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ABSTRACT Reducing the size of a neural network (pruning) by removing weights without impacting its performance is an important KEYWORDS
problem for resource-constrained devices. In the past, pruning was typically accomplished by ranking or penalizing weights based on

criteria like magnitude and removing low-ranked weights before retraining the remaining ones. Pruning strategies also involve removing Chaos
neurons from the network to achieve the desired reduction in network size. We formulate pruning as an optimization problem to minimize Granger causal-
misclassifications by selecting specific weights. We have introduced the concept of chaos in learning (Lyapunov Exponents) through ity

weight updates and used causality-based investigations to identify the causal weight connections responsible for misclassification. Two
architectures are proposed in the current work - Lyapunov Exponent Granger Causality driven Fully Trained Network (LEGCNet-FT) and
Lyapunov Exponent Granger Causality driven Partially Trained Network (LEGCNet-PT). The proposed methodology gauges causality Lyapunov expo-
between weight-specific Lyapunov Exponents (LEs) and misclassification, facilitating the identification of weights for pruning in the network. nent

The performance of both the dense and pruned neural networks is evaluated using accuracy, F1 scores, FLOPS, and percentage pruned.
It is observed that, using LEGCNet-PT/LEGCNet-FT, a dense over-parameterized network can be pruned without compromising accuracy,
F1 score, or other performance metrics. Additionally, the sparse networks are trained with fewer epochs and fewer FLOPs than their
dense counterparts across all datasets. Our methods are compared with random and magnitude pruning and observed that the pruned
network maintains the original performance while retaining feature explainability. Feature explainability is investigated using SHAP and
WeightWatchers. The SHAP values computed for the proposed pruning architecture, as well as for the baselines (random and magnitude),
indicate that feature importance is maintained in LEGCNet-PT and LEGCNet-FT when compared to the dense network. WeightWatchers
results reveal that the network layers are well-trained.

Neural networks

Weight pruning

INTRODUCTION sample size, which can significantly impact the network’s per-
formance. In general, a larger network with more parameters
(overparameterized) can potentially learn more complex functions
and patterns from the data (Prandi et al. 2017). However, larger net-
works may also be prone to overfitting. On the other hand, smaller
networks with fewer parameters may not have enough capacity to
learn complex relationships in the data. This can lead to underfit-
ting. Therefore, the challenge in network architecture design is to
find the right balance between model complexity and sample size,
so that the network can learn to generalize well to new, unseen
data. In this context, over-parameterized networks (Zou et al. 2018;
Mohapatra et al. 2022) have become increasingly popular in the
deep learning era due to their ability to achieve high expressivity
and potentially better generalization performance (Shen et al. 2019).

Designing a neural network architecture is critical to developing
neural networks for various Artificial Intelligence (AI) tasks, par-
ticularly in deep learning. Al, or Artificial Intelligence, refers to
the simulation of human intelligence in machines designed to
perform tasks typically requiring human cognition. These tasks
include learning, problem-solving, reasoning, and understanding
natural language. Al systems use algorithms and data to improve
their performance over time, often becoming more efficient with
experience.

One of the fundamental challenges in designing neural net-
works is finding the right balance between model complexity and
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It is important to ponder why we do not simply train a smaller
network from scratch to make training more efficient. The reason
is that the architectures obtained after pruning are typically more
challenging to train from scratch (Liu et al. 2018), and they often
result in lower accuracy compared to the original networks. There-
fore, while standard pruning techniques can effectively reduce the
size and energy consumption of a network, it does not necessarily
lead to a more efficient training process.

BACKGROUND AND PROBLEM STATEMENT

Neural network pruning has two main goals to achieve - one
being the reduction of model size and the other being a conse-
quence of the former - improved inference efficiency. Traditional
pruning methods such as random pruning (Mittal et al. 2018b,a)
or magnitude-based pruning (Lee et al. 2020; Saleem et al. 2024)
inherently incorporate a form of regularization that could poten-
tially affect or hinder the natural course of learning dynamics of
a model. Even though empirically the methods seem to work
well, we are interested in a principled approach of pruning that
takes the model’s task performance into account. Random pruning
removes weights in a stochastic manner. Magnitude-based prun-
ing removes weights based on their absolute values, assuming a
certain relationship between the magnitude of weights and contri-
bution in the final model performance (Medhat et al. 2023). These
methods fundamentally don’t operate under a static or predefined
criterion that does not dynamically adapt to the model’s learning
trajectory. A key limitation of these approaches is that they impose
pruning decisions as an implicit form of regularization rather than
integrating pruning dynamically into the optimization process
itself.

We pose a broad Research Question here: Is there a principled
approach to pruning overparameterized, dense neural networks to
a reasonably good sparse approximation such that performance is
not compromised and explainability is retained? It is well known
that dense neural network training and particularly weight up-
dates via SGD have some element of chaos (Zhang et al. 2021;
Herrmann et al. 2022). We expect that, between the successive
weight updates due to SGD and miss-classification, there is some
observed causality and non-causal weights (parameters) can be
pruned, leading to a sparse network i.e. some weight updates
cause a reduction in network (training) loss and some do not! Can
we train a dense network till a few epochs to derive a pruned
architecture for the derivative to run for the remaining epochs
and produce performance metrics in the e—ball of the original,
dense network? Does this sparse network also train well, veri-
fied with Shapley (Lundberg and Lee 2017) and WeightWatcher
(WW) (Martin et al. 2020) tests? Specifically, we contribute to the
following:

¢ Present a unique and unifying framework on chaos and causal-
ity for deep network pruning. The unifying framework uses
Lyapunov Exponent (LE) (Kondo et al. 2021) and Granger
causality (GC) (Granger 1969) tandem.

® Propose novel pruning architectures, Lyapunov Exponent
Granger Causality driven Fully Trained Network (LEGCNet-
FT) and Lyapunov Exponent Granger Causality driven Par-
tially Trained Network (LEGCNet-PT).

