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Abstract. In the present paper with the aid of subordination, the authors introduce a new subclass of univalent
functions namely; starlike functions with respect to symmetric points linked with cardioid domain defined by S ∗∗s,e :={
f ∈ S : 2z f ′(z)

f (z)− f (−z) ≺ 1 + zez =: p(z)
}
, where the function p(z) maps unit disk D := {z ∈ C : |z| < 1} onto a cardioid

domain in the right half plane. We investigate the sharp upper bounds of some of the initial coefficients, Fekete-
Szegö functional and Hankel determinant involving initial coefficients of function f for the class S ∗∗s,e. Further,
we determine some of the sharp bounds of logarithmic inverse coefficients, Hankel, Toeplitz, Hermitian-Toeplitz
determinant, Zalcman functional, Kruskal inequality as well as the lower and upper bounds for modulo difference
of second and the first logarithmic inverse coefficient for such family. Also we obtained some of our results are
sharp and respective extremal functions are mentioned.
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Keywords: Analytic function, subordination, Hankel, Toeplitz and Hermitian-Toeplitz determinants, modulo differ-
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1. Introduction andMotivation

Let A denote the class of functions f which are analytic in the open unit disk D := {z ∈ C : |z| < 1} having
normalized by the conditions f (0) = 0 and f ′(0) = 1. Then, the function f can admits Taylor-Maclaurin’s series
expansion of the form:

f (z) = z +
∞∑

n=2

anzn (z ∈ D). (1.1)

The subclass of A that consists of analytic and univalent functions in the open unit disk D is denoted by S. In 1959,
Sakaguchi [29] introduced the class of starlike functions with respect to symmetric point as:

S ∗s :=
{

f ∈ S : ℜ
(

z f ′(z)
f (z) − f (−z)

)
> 0; z ∈ D

}
.

These functions are also known as Sakaguchi functions which are close-to-convex and hence univalent. In 2004,
making use of subordination between two analytic functions Ravichandran [25] introduced unified class S ∗s(ϕ) as:

S ∗s(ϕ) =
{

f ∈ S :
2z f ′(z)

f (z) − f (−z)
≺ ϕ(z) (z ∈ D)

}
,
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where ϕ is univalent starlike function with respect to 1 which maps D onto a symmetric region with respect to real axis
in the right half plane. For details, see [11] and reference within.
Motivated by aforementioned works, we introduce the following subclass of the class S ∗s .

Definition 1.1. A function f ∈ S given by (1.1) is said to be the member of the class S ∗∗s,e if the following subordination
condition holds:

2z f ′(z)
f (z) − f (−z)

≺ 1 + zez = p(z) (z ∈ D),

where the function p maps the unit disk D onto a cardioid domain in the right half plane.

Remark 1.2. The left hand side of the subordination appeared in the definition of starlike functions with respect to
symmetrical points. Hence, because the right hand side of this subordination is a function with real positive part, it
follows that these classes are subclasses of the starlike functions with respect two symmetrical points.

Sivaprasad Kumar and Gangania [16] studied radius of convexity and inclusion relation for the class of starlike
functions related to cardioid domain. Also, Shi et. al. [31] determined the sharp bounds of coefficient functionals
related to the Carathéodory functions and investigated the initial coefficient bounds and Fekete-Szegö functional on a
subclass of bounded turning functions associated with cardioid domain.

We would like to emphasize here that the class S ∗∗s,e is not empty. First, we have to show that the function p(z) :=
1 + zez is also correctly choose because p′(z) = (1 + z)ez, hence p′(0) = 1 , 0. Also, it’s easy to see that

Re
zp′(z)

p(z) − p(0)
= Re

zp′(z)
p(z) − 1

= Re(1 + z) > 0, z ∈ D.

Using this fact together with p′(0) = 1 , 0 it follows that p(z) = 1 + zez is also a starlike (univalent) function in D
(see Fig. 1) and because p(z) = p(z), z ∈ D, the domain p(D) is symmetric with respect to the real axis. Further, from
Figure 2 we observe that p(z) , 0 for all z ∈ D.

To show that S ∗∗s,e is non empty for some appropriate choices of q. Let us consider the functions q(z) := z+0.18z2 ∈ A.
From the Figure 3, q (D) ⊂ p (D) with the univalency of p(z) = 1 + zez seen previously for S ∗∗s,e class, leads to

q(z) := z + 0.18z2 ≺ p(z).

Figure 1. Starlike function of p(z) Figure 2. The images of p(D)
(multi color)

Figure 3. The images of p
(
eit

)
(red

color) and q
(
eit

)
(multi color), t ∈ [0, 2π)

It may be noted that for the Schwarz function w(z) = z, the corresponding extremal function

f1(z) = z +
1
2

z2 +
1
2

z3 +
1
4

z4 +
1
6

z5 · · · , (1.2)

and for the Schwarz function w(z) = z2, the corresponding extremal function

f2(z) = z +
1
2

z3 +
3
8

z5 + · · · , (1.3)

are belong to the class S ∗∗s,e.
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For each functions f ∈ S defined on D, the famous one-quarter theorem of Koebe (see [9]) asserts that its inverse
f −1 exists at least on a disk of radius 1

4 . If f ∈ S, the function f −1 which is the inverse of f has expression given by

f −1(w) = w +
∞∑

n=2

Anwn (|w| <
1
4

).

