if and only if {ank}k∈N ∈ [`∞(Ω)]β for all n ∈ N and D ∈ (`∞ : Y ), where Y is any sequence space.

Proof. We assume that the (4.1) holds between the entries of A = (ank) and D = (dnk). Let us remember that from Theorem 2.1, the spaces
c0(Ω) and c0 are linearly isomorphic. Firstly, we choose any y = (yk) ∈ c0 and consider A ∈ (c0(Ω) : Y ). Then, we obtain that DΩ exists
and {ank} ∈ (c0(Ω))β for all k ∈N. Therefore, the necessity of (4.1) yields and {dnk} ∈ cβ

0 for all k,n ∈N. Hence, Dy exists for each y ∈ c0.
Thus, if we take m→ ∞ in the equality

m

∑
k=1

ankxk =
m

∑
k=1

ank

(
ank

k
−

an,k+1

k+1

)
yk

for all m,n ∈ N, then, we understand that Dy = Ax. So, we obtain that D ∈ (c0 : Y ).

Now, we consider that {ank}k∈N ∈ (c0(Ω))β for all n ∈ N and D ∈ (c0 : Y ). We take any x = (xk) ∈ c0(Ω). Then, we can see that Ax exists.
Therefore, from the equality
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∑
k

dnkyk = ∑
k

ankxk

for all n ∈ N, we obtain that Ax = Dy. Therefore, this shows that A ∈ (c0(Ω) : Y ).

Theorem 4.2. Consider that the infinite matrices A = (ank) and E = (enk) with

enk :=
∞

∑
k=1

n

∑
j=1

a jk. (4.2)

Then, the following statements are true:
i. A = (ank) ∈ (X : c0(Ω)) if and only if E ∈ (X : c0)
ii. A = (ank) ∈ (X : c(Ω)) if and only if E ∈ (X : c)
iii. A = (ank) ∈ (X : `∞(Ω)) if and only if E ∈ (X : `∞)

Proof. We take any z = (zk) ∈ X . Using the (4.2), we have

m

∑
k=1

enkzk =
m

∑
k=1

(
∞

∑
k=1

m

∑
j=1

jb jk

)
zk (4.3)

for all m,n ∈ N. Then, for m→ ∞, equation (4.3) gives us that (Ez)n = {Ω(Az)}n. Therefore, one can immediately observe from this that
Az ∈ c0(Ω) whenever z ∈ X if and only if Ez ∈ c0 whenever z ∈ X . Thus, the proof is completed.

Theorem 4.3. Consider the infinite matrices A = (ank) and F = ( fnk). These matrices get associated with each other in the following
relations:

fnk = kank− (k+1)an,k+1 (4.4)

for all k,m,n ∈ N. Then, the following statements are true:
i. A ∈ (c0(Γ) : Y ) if and only if {ank}k∈N ∈ [c0(Γ)]

β for all n ∈ N and F ∈ (c0 : Y ), where Y is any sequence space.
ii. A ∈ (c(Γ) : Y ) if and only if {ank}k∈N ∈ [c(Γ)]β for all n ∈ N and F ∈ (c : Y ), where Y is any sequence space.
iii. A ∈ (`∞(Γ) : Y ) if and only if {ank}k∈N ∈ [`∞(Γ)]

β for all n ∈ N and F ∈ (`∞ : Y ), where Y is any sequence space.

Theorem 4.4. Consider that the infinite matrices A = (ank) and G = (gnk) with

gnk :=
∞

∑
k=1

n

∑
j=1

j−1a jk (4.5)

Then, the following statements are true:
i. A = (ank) ∈ (X : c0(Γ)) if and only if G ∈ (X : c0)
ii. A = (ank) ∈ (X : c(Γ)) if and only if G ∈ (X : c)
iii. A = (ank) ∈ (X : `∞(Γ)) if and only if G ∈ (X : `∞)

5. Examples

If we choose any sequence spaces X and Y in Theorem 4.1 and 4.2 in previous section, then, we can find several consequences in every
choice. For example, if we take the space `∞ and the spaces which are isomorphic to `∞ instead of Y in Theorem 4.1, we obtain the following
examples:

Example 5.1. The Euler sequence space er
∞ is defined by er

∞ = {x ∈ ω : supn∈N |∑n
k=0
(n

k
)
(1− r)n−krkxk|< ∞} ([2] and [3]). We consider

the infinite matrix A = (ank) and define the matrix H = (hnk) by

hnk =
n

∑
j=0

(
n
j

)
(1− r)n− jr ja jk (k,n ∈ N).

If we want to get necessary and sufficient conditions for the class (c0(Ω) : er
∞) in Theorem 4.1, then, we replace the entries of the matrix A by

those of the matrix H.

Example 5.2. Let Tn = ∑
n
k=0 tk and A = (ank) be an infinite matrix. We define the matrix P = (pnk) by

pnk =
1
Tn

n

∑
j=0

t ja jk (k,n ∈ N).

Then, the necessary and sufficient conditions in order for A belongs to the class (c0(Ω) : rt
∞) are obtained from in Theorem 4.1 by replacing

the entries of the matrix A by those of the matrix P; where rt
∞ is the space of all sequences whose Rt−transforms is in the space `∞ [7].