* LEGCNet-FT and LEGCNet-PT compare very well in per-
formance and other baselines, Random (Liu ef al. 2022) and
Magnitude based (Li ef al. 2018) pruning techniques.

¢ Establish feature consistency of LEGCNet-FT and LEGCNet-
PT in explainability.
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e Verify empirically that the proposed architectures for pruning
are not over-trained and obviously not overparameterized
but can still generalize well, on diverse data sets while saving
FLOPs (FLoating-point OPeration). We accomplish this via
the WIW test.

We approach pruning as a constrained optimization problem rather
than a strict regularization step. Instead of focusing purely on re-
ducing network size, we ensure that pruning decisions adhere to
model performance, directly accounting for accuracy and fewer
epochs. Using Lyapunov Exponents (LE) and Granger Causality
(GC), we identify non-causal weights parameters that do not sig-
nificantly contribute to loss minimization and selectively remove
them. Unlike traditional methods that prune weights based on
static criteria, our approach dynamically adapts pruning decisions
based on learning dynamics. Our LEGCNet-FT (Fully Trained)
and LEGCNet-PT (Partially Trained) frameworks validate this ap-
proach. LEGCNet-FT performs pruning after full training, while
LEGCNet-PT identifies and removes non-causal weights early in
training, significantly reducing computational overhead without
compromising accuracy. This adaptive strategy ensures that prun-
ing is an integral part of optimization rather than an afterthought.
The remainder of the paper is organized to present the key
methodologies used to develop the pruning technique, followed
by a detailed experimental setup and strong empirical evidence of
the proposed technique in contrast to the baselines. In summary,
we propose pruning techniques, LEGCNet-FT and LEGCNet-PT
which perform at par with the dense, unpruned architecture and
the existing pruning baselines. In methods like magnitude/random
pruning, the choice of percentage pruning for a specific dataset or
network is often arbitrary and difficult to select. Our method gives a
natural threshold for weight pruning, unlike random, magnitude, and
other pruning methods. While maintaining consistent performance, these
techniques also help reduce epochs to converge and FLOPs to compute
while maintaining feature consistency with their dense counterparts and
ensuring proper training across layers validated via WW statistics.

We claim the following:

* Non-causal weights are identified as the ones which do not
impact the accuracy and therefore must be removed from the
fully connected network. Such a pruned network performs as
well as the dense counterpart, retains the feature explainablity
of the dense sibling.

o Why is feature consistency IN SHAP (explainability test) important
for pruned networks?.

* Such a pruned network satisfies the network health diagnostic
test (Weightwatcher (WW)) and also incurs reduced floating
point operations (FLOPs). Additionally, the stable equilibrium
in the loss landscape can be obtained if we can construct a suit-
able Lyapunov (Energy) function. The motivation for pruning
is strongly tied to the health diagnostic tests for DNNs, WW in
particular. This is because it is possible to establish all layers
of a DNN to be correctly trained and therefore not contribute
to the generalization gap. This indicates some induced, im-
plicit self-regularization via pruning. Therefore, favorable
WW Statistics is a strong indicator of the pruned network’s
spectral distribution being heavy-tailed i.e. the pruned net-
work is correctly trained. This establishes the validity of the
pruning mechanism proposed in the paper.

The technical motivation behind our claims is sourced from a di-
verse set of questions- Why chaos? Does Chaos helps learning and
can we support it with experimental results? Do we expect causal-
ity between 2 time series sequences weight and loss series? Does it
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satisfy the lottery ticket hypothesis by deriving a pruned network
by deleting no-causal weights? Wiener-Granger causality is based
on the principle that “predictability implies causation”. We believe
that causality, as estimated by Granger causality, is in any case
not to be treated as actual causality, but only an indication of pre-
dictability of one time series with the incorporation of information
from another time series. This type of predictability also means a
kind of redundancy of information and hence informs and justifies
the pruning to be carried out. With this view of pruning (of redun-
dant connections) in mind, we need only a reasonable measure of
estimating such redundancies in the connections. For this purpose,
Granger causality is sufficient. More sophisticated methods such
as Transfer Entropy, Compression-Complexity Causality could be
tried out in future versions of this work.

It should be noted that the mere use of statistical measures such
as correlation or mutual information does not suffice as they lack
the directionality of information flow, which is provided by causal-
ity measures such as Granger causality and others. The direction
of the flow of information is important since we are interested in
knowing which connections influence misclassification errors and
which ones do not so that pruning can be done appropriately. As
per Judea Pearl’s ladder of causation, associations (correlations)
are at the first rung of the ladder and measures such as Granger
causality are at a higher rung. This is a unified view of statisti-
cal correlations and causation - seen to be at different levels of
measures of information flow (or influence). Chaos, causality, and
the manifestation of the Lottery Ticket Hypothesis are the key
motivations behind our proposed pruning mechanism.

Chaos and Causality

One way to address the issue of explainability in Al/machine
learning is to seek causal explanations for choices made in the
learning process. Conversely, a learning process that incorporates
choices made out of causal considerations is easier to explain and
interpret. This is the motivation behind using causality-based
criteria for the choice of what to prune (or not prune) in this study.
To this end, we employ Granger Causality (GC) (Granger 1969),
one of the earliest and nearly model-free causality testing between
two processes (or measurements/time series).

The principle of pruning that is causally informed is formulated
as follows. Those connections (weights) in the learning network
that do not causally impact the loss are chosen for pruning. To
determine the causal impact of a particular connection to the loss,
we perform GC between the windowed LE of the weight time
series for that connection and the classification accuracy. The
rationale behind this is the intuition that the chaotic signature
of weight updates supports learning. Biological inspiration for
chaotic signatures as a marker for learning is the empirical fact
that neurons in the human brain exhibit chaos (Faure and Korn
2001; Korn and Faure 2003) at all spatiotemporal scales. Starting
from single neurons to coupled neurons to a network of neurons to
different areas of the brain, chaos has been found to be ubiquitous
to the brain (Korn and Faure 2003).