Some of the initial coefficients of f −1 are given by

A2 = −a2, A3 = 2a2
2 − a3, A4 = −a4 + 5a2a3 − 5a3

2

A5 = −a5 + 6a2a4 − 21a2
2a3 + 3a2

3 + 14a4
2. (1.4)

The inverse functions are studied by several authors in various subclasses of analytic functions. (see, for details [1] and
reference therein).
The logarithmic coefficients γn := γn( f ) (n ∈ N) of the function f ∈ S are defined as

F f (z) = log
f (z)
z
= 2

∞∑
n=1

γnzn, (z ∈ D), where log1 = 0. (1.5)

If f is given by (1.1), then comparing the coefficients of zn in (1.5) for n = 1, 2, 3, 4 it give

γ1 =
a2

2
, γ2 =

1
2

a3 −
a2

2

2

 , γ3 =
1
2

(
a4 − a2a3 +

1
3

a3
2

)
,

γ4 =
1
2

(
a5 − a2a4 + a2

2a3 −
1
2

a2
3 −

1
4

a4
2

)
.

Very recently, the upper bounds of logarithmic coefficients of functions f in some subclasses of the class S have been
obtained by various authors [1, 22, 37].

Further, the concept of inverse logarithmic coefficients i.e. logarithmic coefficients of inverse of f has been intro-
duced by Ponnusamy et al. [24]. The inverse logarithmic coefficients Γn (n ∈ N) of f are given by the relation:

F f −1 (w) = log
f −1(w)

w
= 2

∞∑
n=1

Γnwn (|w| <
1
4

). (1.6)

By differentiating (1.6) together with (1.4) one may get

Γ1 = −
1
2

a2, Γ2 = −
1
2

(
a3 −

3
2

a2
2

)
, Γ3 = −

1
2

(
a4 − 4a2a3 +

10
3

a3
2

)
,

Γ4 = −
1
2

(
a5 − 5a4a2 + 15a3a2

2 −
5
2

a2
3 −

35
4

a4
2

)
,

Γ5 = −
1
2

(
−6a2a5 − 56a3

2a3 + 21a2
2 + 21a2a2

3 + a6 +
126

5
a5

2

)
. (1.7)

Hankel matrices and determinants play an important role in several branches of mathematics and have many appli-
cations [36]. The Toeplitz determinants are closely related to Hankel determinants. Hankel matrices have constant
entries along the reverse diagonal, whereas Toeplitz matrices have constant entries along the diagonal. For a good
summary of the Toeplitz determinant and its applications to wide range of areas of pure and applied Mathematics, we
refer to [36]. Recently, Thomas and Halim [28] have introduced the concept of the symmetric Toeplitz determinant for
analytic functions f of the form (1.1). Finding the upper bounds for the modules of Hankel determinants for various
subclasses of analytic univalent functions is an active area of research in Geometric Function Theory. In 1976, Noonan
and Thomas [20] stated the q-th Hankel determinant for q ≥ 1 and n ≥ 1 of functions f ∈ A represented by (1.1)
denoted by Hq(n)( f ) is defined as:

Hq(n)( f ) =

∣∣∣∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1

an+1 an+2 · · · an+q
...

...
. . .

...
an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣∣∣∣∣ (q, n ∈ N = {1, 2, 3, ....}).
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It may be noted that for q = 2, n = 1 and q = 2, n = 2 we have

H2(1)( f ) = a3 − a2
2 and H2(2)( f ) = a2a4 − a2

3 (1.8)

are popularly known as Fekete-Szegö functional and second Hankel determinant, respectively. Fekete-Szegö inequality
for the coefficient of univalent analytic functions found by Fekete and Szegö in 1933, which is related to Biberbach
conjecture. Fekete and Szegö [10] have proved that

max
f∈S
|a3 − µa2

2| =

1 + 2 exp
(
−

2µ
1−µ

)
, 0 ≤ µ < 1,

1, µ = 1,

hold for any function f ∈ A of the form (1.1). Recently Amourah et. al. [3] introduced a subfamily of bi-univalent
functions connected to the Jacobi polynomial through the imaginary error function and derived the initial coefficients
and the Fekete-Szegö inequality. Buyankara and Çağlar [6] determined the sharp bounds for the second Hankel deter-
minant and some Toeplitz determinant for of a subclass of analytic functions(also see [5, 30]). Recently, Kowalczyk
and Lecko [12] proposed a Hankel determinant whose elements are the logarithmic coefficients of f ∈ S. The concept
of the Hankel determinant Hq(n)(F f −1/2) [34], Toeplitz determinant Tq(n)(F f −1/2) [15, 35] and Hermitian-Toeplitz de-
terminant Tq,n(F f −1/2) [19] where the elements of the determinants are logarithmic coefficients of the inverse functions
f ∈ S are expressed as:

Hq(n)(F f −1/2) =

∣∣∣∣∣∣∣∣∣∣∣∣
Γn Γn+1 · · · Γn+q−1
Γn+1 Γn+2 · · · Γn+q
...

...
. . .

...
Γn+q−1 Γn+q · · · Γn+2q−2

∣∣∣∣∣∣∣∣∣∣∣∣ , (1.9)

Tq(n)(F f −1/2) =

∣∣∣∣∣∣∣∣∣∣∣∣
Γn Γn+1 · · · Γn+q−1
Γn+1 Γn · · · Γn+q−2
...

...
. . .

...
Γn+q−1 Γn+q−2 · · · Γn

∣∣∣∣∣∣∣∣∣∣∣∣ , (1.10)

and while qth Hermitian-Toeplitz determinant Tq,n(F f −1/2) = [Γi j] is given by:

Tq,n(F f −1/2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣
Γn Γn+1 · · · Γn+q−1

Γn+1 Γn · · · Γn+q−2
...