Example 5.3. In the space rt
∞, if we take t = e, then, this space become to the Cesaro sequence space of non-absolute type X∞ [8]. As a

special case, Example 5.2 includes the characterization of class ((c0(Ω) : rt
∞).
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Example 5.4. The Taylor sequence space tr
∞ is defined by tr

∞ = {x ∈ ω : supn∈N |∑∞
k=n
(k

n
)
(1− r)n+1rk−nxk|< ∞} ([6]). We consider the

infinite matrix A = (ank) and define the matrix T = (tnk) by

tnk =
∞

∑
k=n

(
k
n

)
(1− r)n+1rk−na jk (k,n ∈ N).

If we want to get necessary and sufficient conditions for the class (c0(Ω) : tr
∞) in Theorem 4.1, then, we replace the entries of the matrix A by

those of the matrix T .

If we take the spaces c, cs and bs instead of X in Theorem 4.2, or Y in Theorem 4.1 we can write the following examples. Firstly, we give
some conditions and following lemmas:

lim
k

ank = 0 for all n , (5.1)

lim
n→∞

∑
k

ank = 0, (5.2)

lim
n→∞

∑
k
|ank|= 0, (5.3)

lim
n→∞

∑
k
|ank−an,k+1|= 0, (5.4)

sup
n

∑
k

∣∣ank−an,k+1
∣∣< ∞ (5.5)

lim
k

(
ank−an,k+1

)
exists for all k (5.6)

lim
n→∞

∑
k

∣∣ank−an,k+1
∣∣= ∑

k

∣∣∣ lim
n→∞

(ank−an,k+1)
∣∣∣ (5.7)

sup
n

∣∣∣∣limk ank

∣∣∣∣< ∞ (5.8)

Lemma 5.5. Consider that X ∈ {`∞,c,bs,cs} and Y ∈ {c0}. The necessary and sufficient conditions for A ∈ (X : Y ) can be read from the
Table 5:

9. (5.3) 10. (3.1), (3.5), (5.2) 11. (5.1), (5.4) 12. (3.5), (5.5)
13. (5.1), (5.6), (5.7) 14. (5.5), (3.9) 15. (5.1), (5.5) 16. (5.5), (5.8)

From→ `∞ c bs cs
To ↓
c0 9. 10. 11. 12.
c 7. 5. 13. 14.
`∞ 1. 1. 15. 16.

Table 5

Example 5.6. We choose X ∈ {c0(Ω),c(Ω), `∞(Ω)} and Y ∈ {`∞,c,cs,bs, f}. The necessary and sufficient conditions for A ∈ (X : Y ) can
be taken from the Table 6:

1a. (3.1) holds with dnk instead of ank.
2a. (3.1), (3.9) hold with dnk instead of ank.
3a. (3.6) holds with dnk instead of ank.
4a. (3.6), (3.7) hold with dnk instead of ank.
5a. (3.1), (3.9), (3.3) hold with dnk instead of ank.
6a. (3.6), (3.7), (3.8) hold with dnk instead of ank.
7a. (3.9), (3.4) hold with dnk instead of ank.
8a. (3.10) holds with dnk instead of ank.

To→ `∞ c bs cs
From ↓
c0(Ω) 1a. 2a. 3a. 4a.
c(Ω) 1a. 5a. 3a. 6a.
`∞(Ω) 1a. 7a. 3a. 8a.

Table 6

Example 5.7. Consider that the X ∈ {`∞,c,bs,cs} and Y ∈ {c0(Ω),c(Ω), `∞(Ω)}. The necessary and sufficient conditions for A ∈ (X : Y )
can be read from the Table 7:



Universal Journal of Mathematics and Applications 9

9a. (5.3) holds with enk instead of ank.
10a. (3.1), (3.5), (5.2) hold with enk instead of ank.
11a. (5.1), (5.4) hold with enk instead of ank.
12a. (3.5), (5.5) hold with enk instead of ank.
13a. (5.1), (5.6), (5.7) hold with enk instead of ank.
14a. (5.5), (3.9) hold with enk instead of ank.
15a. (5.1), (5.5) hold with enk instead of ank.
16a. (5.5), (5.8) hold with enk instead of ank.

From→ `∞ c bs cs
To ↓

c0(Ω) 9a. 10a. 11a. 12a.
c(Ω) 7a. 5a. 13a. 14a.
`∞(Ω) 1a. 1a. 15a. 16a.

Table 7

With the same idea of Example 5.6 and Example 5.7, we can write the examples related to the Γ matrix as table form. In examples which are
writing with Γ matrix, we use the fnk and gnk.

6. Conclusion

We know that the most general linear operators between two sequence spaces is given by an infinite matrix. The theory of matrix transforma-
tions deals with establishing necessary and sufficient conditions on the entries of a matrix to map a sequence space X into a sequence space
Y . This is a natural generalization of the problem to characterize all summability methods given by infinite matrices that preserve convergence.

In this work, we construct new sequence spaces by means of the matrix domain with two infinite matrices. We examine some properties such
as isomorphism, BK−space, AK− and AB−properties, monotone norm. Also, we give dual spaces and later the necessary and sufficient
conditions on the matrix transformations of the classes (X :Y ). Afterward, in the last section, we obtain several examples related to new spaces.

In this paper, a flowchart showing the stages of the formation of a new sequence space is designed. Algorithms have been produced to
construction of a new sequence space, base, separability, calculation of dual spaces and matrix characterizations.
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