Chaotic systems are known to exhibit a wide range of patterns
(periodic, quasi-periodic, and non-periodic behaviors), are very
robust to noise, and enable efficient information transmission (Na-
garaj and Vaidya 2009), processing/computation (Ditto and Sinha
2015), (Kuo 2005) and classification (Balakrishnan ef al. 2019).
There is also some evidence to suggest that weak chaos is likely
to aid learning (Sprott 2013). Thus our choice of testing causal
strength between LE (a value > 0 is a marker of chaos) and classi-
fication accuracy as a criterion for pruning to yield sparse subnet-
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works that capture the learning of the task at hand.

Gradient Descent and Low Dimensional Chaos

Is the process of updating weights in backpropagation via
Gradient Descent chaotic? Is there an alternative interpretation of
the minima in the weight landscape via low-dimensional chaos?
The weight update in SGD is written as w; 1 < w; — 11; Vo f (w;)
may be thought of as a discretization to the first order ODE:
w'(t) = —Vyuf(w;). The minimizer of the SGD is therefore
conceived as a stable equilibrium of the ODE. That is, the
minimum, w* can be thought of as a fixed point to the iterates
wiy1 = G, w;) = w* = G, w*).

Empirical evidence of chaos in backpropagation: We per-
formed a series of experiments on different datasets to check
Sensitive Dependence On Initial Conditions (SDIC) for weight
initialization, on a single hidden layer neural network. The
weight initialization matrix Wj; followed Gaussian distribution
(Wij ~ N(O, 0?)). We recorded two sets of executions - one
with initial weight wq; : wijVi € 1.h,Vj € 1.n, where n,h are
the number of input and hidden neurons - and another, with
infinitesimal perturbation (wj; + J) keeping other parameters
same. Each time, the network was trained via gradient descent,
and weight series were recorded. The method was repeated for
the second weight connection w;;,i = 1, j = 2. Later, the Lyapunov
Exponents (LE) were computed using the TISEAN package
(Hegger et al. 1998) on the recorded weight series to measure the
perturbed trajectory due to initial perturbation 5. We observed
positive LE which marked the presence of some chaotic behavior
in gradient descent.

In other words, to introduce perturbation in our experiments,
we initialize the weights of the dense neural network and run the
experiment under normal conditions. Once a baseline is estab-
lished, we induce a controlled perturbation on a single weight
connection. Specifically for a given weight, we introduce a small
perturbation modifying it to the original weight, added with an
infinitesimally small value before we start training the model. For
example, a weight w0 is initialized to w0=2.0 in the first run, and
after adding a small perturbation, w0=2.0001, we rerun the back-
propagation capturing the weight updates each time. The pur-
pose of this perturbation is to analyse the sensitivity of the model
to slight alterations and observe how these changes propagate
through the learning process. We try to investigate if the learning
process is chaotic. The computation of Lyapunov exponents and
their positive values confirms the presence of weak chaos during
backpropagation.

Lottery ticket hypothesis

The "lottery ticket hypothesis" (Frankle and Carbin 2018) is a con-
cept in neural network pruning that suggests that within a dense
and over-parameterized neural network, there exist sparse sub-
networks that can be trained to perform just as well as the orig-
inal dense network. Any fully connected feed-forward network
f%(x; ¢), with initial parameters ¢ when trained on a training set
D, f? achieves a test accuracy a and error e at iteration j. Our work
LEGCNet, validates the lottery ticket hypothesis by finding the
"winning ticket", m, to construct the sparse network, f° such that
acc® > aand j° < j where ||¢| > ||m]|.
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MATERIALS AND METHODS

Dense Neural network - Let f @ be a dense neural network of depth
| and width & defined as

fH(x) = Wi (W03 (W (x))) 1)

where Wl-d is the weight matrix for layer i such thati € 1..1.
Sparse Neural Network - Let f° be sparse neural network of the
same architecture as f?, with depth ! and width h.

Two approaches: LEGCNet-FT and LEGCNet-PT - To validate the
working of LEGCNet, we divided the method into two discrete ap-
proaches. In one approach, the entire training weight series is used
for computing LEs, testing GC, and for the identification of causal
weights. Essentially, the dense network is trained till convergence
and the approach is called LEGCNet-Full Train (LEGCNet-FT). In
the second approach, LEGCNet-PT, the network is trained only
till certain epochs (10% of the total iterates) and these few weight
updates are used for identifying the causal weights.

Granger causality as a tool

We have used popular model-free/ data-driven methods such as
Wiener-Granger Causality or G-causality. Granger causality or
G-causality works on the principle of modeling the two processes
X and Y as auto-regressive processes. Specifically, to determine if
'Y G-causes X', the two models considered are:

X() = Y (peX(t—0) + Y (Y (- D) e, Q)
=1 =1
X() = Y (qeX(t— 1) +e, ®

=1

where t stands for time, p+, q¢, r¢ are coefficients at a time lag
of T and ¢, € are error terms. Covariance stationarity is assumed
for both X and Y. Whether Y G-causes X (or not) can be predicted
by the measure known as F-statistic which is the log ratio of the
prediction error variances:

var(e)
var(ec)

Fyx = 4)
If the model represented by equation (2) is a better model for X(#)
than equation (3), then var(e.) < var(e) and Fy_,x > 0, suggesting
that Y Granger causes X. Even though G-causality uses the notion
of autoregressive models for the variables, the generic nature of
this modeling with minimal assumptions about the underlying
mechanisms makes it a popular choice in a wide range of disci-
plines.

Lyapunov exponents as a tool

In dynamical systems, Lyapunov exponents are used to measure
the rate of divergence of infinitesimally close trajectories, and they
are an important tool for characterizing the behavior of chaotic
systems. In a chaotic system, even small differences in initial condi-
tions can lead to large differences in the behavior of the system over
time. Lyapunov exponents provide a way to quantify sensitivity
to initial conditions, and they can be used to predict the long-term
behavior of a system. Systems with positive Lyapunov exponents
are considered to be chaotic, while systems with negative Lya-
punov exponents are stable and predictable. The magnitude of
the Lyapunov exponents provides information about the rate of
divergence or convergence of close trajectories, and this can be
used to study the dynamics of neural network training (via gra-
dient descent) in a quantitative way. It’s worth noting that the
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Lyapunov exponent is a sensitive measure of chaos and requires
careful numerical computation.