...
. . .

...

Γn+q−1 Γn+q−2 · · · Γn

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (1.11)

where Γi j = Γn+ j−i, ( j ≥ i) and Γi j = Γ̄i j, j < i.

For q = 2, n = 1, relation (1.9) gives H2(1)(F f −1/2) =

∣∣∣∣∣∣Γ1 Γ2
Γ2 Γ3

∣∣∣∣∣∣ = Γ1Γ3 − Γ
2
2.

Using (1.7) and after simplification we get

H2(1)(F f −1/2) =
1

48
(13a4

2 − 12a2
2a3 − 12a2

3 + 12a2a4). (1.12)

Similarly, for q = 2 and n = 1, relation (1.10) yields T2(1)(F f −1/2) =

∣∣∣∣∣∣Γ1 Γ2
Γ2 Γ1

∣∣∣∣∣∣ = Γ2
1 − Γ

2
2.

Making use of the relation (1.4) one may find

T2(1)(F f −1/2) =
1

16
(−9a4

2 + 4a2
2 − 4a2

3 + 12a2
2a3). (1.13)

Further, for q = 2 and n = 1, relation (1.11) yield T2,1(F f −1/2) =

∣∣∣∣∣∣Γ1 Γ2
Γ̄2 Γ1

∣∣∣∣∣∣ = Γ2
1 − |Γ2|

2.

Making use of the relation (1.5) in the above expression, one may get

T2,1(F f −1/2) =
1
16

(−A4
2 + 4A2

2 + 4A2
2ℜ(A3) − 4|A3|

2). (1.14)
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Zaprawa [37] obtained the sharp bounds of initial logarithmic coefficients γn for functions in the classes S∗s and Ks

(also see [12, 33]). Further, results concerning Toeplitz determinants were introduced by Ali et al. [2]. Moreover,
Cudna et al. [8] studied the third-order Hermitian-Toeplitz determinant for starlike and convex functions of order α.
For more details see [21].

2. Preliminaries Results

Let us define by P the well-known Carathéodory class i.e the family of holomorphic functions d ∈ P that satisfies
the condition Re{d(z)} > 0, z ∈ D, and of the form

d(z) = 1 +
∞∑

n=1

dnzn, (z ∈ D). (2.1)

We need the following lemmas in order to prove our main results.

Lemma 2.1 ( [7, 23, 26]). Let d ∈ P be of the form (2.1).
(i) Then, for n ≥ 1

|dn| ≤ 2. (2.2)

The inequality holds for all n ≥ 1 if and only if d(z) =
1 + λz
1 − λz

, |λ| = 1.

(ii) Also, if µ ≥ 0 then

|dn+k − µdndk | ≤ 2 max {1; |2µ − 1|} =

2, if 0 ≤ µ ≤ 1,
2|2µ − 1|, otherwise.

(2.3)

If 0 < µ < 1, the inequality is sharp for the function d(z) =
1 + zn+k

1 − zn+k . In the other cases, the inequality is sharp for the

function d(z) =
1 + z
1 − z

.

Lemma 2.2 ( [4], Lemma 2.2.). If d ∈ P has the form (2.1), then∣∣∣αd3
1 − βd1d2 + γd3

∣∣∣ ≤ 2 (|α| + |β − 2α| + |α − β + γ|) . (2.4)

Lemma 2.3 ( [32], Proposition 1). Let d ∈ P be given by (2.1). Let B1, B2 and B3 be numbers such that B1 ≥ 0, B2 ∈ C
and B3 ∈ R. Define ψ+(d1, d2) and ψ−(d1, d2) by

ψ+(d1, d2) = |B2d2
1 + B3d2| − |B1d1|, and ψ−(d1, d2) = −ψ+(d1, d2).

Then,

ψ+(d1, d2) ≤

|4B2 + 2B3| − 2B1 when |2B2 + B3| ≥ |B3| + B1,

2|B3| otherwise,
(2.5)

and

ψ−(d1, d2) ≤


2B1 − B4 B1 ≥ B4 + 2|B3|,

2B1

√
2|B3 |

B4+2|B3 |
when B2

1 ≤ 2|B3|(B4 + 2|B3|),

2|B3| +
B2

1
B4+2|B3 |

otherwise,

(2.6)

where B4 = |4B2 + 2B3|. All the inequalities in (2.5) and (2.6) are sharp.

Lemma 2.4 ( [17]). Let p ∈ P be given by (2.1). Then,

2d2 =d2
1 + tξ,

4d3 =d3
1 + 2d1tξ − d1tξ2 + 2t(1 − |ξ|2)η,

8d4 =d4
1 + 3d2

1tξ + (4 − 3d2
1)tξ2 + d2

1tξ3 + 4t(1 − |ξ|2)(1 − |η|2)γ (2.7)

+ 4t(1 − |ξ|2)(d1η − d1ξη − ξ̄η
2),

for some ξ, η, γ ∈ D̄ and t = (4 − d2
1).
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3. Bounds on Initial Coefficients and Hankel Determinant for the Class S ∗∗s,e

In this section, we determine the upper bounds for the first four initial coefficients, Fekete-Szegö functional |a3−µa2
2|

and second Hankel determinant |a2a4 − a2
3| for our defined class S ∗∗s,e.

Theorem 3.1. Let the function f ∈ A given by (1.1) be a member of the class S ∗∗s,e. Then,

|a2| ≤
1
2
, |a3| ≤

1
2
, |a4| ≤

5
16
, |a5| ≤

78226
196476

= 0.3981453205.