A differential equation defining a continuous-time smooth dy-
namical system in n dimensions is given as X = f(x) where
f :U— > R" is a continuous function and x(¢f) € R" is a state
variable at time t. A map f : U— > R” defines a discrete-time
smooth dynamical system in n-dimensions, as x;.1 = f(x;) where
x; is the state of the system at time t. Let there be two points xg and
X0 + dp which are separated by a small vector J at t=0. At time t,
the rate of separation of the two neighboring points, as they travel
in a chaotic region, is given as |d;| & |dy| ' where A is the LE, &y
is the difference between the two trajectories at t=0 and J; is the
difference at t=t. The A is calculated as

. . 1)
/\f(x) = lim lim {fl | t|} (5)

Jo—0n—00 |40

Different methods exist for calculating the Lyapunov exponent,
such as the Wolf algorithm (Wolf et al. 1985) or the Rosenstein
method (Rosenstein et al. 1993), which have specific considerations
depending on the system being studied.

Windowed Weight Updates

Consider a neural network with n inputs and r outputs, p hidden
layers of 1 neurons, and, the input vector denoted as x € R”, The
network when trained by SGD generates a sequence of weight

l} where w]
is the weight of the ith neuron of the input layer and the jth

neuron of the hidden layer at the sth iteration. Considering, the
weights being collected for the initial few epochs, the weight iter-

w] i} W, =
{wk]} Vie{l,.,n},vje{1,.,m}, Vk € {1,.,r} An infinitesi-
mal perturbation ¢ is introduced in the initial weight wll, given
as w!'% = w!! 4 5y, keeping other parameters - weights (initial-
ization), learning rate, optimizer, and loss function- same. The
network is then retrained with the perturbed weight, and the

updates represented by w/’ = [wo,w] e WL

ates for the hidden layer and output layer are W), =

weight updates are recorded again as W;f” = {wf"‘SO},WgU =

{wkfo‘o} Vie {1,.,n},¥j € {1,.,m}, vk € {1,.,r} A differ-
ence series obtained by subtracting perturbed weights from initial
weights is W}, = {éwﬁ},(SWo = {5wkf} Vie{1,.,n},V€
{1,.,m},Vk € {1,.,r}. We divide the weight series Swit into
D windows, wi’ = UP: 1 wﬁ(l), and compute the LEs of all the
windowed-weight trajectories. The series of the LE A of the
windowed-weight trajectories w/(P) are represented using the
notation {)Ui{l},)tﬁ{z},...,/\ﬁ{D}
accuracy at every window during training VI € 1,..., D, captured
for weights at wi(1) and WM, vi € {1,.,n},Vje{l,., m}, Vke
{1,..,r}. After computing the series of windowed-Lyapunov expo-
nents and corresponding wls, we test the Granger Causality (GC)
between them. The F-statistics of the two series are computed,
and the p-value is measured to check whether the windowed-
Lyapunov exponents "Granger-caused" the loss, wis. If so, then
this reveals that certain weight connections are causing the loss,
and they are pruned from the network. Hence, the weights that
resulted in Lyapunov exponents "Granger-causing" the loss, are
chosen for pruning. Before checking the GC, we confirmed that
the series is stationary.

}. Additionally, we record the
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Approximation capability of LEGCNet

The approximation capability of LEGCNet is explored here, that
a sparse network, f°, and dense network, f? are € close to each
other if the activation function used in the network satisfies the
Lipschitz property . We have theoretically established that the AF
sigmoid is Lipschitz (Lemma 1) and showed the sparse network
LEGCNet, approximates the dense counterpart.

The motivation of the theoretical analysis is taken from (Qian
and Klabjan 2021) which states that the approximation abilities
of dense and sparse networks are € close only if an activation
function is L1 Lipschitz. The main theorem and lemma in this
section build that the LEGCNet pruned network (f*) is e-close to
f4 with probability 1-6 (Qian and Klabjan 2021). Consider f* to be
a dense neural network in Figure 1 defined as

F(x) = Wioy (Wi 03] (x))) (6)

where Wlfi is the weight matrix for layer i such that i € 1.l and
h; > ho,h; > hy, Vi € 1...(I — 1). We assume that for network in (6),
0; is Li-Lipschitz and weight matrix Wid is initialized from uniform

C . . _K K
distribution U][ N N

], for some constant K.

4 Weight connections _ N
- between Input and Weight connections .
between Hedden and

Output layer

l
|
1 — \ |
| I ) |
T |

—> 15 o1
2 | Qutputs from Dense |
| Neural Network |
| |
X3 —» | —— o2 |
| |
I ~— == |
x4 —» | |
) |
/ |
|

i -
hidden layer

Network Inputs

Output Layer

Hidden L
Input Layer bl

N Architecture of a Dense Neural Network ’

Figure 1 Dense Neural Network

Theorem 0.1. (Approximation Capability of the Sparse Network)
Lete > 0,6 > 0, « € (0,1) such that the, for some constants
Kl/ KZ/ K3/ K4/ K5/

1 1
1 ; x
h}max{Kf,(KS) ,(%) , K4 +Kslog ((15)}

then sparse network f° obtained from LEGCNet by the mask m, and
pruning the weights W;i, Vi € 1...1is e-close to %, with the probability
(1-9), ie.

sup [[£1(x) = flx)| < e

XEBy
Remark: Lipschitz property of the activation functions (Saha ef al.
2020) is a necessary condition to validate the approximation ca-
pability of the proposed sparse network. We have used sigmoid
activation in the sparsely trained /pruned network.

Lemma 0.2. Sigmoid activation is Lipschitz.

Proof: If a function f(x) is Lipschitz continuous, then:
If(x) = fWI < Kllx=yll = [If (x| < K K <1fis
a contraction map as well. We know that Sigmoid, o(x) =
1_‘_1?; and ||| = |lo(x)(1 —0o(x))|. It's easy to follow that :

lo(x) (1~ o(x)]l < o)1~ (x)]| < C1,Ca. Since 0< Cy,
Cy <1,C xCy =6 < 1. Hence sigmoid is Lipschitz.
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Methodology Overview

Our methodology in Figure 2 gauges causality between weight-
specific Lyapunov Exponents (LEs) and misclassification, facili-
tating the identification of weights for pruning and retention in
the network. In the initial step, we train an MLP and record the
weights at the end of each iteration (single forward and backward
pass), resulting in a time series of weights for the entire training
batch. In the first round of training, the weight series is saved for
all the weight connections. We introduce a small perturbation in
one weight connection and train the network for the second time.
Inducing a perturbation is done to discover the chaotic behavior
of a NN by investigating the SDIC of the network (the initial con-
ditions - initial weights). After the second round of training, a
difference series is computed for all the weight connections.

This process gives insight into changes observed in weight
trajectories after introducing a small perturbation to one weight
connection. This step captures the impact of the perturbation
on the entire network’s weights. Once the difference series is
obtained, we divide the series into K partitions to obtain the LEs on
each partition for every connection. The LEs are then investigated
further by computing their causality with misclassification. If, for
a particular connection, the causality is established, we infer that
the connection hinders learning. The process is repeated for all
connections. The causal ones are saved and the non-causal ones
become candidates for pruning.

Our pruning method was developed as follows. Initially, we
trained a simple Multi-layer Perceptron (MLP) on a given dataset.
Throughout the training process, we recorded the weights at each
iteration, resulting in a time series of weight values. These weight
time series were subsequently utilized to estimate the LE, a mea-
sure of chaotic behavior, using the TISEAN package in conjunction
with MATLAB scripts. This estimation was performed using a
sliding window approach, generating a time series of LEs.

By combining the time series of Lyapunov exponents and the
model accuracies obtained at the end of each window, we em-
ployed a Granger causality module to investigate whether the
weights had a causal relationship with the model’s accuracy. This
analysis determined whether specific weights "Granger caused"
the accuracy. Based on our experiments, the time series of LEs
consistently exhibited positive values, indicating the presence of
chaotic elements in the weight time series. Consequently, our study
focused on understanding whether these weights Granger caused
the model’s accuracy. Any weights that did not demonstrate this
causal relationship were pruned before conducting subsequent
model runs (code will be shared on request).

These findings and our pruning methodology contribute to
a better understanding of the relationship between weights and
model accuracy, enhancing the efficiency and performance of fu-
ture training iterations. The complete implementation details and
code will be shared on request.

EXPERIMENTAL SETUP

In our study, we employed Python3.10 and Matlab R2022a to
conduct experiments on a single hidden layer neural network on
various datasets. Our experiments were conducted on a Ryzen 9
3900XT Desktop Processor with 32GB RAM and 1TB HDD. During
training, we stored the weight updates for every connection in CSV
files. We assumed a window size of 200 iterates and computed
the LE for each weight connection on every window. Further,
we calculated the training and test accuracy on every window, to
capture the misclassification rates. Thus, we obtained a sequence
of windowed LEs and windowed accuracies for every connection.

CHAOS Theory and Applications



Identification of non-causal weights for pruning
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Figure 2 Weights pruned via LEGCNet method for selecting connections in sparse neural network

We then computed the GC between the windowed LEs and the
misclassification rate to identify weight connections that Granger
caused misclassification.

In the process of pruning the network, we removed the connec-
tions for which the LEs were found to Granger cause misclassi-
fication. After pruning, we reran the experiment by keeping the
same initial weights, optimizers, and other hyperparameters as
the unpruned network. We extended the work on seven different
datasets and recorded the epochs and accuracies of the pruned net-
work. Interestingly, we observed that the accuracies of the sparse
network exceeded those of the dense network. We have used seven
datasets - Cancer, Titanic, Banknote, Iris, Iris (3 features), Vowel
and MNIST. The datasets we used for experiments are tabular
datasets stored as CSV files.

The file contains features as well as class labels associated with
the problem(classification) at hand. The features are fed as input to
the neural network and the output labels are provided as classes or
categories of each corresponding dataset. The code base of a neural
network fetches the input and output explicitly. The information
about the inputs/outputs (features/labels) of the dense neural
network is related to the precise dataset in use and this is publicly
available on the UCI Machine learning repository.

In our study, we conducted experiments in two parts. In the first
part, we trained the neural network until convergence (LEGCNet-
FT) in Figure 3 and computed windowed-LEs for each weight con-
nection as well as windowed accuracies. We then computed the
GC and pruned the network by removing connections that were
found to cause misclassification. In the second part of the experi-
ment, we trained the network only for a few epochs (LEGCNet-PT)
in Figure 4 and used these initial weight updates to compute win-
dowed LEs and accuracies, repeating the same procedure as in
the first part of the experiment. Finally, we compared the perfor-
mance of the pruned network (LEGCNet-FT and LEGCNet-PT) to
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that of the original network. The results of all these experiments
were recorded and presented in tables. The code will be shared on
request.

RESULTS AND DISCUSSION

We ran the experiments on seven tabular datasets - Cancer, Titanic,
Banknote, Iris, Iris (3 features) Vowel and MNIST. The datasets
were divided into 80:20 train-test split and the code was run five
times, each maintaining different network initialization. The best
results from every initialization are reported in Tables 1 and 2. Ta-
ble 1 is the comparison of the performance of Dense and LEGCNet-
FT. We present the description of table columns.

FLOPs - DN are the Flops needed for training the Dense net-
work, FLOPs - LEGCNet-FT - FLOPs consumed for training the
LEGNet-FT network, Non causal Weights - those weights which
were found non-causal in Dense Network; Epochs are the epochs
needed for Dense and LEGCNet-FT, Accuracy and F1 scores are
shown for Dense and LEGCNet-FT. The column percentage pruned
(fraction of parameters removed *100) shows the weight connec-
tions removed from the dense network.