The first two coefficient estimates are sharp.

Proof. Assume that, f ∈ S ∗∗s,e. Hence, by Definition 1.1, there exists Schwarz function w(z) with w(0) = 1 and |w(z)| < 1
such that

2z f ′(z)
f (z) − f (−z)

= 1 + w(z)ew(z) (z ∈ D). (3.1)

Expressing the Schwarz function w in terms of d ∈ P, i.e.,

d(z) =
1 + w(z)
1 − w(z)

= 1 + d1z + d2z2 + d3z3 + · · · (z ∈ D),

or equivalently,

w(z) =
d(z) − 1
d(z) + 1

=
1
2

d1z +
(

1
2

d2 −
1
4

d2
1

)
z2 +

(
1
8

d3
1 −

1
2

d1d2 +
1
2

d3

)
z3 + · · · . (3.2)

Making use of (3.2) in the r.h.s of (3.1) we obtain

1 + w(z)ew(z) = 1 +
1
2

d1z +
1
2

d2z2 +

d3

2
−

d3
1

16

 z3

+

(
1
2

d4 −
3
16

d2
1d2 +

1
24

d4
1

)
z4 + · · · (z ∈ D). (3.3)

On the other hand, it follows from (1.1) that

2z f ′(z)
f (z) − f (−z)

= 1 + 2a2z + 2a3z2 + (4a4 − 2a2a3)z3 + (4a5 − 2a2
3)z4 + · · · . (3.4)

Comparing the coefficients of various powers of z from the relations (3.3) and (3.4), we obtain

a2 =
1
4

d1, (3.5)

a3 =
1
4

d2, (3.6)

a4 = −
1

64

[
d3

1 − 2d1d2 − 8d3

]
, (3.7)

a5 =
1
4

[
d4

2
−

3
16

d2
1d2 +

1
24

d4
1 +

d2
2

8

]
. (3.8)

Taking modulus on both sides of (3.5) and (3.6) and then using the inequality (2.2) of Lemma 2.1 we get the desired
estimates bounds of |a2| and |a3| respectively. The bounds of |a2| and |a3| are sharp and the corresponding extremal
function is given in (1.2).
Taking modulus on both sides of (3.7) and using (2.4) of Lemma 2.2 with α = 1, β = 2 and γ = −8 we get

|a4| ≤
1
64

(2)[1 + |2 − 2| + |1 − 2 − 8|] =
5

16
.
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Further, rearranging the terms in (3.8) and applying (2.7) of Lemma 2.4 we get

a5=
1
4

[
1

16
(d4

1 + 3d2
1tζ + (4 − 3d2

1)tζ2 + d2
1tζ3 + 4t(1 − |ζ |2)(1 − |η|2)γ + 4t(1 − |ζ |2)(d1η − d1ζη − ζ̄η

2))

−
3

32
d2

1(d2
1 + tζ) +

1
24

d4
1 +

1
32

(d4
1 + t2ζ2 + 2tζd2

1)
]

=
1
4

 1
16

d4
1 +

3
16

tζd2
1 +

(4 − 3d2
1)tζ2

16
+

tζ3

16
d2

1 +
(1 − |ζ |2)(1 − |η|2)γ

4
t +

t(1 − |ζ |2)d1η

4
−

t(1 − |ζ |2)d1ζη

4

−
t(1 − |ζ |2)ζ̄η2

4
−

3
32

d4
1 −

3
32

tζd2
1 +

1
24

d4
1 +

1
32

d4
1 +

1
32
ζ2t2 +

1
16

tζd2
1

]
(3.9)

Taking t = 4 − d2
1 from Lemma 2.4 and without loss of any generality we can write d1 = d ∈ [0, 2], relation (3.9)

and |ξ| = x ≤ 1 and |η| = y ≤ 1. Taking modulus on both sides of (3.9) and then applying triangle inequality with
x, y ∈ [0, 1] and d ∈ [0, 2], we obtain

|a5| ≤
1
4

[
1

16
d4 +

3
16

(4 − d2)xd2 +
(4 − 3d2)(4 − d2)x2

16
+

(4 − d2)x3

16
d2 +

(1 − x2)(1 − y2)
4

(4 − d2)

+
(4 − d2)(1 − x2)dy

4
+

(4 − d2)(1 − x2)dxy
4

+
(4 − d2)(1 − x2)xy2

4
+

3
32

d4

+
3
32

(4 − d2)xd2 +
1

24
d4 +

1
32

d4 +
1

32
x2(4 − d2)2 +

1
16

(4 − d2)xd2
]

=
1
4

[F(d, x, y)] (say), where 0 ≤ d ≤ 2, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

Now, we have to find the maximum of F(d, x, y) in the cuboid ω = {(d, x, y) ∈ [0, 2] × [0, 1] × [0, 1]}. Let us consider
for the corner points of the cuboid ω.

F(0, 0, 0) = 1, F(0, 1, 0) =
3
2
, F(0, 0, 1) = 0, F(0, 1, 1) =

3
2
, F(2, 0, 0) =

2
3
, F(2, 1, 0) =

2
3
,

F(2, 1, 1) =
2
3
, F(2, 0, 1) =

2
3
.

Next, considering the following different cases as faces of the cuboid ω.