We compared the FLOPs, % pruned (fraction of parameters
removed *100), accuracy, fl-scores, and epochs for all methods
(dense, LEGCNet-FT and LEGCNet-PT). Table 1 shows the perfor-
mance comparison of dense network and LEGCNet-FT. Remark-
ably, LEGCNet-FT achieves notable reductions in FLOPs without
compromising accuracy. Furthermore, LEGCNet-FT converges
significantly faster consuming a few epochs compared to the dense
network. Specifically, for the Titanic, Vowel, and Cancer datasets,
LEGCNet-FT achieves convergence in just half the number of
epochs required by the dense network. Nonetheless, both net-
work achieves a similar level of performance without significant
differences, thus validating the lottery ticket hypothesis. Table
2 demonstrates the performance of LEGCNet-PT. It shows that
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LEGCNet-PT performs at par with its counterpart, in terms of
convergence speed, FLOPs, accuracy, and F1 scores.

We utilized two diagnostic tools, namely WW and SHAP. The
WW validates the compliance of our architecture, as reflected in
the Table 3 and Figure 5 plotted for MNIST. WW is a powerful
open-source diagnostic tool designed for analyzing Deep Neu-
ral Networks (DNN). without requiring access to training or test
data. It leverages cutting-edge research on the underlying prin-
ciples of deep learning, specifically the Theory of Heavy-Tailed
Self-Regularization (HT-SR).

Drawing inspiration from various fields such as Random Matrix
Theory (RMT), Statistical Mechanics, and Strongly Correlated Sys-
tems, WeightWatcher provides valuable insights into the inner
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workings of DNNs and sheds light on why deep learning proves
to be effective.

WW analyzes each layer by plotting the empirical spectral distri-
bution (ESD), which represents the histogram of eigenvalues from
the layer’s correlation matrix. Additionally, it fits the tail of the
ESD to a (truncated) power law and presents these fitted distri-
butions on separate axes. This visualization approach provides a
clear representation of the eigenvalue distribution and highlights
the presence of heavy-tailed behavior in the network’s layers. In
general, the ESDs observed in the best layers of high-performing
DNNs can often be effectively modeled using a Power Law (PL)
function. The PL exponents, denoted as alpha, tend to be closer to
2.0 in these cases indicating a heavy-tailed behavior in the layer’s
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Table 1 Comparison of Dense Networks (DN) and Sparse Networks using LEGCNet-Fully Trained (FT) across datasets. Accuracies

and Fl-scores are reported on the test set.

Dataset (hidden) FLOPs DN FLOPsFT Non-causal Epochs DN EpochsFT Acc. DN Acc. FT F1IDN F1FT % Pruned
Cancer (6) 60 54 6 70 38 0.8759  0.8686 0.8656 0.8570 10.00
Titanic (8) 56 52 4 43 20 0.7225  0.7177 0.6948 0.6843 7.14
Banknote (8) 40 36 4 9 7 0.9018  0.8909 0.9016 0.8906 10.00
Iris (6) 42 40 2 182 166 0.9000  0.9000 0.9124 0.9419 4.76
Iris (3f) (6) 36 26 10 139 126 0.9000  0.9000 0.9330 0.9040 27.78
Vowel (4) 36 34 2 36 14 0.7462  0.7538 0.7307 0.7400 5.56
MNIST (50, 30) 41000 40861 139 27 30 0.9121 0.9165 0.8669 0.8781 0.34

Table 2 Comparison of Sparse Networks where causality is derived from two training strategies: full training (LEGCNet-FT) and
partial training (LEGCNet-PT). Iris 3f refers to the Iris dataset with 3 features. Epochs* indicates the number of epochs used to compute

non-causal weights in LEGCNet-PT.

Dataset (Epochs*) FLOPs FT FLOPsPT Epochs FT Epochs PT Acc. FT Acc. PT F1FT F1PT % Pruned
Cancer (12) 54 42 38 24 08686  0.8759 0.8570 0.8643 30.00
Titanic (3) 52 29 20 36 0.7177 0.7249 0.6843 0.6969 48.21
Banknote (2) 36 37 7 6 0.8909 0.8945 0.8906 0.8943 7.50
Iris (20) 40 40 166 173 0.9000 0.9000 0.9419 09124 4.76
Iris 3f (20) 26 28 126 135 09000  0.9333 0.9040 0.9330 2222
Vowel (5) 34 28 14 20 0.7538 0.7538 0.7400 0.7441 22.22
MNIST (5) 40861 40867 30 29 09165 09152 0.8781 0.8408 0.32

Table 3 Comparison of Random and Magnitude-based prun-
ing strategies on sparse networks (SN).

Dataset Epochs Acc. Rand Acc. Mag Fl1Rand F1Mag
Cancer 42 0.8759 0.8905 0.8656  0.8814
Titanic 35 0.7201 0.7201 0.6842  0.6906
Banknote 6 0.8945 0.9018 0.8943  0.9015
Iris 179 0.9000 0.9000 09124 09124
Iris (3f) 160 0.9000 0.9333 0.9330  0.9330
Vowel 28 0.7462 0.7462 0.7229  0.7307
MNIST 31 0.9119 0.9121 0.8627  0.8669

correlation matrix. WW offers several layer metrics to assess the
distinction between well-trained and well-correlated layers from
the Marchenko-Pastur (MP) random bulk distribution. By analyz-
ing these metrics, WW provides insights into the randomness and
heavy-tailed nature of layer distributions. The alpha lies between
2.0 and 6.0 on every layer (Table 4). The ESD plots of the three
types of training (dense, LEGCNet-PT, LEGCNet-FT) manifest a
heavy-tailed distribution of eigenvalues on each layer indicating
the layers are well-trained (Figure 5). A careful observation at Fig-
ure 5 reveals the following: ESD plot of a layer, where the orange
spike on the far right is the tell-tale clue; it’s called a Correlation
Trap (LeCun et al. 1990). A Correlation Trap refers to a situation
where the empirical spectral distributions (ESDs) of the actual
(green) and random (red) distributions appear remarkably similar,
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Table 4 WeightWatcher summary for models trained with the
same initialization on MNIST.

Model Layer1(784-50) Layer 2 (50-30) Layer 3 (30-10)
o e o Ny 14 Ky
Dense 2.19 1.63 1.51 1.88 1.94 2.76
LEGCNet-FT 2.24 164 151 1.83 229 3.20
LEGCNet-PT  2.19 171 1.51 185 273 3.87
Random 2.30 153 1.70 195 2.00 2.84
Magnitude 2.19 1.63 155 1.85 1.96 2.78

except for a small correlation shelf located just to the right of 0. In
the random ESD (red), the largest eigenvalue (orange) is noticeably
positioned further to the right and is separated from the majority of
the ESD’s bulk. This phenomenon indicates the presence of strong
correlations in the layer, which can potentially affect the overall
behavior and performance of the network. Figure 5 is the case of
well-trained layers. Layers have an overlap of random and original
ones when they have not been trained properly because they look
almost random, with only a little bit of information present. And
the information the layer learned may even be spurious. This is
the case of a well-trained layer.

SHAP (SHapley Additive exPlanations) is a game-theoretic tech-
nique utilized to provide explanations for the output of machine
learning models. By connecting optimal credit allocation with
local explanations, SHAP employs the well-established Shapley
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Figure 5 WW plots for dense and LEGCNet-FT, and LEGCNet-PT networks on MNIST data (layer 1), Plots reveal the correct training of the
proposed architectures. WW plots of MNIST for random and magnitude pruning are available in Appendix
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Figure 6 Shap values and feature importance computed on Cancer dataset (Banknote and Titanic plots can be seen in Appendix) for all three
models - Dense Network, LEGCNet-FT and LEGCNet-PT; the feature importance for the dense network is the same as LEGCNet-FT and

LEGCNet-PT

values from game theory and their related extensions. SHAP en-
ables a comprehensive understanding of the contributions made
by different features in the model’s output, facilitating insight-
ful explanations for its decision-making process. If a network is
pruned according to some underlying principles, then the con-
sistency in feature explainability is maintained before and after
pruning i.e. the features that explain the outcome before pruning
(fully connected, dense network) remain consistent on the pruned
network.

The SHAP values computed for the proposed pruning architec-
ture as well as for the baselines - random and magnitude - indicate
that the feature importance is maintained in LEGCNet-PT and
LEGCNet-FT when compared with dense (Figure 6). However, the
baseline pruning methods (random, magnitude pruning) could
not maintain the feature consistency as seen in the SHAP plots.
Though magnitude pruning shows feature consistency for Cancer,
banknote, and Titanic datasets, the random pruning could not
(please refer Appendix file for these plots).

Unlike the current baselines, the percentage of pruned weights
in the proposed work is significantly less. This is because only
the non-causal weights are pruned, weights that play no role in
impacting the loss/accuracy. LEGCNet ensures a mechanism to
check which weights to prune and which ones to keep by mea-
suring the causality between the LEs of weights and misclassifica-
tion. Whether the pruned weights are large in number or small, is
guided by connections that contribute to the training. Addition-
ally, if the network is not overparameterized, the methodology
righteously removes those connections that do not contribute dur-
ing training. We argue that the proposed strategy is efficient and
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accurate, with the additional benefit of passing network fitting
and explainability tests, in addition to satisfying the lottery ticket
hypothesis (Tables 1 and 2 Experimental section.). One of the other
salient features of LEGCNet is that, unlike other pruning methods,
it does not need the dense network to be trained for the entire cycle
of epochs to identify pruning candidates. Rather, such candidates
are detected after a few initial epochs so that the retraining can
start immediately. This is reflected in reduced FLOPs without com-
promising key performance indicators (Tables 1, 2). Notably, our
architecture is validated for correct training via WW Statistics as
detailed in the diagnostic section previously. We discuss more on
our findings from these experiments.

How do our results align with the Lottery ticket hypothesis?
Our work validates the lottery ticket hypothesis empirically, by
showing the comparable (and sometimes better) performance of
LEGCNet-PT and LEGCNet-FT as against dense architecture, as
reflected in the Tables 1 and 2 in the Experimental section. The
pruned network not only gets trained with lesser epochs than the
dense, but it also uses lesser FLOPs to achieve this performance.

Is our architecture Validated for correct training via WW Statistics?
As detailed in the WeightWatcher section previously, we have con-
ducted a thorough examination of our pruning method’s impact
on neural network training, validating that it maintains the net-
work’s capability to encode accurate representations from the data,
akin to the method without pruning. However, it is important to
acknowledge that some skepticism may arise concerning the re-
sults presented in the table. Notably, we observed that the middle
layer consistently exhibited signs of undertraining, irrespective of
whether pruning was applied or not. This phenomenon can be at-
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tributed to the architecture’s design, where the first layer, due to its
significantly higher number of interactions, encodes a substantial
portion of the information, leaving the middle layer comparatively
underutilized in terms of information encoding. Moreover, the
final layer efficiently captures the essential information required
for accurate classification, which has been frequently observed in
deep-layer neural networks with a roughly uniform node count of
around 30 nodes per layer (except the first and last layers).

It is crucial to emphasize that our primary focus in this investi-
gation was on the effects of pruning, rather than achieving perfect
classification performance. The benchmark accuracy served as an
indicative measure of model performance, while the underlying
motivation centered around the observation that ESD (Eigenvalue
Spacing Distribution) plots do not align precisely with those of ran-
dom matrices. In conclusion, while the middle layer’s undertrain-
ing may raise concerns, the core contribution of this study lies in
demonstrating that our pruning method effectively retains the neu-
ral network’s ability to encode meaningful representations from
the data, ensuring that essential information is preserved while
achieving a desirable balance between accuracy and interpretabil-
ity. These insights serve to shed light on the intricate interplay
between pruning and neural network architectures.