F(0, x, y) =
3x2

2
+

(
−x2 + 1

) (
−y2 + 1

)
+

(
−x2 + 1

)
x y2 ≤ F(0, 1, 1) =

3
2
,

F(d, x, 0) =
1

24
d4 −

5
32

d4x +
5
8

d2x +
7

32
d4x2 − d2x2 +

1
2

x2 −
1
16

d4x3 +
1
4

d2x3 −
1
4

d2 + 1 ≤ F(0, 1, 0) =
3
2
,

F(d, 0, y) =
d4

24
+

(
−y2 + 1

) (
−d2 + 4

)
4

+

(
−d2 + 4

)
dy

4
≤ F(0, 0, 0) = 1, F(2, x, y) ≤

2
3
,

F(d, 1, y) =
d4

24
+

7
(
−d2 + 4

)
d2

32
+

(
−3d2 + 4

) (
−d2 + 4

)
16

+

(
−d2 + 4

)2

32
≤ F(0, 1, y) =

3
2
,

F(d, x, 1) =
1

24
d4 −

5
32

d4x +
3
8

d2x +
7

32
d4x2 −

5
4

d2x2 +
3
2

x2 −
1
16

d4x3 +
1
2

d2x3 +
1
4

d3x2 −
1
4

d3

− d x2 + d +
1
4

d3x3 −
1
4

d3x − d x3 + dx − x3 + x ≤ F
(

23552
23159

,
32786
51627

, 1
)
=

78226
49119

= 1.59258128248404818.
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Next is to check for the interior of the cuboid ω. Taking partial derivative of F(d, x, y) with respect to d, x and y we get
the following.

∂F
∂d
= −

1
2

d + y +
7
8

d3x2 +
1
2

d y2 − x2y − x3y +
1
6

d3 +
5
4

dx − 2d x2 +
1
2

d x3 −
3
4

d2y −
1
2

d x2y2 +
3
4

d2x2y

+
3
4

d2x3y +
1
2

d x3y2 −
3
4

d2xy + xy −
1
2

dx y2 −
5
8

d3x −
1
4

d3x3

∂F
∂x
= x +

7
16

d4x −
3
16

d4x2 +
3
4

d2x2 −
1
4

d2y2 − 3x2y2 −
1
4

d3y −
1
2

d2x y2 − 2d2x +
3
4

d2x2y2 +
3
4

d3x2y

− 3d x2y +
1
2

d3xy −
5

32
d4 +

5
8

d2 + y2 − 2dxy + dy + 2x y2

∂F
∂y
= −

1
2

d2x2y +
1
2

d2y + 2x2y − 2y +
1
4

d3x2 −
1
4

d3 − d x2 + d

+
1
4

d3x3 −
1
4

d3x − d x3 + dx +
1
2

d2x3y −
1
2

d2xy − 2x3y + 2xy.

Solving ∂F
∂d = 0, ∂F

∂x = 0 and ∂F
∂y = 0 we get (0,0,0) is the only critical point which is not a interior point. Hence, it has

no critical point in the interior of the cuboid. Hence, we get

|a5| ≤

(
1
4

) (
78226
49119

)
=

78226
196476

= 0.3981453205.

This completes the proof of Theorem 3.1. □

Next theorem gives Fekete-Szegö functional |a3 − µa2
2| bounds for the class S ∗∗s,e as follows.

Theorem 3.2. If f ∈ S ∗∗s,e has of the form (1.1), then for any complex number µ, we have

|a3 − µa2
2| ≤

1
2

max
{

1,
∣∣∣∣∣µ − 2

2

∣∣∣∣∣} .
This bound is sharp.

Proof. Assume that f ∈ S ∗∗s,e. Making use of (3.5) and (3.6) in the functional a3 − µa2
2 and taking the modulus on the

both sides and then applying (2.3) of Lemma 2.1, we get

|a3 − µa2
2| ≤

1
2

max
{

1,
∣∣∣∣∣µ − 2

2

∣∣∣∣∣} .
This bound is sharp for the schwarz function w(z) = z2 and the corresponding extremal function is given in (1.3). This
completes the proof of Theorem 3.2. □

Letting µ = 1 in the Theorem 3.2, we obtain the following result in the form of corollary.

Corollary 3.3. If the function f ∈ A given by (1.1) belongs to the function class S ∗∗s,e, then

|a3 − a2
2| ≤

1
2
.

The estimate is sharp and the extremal function is given in (1.3).

In following theorem, we investigate the upper bound of Hankel determinant of order two for the function that
belongs to the class S ∗∗s,e.

Theorem 3.4. If the function f ∈ A given by (1.1) belongs to the class S ∗∗s,e, then

|a2a4 − a2
3| ≤

1
4
.

This bound is sharp.
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Proof. From (3.5), (3.6) and (3.7) it follows that

a2a4 − a2
3=
−d4

1

256
+

1
128

d2
1d2 +

d3d1

32
−

d2
2

16

=
1

256

[
−d4

1 + 2d2
1d2 + 8d3d1 − 16d2

2

]
.

By applying (2.7) of Lemma 2.4 above expression simplified into the following

a2a4 − a2
3 =

1
256

[
−2d4

1 − 3d2
1tζ − 2d2

1tζ2 − 4t2ζ2 + 4d1t(1 − |ζ |2)η
]
.

Taking t = 4−d2
1 from Lemma 2.4 and without loss of any generality we can write d1 = d ∈ [0, 2], in the above relation

and |ξ| = x ≤ 1 and |η| ≤ 1. Taking modulus on both sides of the above relation and then, applying triangle inequality
with x ∈ [0, 1] and d ∈ [0, 2], we obtain

|a2a4 − a2
3|≤

1
256

[
2d4 + 3d2(4 − d2)x + 2d2(4 − d2)x2 + 4(4 − d2)2x2 + 4d(4 − d2)(1 − x2)

]
=

1
256

[F(d, x)] 0 ≤ d ≤ 2, 0 ≤ x ≤ 1. (3.10)

Now, we need to determine
max{F(d, x) : (d, x) ∈ [0, 2] × [0, 1]}.