How do the proposed method and architectures produce consistent
feature explainability, in contrast with baseline pruning architectures?
The experimental results demonstrated that the proposed pruning
method exhibits notable advantages in maintaining feature
importance compared to the traditional random and magnitude
pruning methods. The feature consistency remained relatively
stable after employing the proposed pruning technique, which
was not the case for the other two methods. For random pruning,
we observed that pruning 40% of the weights led to satisfactory
accuracy levels for the respective datasets. Similarly, magnitude
pruning, with a 25% pruning threshold based on weight magni-
tudes, yielded comparable benchmark accuracies. The SHAP plots
provided critical insights into the behavior of feature importance
during pruning. In the case of random and magnitude pruning,
significant fluctuations in feature importance were evident
after pruning. These fluctuations could potentially hinder the
interpretability of the underlying model. However, our proposed
pruning method demonstrated remarkable resilience in preserving
feature importance, with minimal perturbations observed in
SHAP plot patterns enabling a more interpretable and transparent
pruned model. By selectively targeting weights based on a novel
criterion, the proposed method ensures that crucial features are
retained, thus For mission-critical tasks on edge devices such
as predicting power consumption of applications (Alavani et al.
2023) or forecasting real-time blood glucose prediction, feature
explainability on pruned networks is critical as it helps determine
accurate prediction when dimensionality is a curse. How is our
method doing in comparison with baseline pruning methods? The
overall performance of our methods, when compared with the
dense and baselines, shows that the Chaos-Causality framework
consumes fewer epochs and fewer FLOPs (Tables 1, 2) to train the
sparse network without compromising the accuracy and F1-score
thus validating the Lottery ticket hypothesis. When compared
with dense networks, LEGCNet-PT and LEGCNET-FT needed
lesser training epochs on 6 out of 7 datasets, while the accuracy
remained at par across all methods.
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CONCLUSION

The main idea is to decide on a weight connection in the dense
neural network, whether it should ‘be pruned or not to be pruned’,
and this decision is governed by the presence or absence of the
causal relationship between the Lyapunov exponent and the mis-
classification loss during the neural network training (backpropa-
gation) for the specific connection. If the causality is established
between them, it is pruned otherwise it remains unchanged during
the backpropagation. Once pruned, we investigate whether the
pruned network performs well or becomes worse compared with
its dense counterpart. To validate this, we train the sparse network
till convergence and compare its performance.

Tables 1 and 2 show that comparison. We compared the FLOPs,
percentage pruned (fraction of parameters removed *100), accu-
racy, fl-scores, and epochs for all methods (dense, LEGCNet-FT
and LEGCNet-PT). Table 1 shows the performance comparison
of dense network and LEGCNet-FT. Remarkably, LEGCNet-FT
achieves notable reductions in FLOPs without compromising ac-
curacy. Furthermore, LEGCNet-FT converges significantly faster
consuming a few epochs compared to the dense network. Specif-
ically, for the Titanic, Vowel, and Cancer datasets, LEGCNet-FT
achieves convergence in just half the number of epochs required by
the dense network. Nonetheless, both networks achieve a similar
performance level without significant differences, thus validating
the lottery ticket hypothesis. Table 2 demonstrates the performance
of LEGCNet-PT. It shows that LEGCNet-PT performs at par with
its counterpart, in terms of convergence speed, FLOPs, accuracy,
and F1 scores.

In conclusion, we emphasize that our primary focus in this in-
vestigation was on the effects of pruning, rather than achieving per-
fect classification performance. In the past, pruning was typically
accomplished by ranking or penalizing weights based on criteria
like magnitude and removing low-ranked weights before retrain-
ing the remaining ones. We formulate pruning as an optimiza-
tion problem to minimize misclassifications by selecting specific
weights. To pick these weights, we have introduced the concept
of chaos in learning (Lyapunov Exponents) through weight up-
dates and have used causality-based investigation to identify those
causal weight connections responsible for misclassification. We
proposed two architectures - Lyapunov Exponent Granger Causal-
ity driven Fully Trained Network (LEGCNet-FT) and Lyapunov
Exponent Granger Causality driven Partially Trained Network
(LEGCNet-PT). We compared three distinct pruning techniques:
random pruning, magnitude pruning, and our pruning approach.
Opverall, the experimental outcomes validate the superiority of the
proposed pruning method. The findings hold great promise for
further advancements in network optimization and model explain-
ability. We demonstrated that:

¢ By incorporating Lyapunov exponent (LE) values from weight
updates and verifying the causality of LE with accuracy, one
can identify certain weights in a dense network that do not
significantly contribute to improving accuracy or diminishing
misclassification

* Pruning these unnecessary (noncausal) weights results in a
subnetwork that can achieve the same or sometimes better
validation accuracy as the original dense network.

¢ The sub-network, once pruned, and trained from the start
(offline pruning) with the same initialization as the dense
network, achieves comparable, and sometimes better, training
speed while reaching the same validation accuracy.

¢ The subnetwork, LEGCNet-PT, after pruning, does not require
further tuning to match the performance of the original dense
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network.

¢ By using LEGCNet-PT,/LEGCNet-FT to prune the weight
connections, a dense over-parameterised network determines
weight connections to be pruned without compromising on
accuracy/F1 score or any other performance metrics.

® When compared with the classical methods like random prun-
ing and magnitude pruning we observe that our methods
perform at par and sometimes better in terms of classification
accuracy on all datasets.

¢ The accuracy comparison of dense networks and sparse net-
works (using LEGCNet-PT, LEGCNet-FT) reveals that the
sparse networks perform better.

* We also found via experiments that the sparse networks were
trained on lesser epochs and fewer FLOPs than their dense
counterpart on all datasets.

* By using SHAP, we showed that a dense network when
pruned using LEGCNet-PT/LEGCNet-FT demonstrates re-
markable resilience in preserving feature importance, and
enables a more interpretable and transparent pruned model.

Our pruning approach is yet to be tested on baseline architectures
(Resnet, Densenet), and Large Language Models and savings in
carbon emission need to be computed.
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