A simple computation shows
∂F
∂x
= 3d2(−d2 + 4)x + 2d4 + 2d2(−d2 + 4)x2 + 4(−d2 + 4)2x2 + 4(−d2 + 4)d(−x2 + 1) ≥ 0 ((d, x) ∈ [0, 2] × [0, 1]).

As a result, F(d, x) is an increasing function of x on the closed interval [0,1]. This means that the function F(d, x)
attains its maximum at x = 1. Hence

max F(d, x) ≤ F(d, 1) = 5d2
(
−d2 + 4

)
+ 2d4 + 4

(
−d2 + 4

)2
= G(d)(say).

Using the fact that G′(d) = 4d3 − 24d ≤ 0 ∀d ∈ [0, 2].
Hence, G(d) will be decreasing on [0,2] which implies that

G(d) ≤ G(0) = 64. (3.11)

According to the inequalities (3.10) and (3.11) we deduce that

max {F(d, x) : (d, x) ∈ [0, 2] × [0, 1]} = F(0, 1) = 64. (3.12)

The desire estimates follows from (3.10) and (3.12). Here, the bound is sharp and the extremal function is given in
(1.3). This completes the proof of Theorem 3.4. □

4. Bounds on Logarithmic Inverse Coefficients for the Class S ∗∗s,e

In this section, we investigate initial coefficient bounds, Hankel determinant, Toeplitz determinant and Hermitian-
Toeplitz determinant of logarithmic coefficients of inverse function f −1 for the class S ∗∗s,e.
The following theorem gives the bounds of initial logarithmic coefficients of inverse function f −1 for the class S ∗∗s,e.

Theorem 4.1. Let the function f ∈ A given in the form (1.1) be the member of the class S ∗∗s,e. Then,

|Γ1| ≤
1
4
, |Γ2| ≤

1
4
, |Γ3| ≤

1
6
, |Γ4| ≤

7
16
.

The first three estimates are sharp.

Proof. Assume that f ∈ A given by (1.1) is in the function class S ∗∗s,e. Then using (3.5)-(3.8) in the expression (1.7) we
obtain

Γ1 = −
d1

8
, (4.1)

Γ2 = −
1
8

(
d2 −

3
8

d2
1

)
, (4.2)
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Γ3 = −
1
2

[
d3

8
−

7
32

d1d2 +
7

192
d3

1

]
(4.3)

and

Γ4 = −
1
2

[
d4

8
−

1
8

d2
2 −

13
3072

d4
1 +

19
128

d2
1d2 −

5
32

d1d3

]
. (4.4)

Taking modulus on both sides of (4.1) and (4.2) and then using the inequalities (2.2) and (2.3) of Lemma 2.1, we get
the desired estimates bounds of |Γ1| and |Γ2|, respectively. The bounds of |Γ1| and |Γ2| are sharp for the function given
in (1.2) and (1.3) respectively.

Applying Lemma 2.4 in the expression (4.3), we have

Γ3=
1

384

−7d3
1 + 42d1

d2
1 + tζ

2

 − 24
d3

1 + 2d1tζ − d1tζ2 + 2t(1 − |ζ |2)η
4


=

1
384

[
8d3

1 + 9d1tζ + 6d1tζ2 − 12t(1 − |ζ |2)η
]
.

Taking t = 4 − d2
1 from Lemma 2.4 and without loss of any generality we can write d1 = d ∈ [0, 2], in the above

relation and |ξ| = x ≤ 1 and |η| ≤ 1. Taking modulus on both sides of the above relation and then applying triangle
inequality with x ∈ [0, 1] and d ∈ [0, 2], we obtain

|Γ3| ≤
1

384

[
8d3 + 9d(4 − d2)x + 6d(4 − d2)x2 + 12(4 − d2)(1 − x2)

]
=

1
384

[F(d, x)] where 0 ≤ d ≤ 2, 0 ≤ x ≤ 1. (4.5)

Now, we need to determine
max{F(d, x) : (d, x) ∈ [0, 2] × [0, 1]}.

Now, consider the corner point of the rectangular region

F(0, 0) = 48, F(2, 0) = 64, F(2, 1) = 64, F(0, 1) = 0.

Next is to check for the interior of the rectangular region. Taking partial derivative of F(d, x) with respect to d and
x we get the following

∂F
∂d
= −18d2x2 − 27d2x + 24dx2 + 24d2 + 24x2 − 24d + 36x,

∂F
∂x
= −12d3x − 9d3 + 24d2x + 48dx + 36d − 96x.

Solving ∂F
∂d = 0 and ∂F

∂x = 0, we get (0,0) is the only critical point which is not a interior point. Hence it has no critical
point in the interior of the rectangular region. Hence, we get

MaxF(d, x) = 64. (4.6)

According to the (4.5) and (4.6), we deduce that

|Γ3| ≤
1
6
.

Here, the bound of |Γ3| is sharp for the schwarz function w(z) = z and the corresponding extremal function given in
(1.2). Rearranging the terms in the relation (4.4) and taking modulus then applying triangle inequality we have

|Γ4| ≤
1
2

[
1
8
|d4 − d2

2 | +
5

32
|d1|

∣∣∣∣∣d3 −
19
20

d1d2 +
13

480
d3

1

∣∣∣∣∣] .
Applications of inequalities (2.3) of Lemma 2.1 and (2.4) of Lemma 2.2 with α = 13

480 , β =
19
20 and γ = 1, one may get

|Γ4| ≤
1
8
+

5
16

[
13

480
+

∣∣∣∣∣19
20
−

13
240

∣∣∣∣∣ + ∣∣∣∣∣ 13
480
−

19
20
+ 1

∣∣∣∣∣] = 7
16
.

The proof of Theorem 4.1 is thus completed. □

Next theorem gives the upper bounds of Hankel determinant of logarithmic coefficients of inverse function for the
class S ∗∗s,e.
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Theorem 4.2. Let the function f ∈ A given in the form (1.1) be the member of the function class S ∗∗s,e. Then,

|H2(1)(F f −1/2)| ≤
1
16
.

This bound is sharp.

Proof. Assume that f ∈ S ∗∗s,e. Making use of (3.5), (3.6) and (3.7) in (1.12) and substituting the values of d2 and d3 in
terms of d1 from Lemma 2.4 in the relation and after simplification

H2(1)(F f −1/2) =
1

12288
(−35d4

1 − 60tξd2
1 − 24tξ2d2

1 − 48t2ξ2 + 48d1t(1 − |ξ|2)η). (4.7)

Taking t = 4 − d2
1 from Lemma 2.4 and without loss of any generality we can write d1 = d ∈ [0, 2], relation (4.7) gives

H2(1)(F f −1/2) =
1

12288
[−35d4 − 60d2(4 − d2)ξ − 24d2(4 − d2)ξ2

− 48(4 − d2)2ξ2 + 48d(4 − d2)(1 − |ξ|2)η], (4.8)

where |ξ| = x ≤ 1 and |η| ≤ 1. Taking modulus on both sides of (4.8) and then applying triangle inequality with
x ∈ [0, 1] and d ∈ [0, 2], we obtain

|H2(1)(F f −1/2)| ≤
1

12288
(35d4 + 60d2(4 − d2)x + 24d2(4 − d2)x2 + 48(4 − d2)2x2

+ 48d(4 − d2)(1 − x2)) =: F(d, x)(say). (4.9)

Now, we need to determine
max{F(d, x) : (d, x) ∈ [0, 2] × [0, 1]}.

A simple computation shows

∂F
∂x
=

1
1024

(4 − d2)(5d2 + 4x(8 − d2 − 2d) ≥ 0 ((d, x) ∈ [0, 2] × [0, 1]).

As a result, F(d, x) is an increasing function of x on the closed interval [0,1]. This means that the function F(d, x)
attains its maximum at x = 1. Hence,

MaxF(d, x) ≤ F(d, 1) = −
1

12288
[d4 + 48d2 − 768] = G(d)(say). (4.10)

Using the fact that G′(d) = − 1
3072 d(d2 + 24) < 0 ∀d ∈ [0, 2]).

Hence, G(d) will be decreasing on [0,2] which implies that

G(d) ≤ G(0) =
768

12288
=

1
16
. (4.11)

According to the inequalities (4.10) and (4.11) we deduce that

Max {F(d, x) : (d, x) ∈ [0, 2] × [0, 1]} = F(0, 1) =
1

16
. (4.12)

The desire estimates follows from (4.9) and (4.12). Here the bound is sharp and the extremal function is given in (1.3).
This completes the proof of Theorem 4.2. □

The next theorem gives the bound of Toeplitz determinant for logarithmic coefficient of inverse function for the
class S ∗∗s,e.

Theorem 4.3. Let the function f ∈ A given by (1.1) be a member of the class S ∗∗s,e. Then,

|T2(1)(F f −1/2)| ≤
1
16
.

This bound is sharp.
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Proof. Assume that f ∈ S ∗∗s,e. Then making use of (3.5) and (3.6) in the relation (1.13) we get

T2(1)(F f −1/2) =
1

16

− 9
256

d4
1 +

d2
1

4
−

d2
2

4
+

3
16

d2
1d2

 . (4.13)

Expressing the values of d2 and d3 in terms of d1 by virtue of (2.7) of Lemma 2.4 and without any loss of generality
we assume that d1 = d ∈ [0, 2], from (4.13) we have

T2(1)(F f−1/2) =
1
16

[
−

1
256

d4 +
d2

4
−

1
16

(4 − d2)2ξ2 −
1

32
d2(4 − d2)ξ

]
. (4.14)

Application of triangle inequality to the relation (4.14) and assuming |ξ| = x ≤ 1, we have

|T2(1)(F f −1/2)| ≤
1

16

[
1

256
d4 +

d2

4
+

1
16

(4 − d2)2x2 +
1
32

d2(4 − d2)x
]

=ψ(d, x)(say). (4.15)

Now, we need to find Max{ψ(d, x) : (d, x) ∈ [0, 2] × [0, 1]}. A simple computation shows

∂ψ

∂x
=

1
16

[
1
8

(4 − d2)2x +
1

32
d2(4 − d2)

]
≥ 0 (d, x) ∈ [0, 2] × [0, 1].

Clearly ψ(d, x) is increasing on [0,1]. As a result at x = 1, the function ψ(d, x) attains its maximum value.

max{ψ(d, x)} ≤ ψ(d, 1) =
1
16

[
9

256
d4 −

1
8

d2 + 1
]
= α(d)(say). (4.16)

Using the fact that α′(d) = d
64

[
9d2−16

16

]
. Setting α′(d) = 0 we get either d = 0 or d = 4

3 . Further, α′′(d) = 1
16

[
27
64 d2 − 1

4

]
.

At d = 0, α′′(d) = − 1
64 < 0 and α′′(d) = 1

32 > 0 at d = 4
3 .

This shows that the function α(d) attains its maximum value at d = 0. Therefore,

α(d) ≤ α(0) =
1

16
. (4.17)

It can be deduced from the inequalities (4.16) and (4.17) that

max{ψ(d, x) : (d, x) ∈ [0, 2] × [0, 1]} = ψ(0, 1) =
1

16
. (4.18)

The result follows from (4.15) and (4.18). Here the estimation is sharp and the extremal function is given in (1.3). This
completes the proof of Theorem 4.3. □

Theorem 4.4. Let the function f ∈ A given by (1.1) be a member of the class S ∗∗s,e. Then,

−
1
2
≤ T2,1(F f −1/2) ≤

15
256

.

Proof. If f ∈ S ∗∗s,e, then by applying (1.14) we have

T2,1(F f −1/2) =
1

16
(−A4

2 + 4A2
2 + 4A2

2ℜA3 − 4|A3|
2).

By making use of (1.4), we obtain

T2,1(F f −1/2) =
1

16
(−a4

2 + 4a2
2 + 4a2

2ℜ(−a3 + 2a2
2) − 4| − a3 + 2a2

2|
2).

Now, substituting the values of a2 and a3 from (3.5) and (3.6) in above expression and using the Lemma 2.4 for p ∈ P
and letting d1 = d, we get

T2,1(F f −1/2) =
1

4096
(−d4 + 64d2 − 8d2(4 − d2)ℜ(ξ) − 128(4 − d2)2|ξ|2). (4.19)

Using −ℜ(ξ) ≤ |ξ| and |ξ| = x ∈ [0, 1] and d ∈ [0, 2], the above expression becomes

T2,1(F f −1/2) ≤
1

4096
(−d4 + 64d2 + 8d2(4 − d2)x − 128(4 − d2)2x2) = S (d, x)(say).
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For the maximum value of the functions on ω = [0, 2] × [0, 1]; we have to consider following cases:
Case-I (Interior of ω)

∂S
∂x
= 0 =⇒

1
4096

(8d2(4 − d2) − 256(4 − d2)2x) = 0

=⇒ x =
d2

32(4 − d2)
∈ (0, 1). when d <

√
128
33
∈ (0, 2).

Now, substituting the value of x in ∂S
∂d = 0, then it becomes

=⇒
1

4096
(−4d3 + 128d + 16d(4 − d2)x − 16d3x + 512d(4 − d2)x2) = 0.

By substituting the value of x, we have following,

=⇒ 1024d − 284d3 + 8d5 = 0

which is not possible for d ∈ (0, 2) i.e. there is no zeroes inside (0, 2). The function S has no maximum value in the
interior of ω. Hence the maximum value of the function D attained on the boundary.
Case-II (On the boundary ω)

S (0, x) =
1

4096
(−2048x2) = −

1
2

x2 ≤ 0; S (2, x) =
15

256
;

S (d, 0) =
1

4096
(−d4 + 64d2) ≤

15
256

; S (d, 1) =
1

4096
(−137d4 + 1120d2 − 2048) ≤

15
256

.

Hence, from above cases, the upper bound on T2,1(F f −1/2) is 15
256 . On using the identity −ℜ(ξ) ≥ −|ξ| and x = |ξ| ∈ [0, 1]

in (4.19) we have,

T2,1(F f −1/2) ≥
1

4096
(−d4 − 8d2(4 − d2)x + 64d2 − 128(4 − d2)2x2) = D(d, x).

Let D(d, x) ∈ ω
∂D
∂x
= 0 =⇒

1
4096

(−8d2(4 − d2) − 256(4 − d2)2x) = 0 (4.20)

and
∂D
∂d
= 0 =⇒

1
4096

(−4d3 − 16d(4 − d2)x + 16d3x + 128d + 512d(4 − d2)x2) = 0. (4.21)

The solution satisfying equation (4.20) and (4.21) is only (0, 0). So, it doesn’t have any solution in the interior of ω.
Hence, the minimum value of the function D attained on the boundary.

D(0, x) = −
1
2

x2 ≥ −
1
2
, D(2, x) =

1
16
, D(d, 0) =

1
4096

(−d4 + 64d2) ≥ 0,

D(d, 1) = −
1

4096
(137d4 − 1120d2 + 2048) ≥ −

1
2
.

Hence, from the above discussed case it is concluded that

−
1
2
≤ T2,1(F f −1/2) ≤

15
256

.

This completes the proof of Theorem 4.4. □

5. Bound of Difference of Logarithmic Inverse Coefficients for the Class S ∗∗s,e

In the present section, we investigate the upper and lower bounds of the mudulo difference of second and first
logarithmic inverse coefficients for the such family.

Theorem 5.1. Let the function f ∈ S ∗∗s,e. Then,

−
1

2
√

5
≤ (|Γ2| − |Γ1|) ≤

1
4
.
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Proof. Suppose that f ∈ S ∗∗s,e. From the relation (1.7) and using (3.5) and (3.6), we have

2(|Γ2| − |Γ1|) =
( ∣∣∣∣∣14d2 −

3
32

d2
1

∣∣∣∣∣ − ∣∣∣∣∣14d1

∣∣∣∣∣ ) = ψ+(d1, d2).

Now, we verify the conditions of Lemma 2.3. Here, B1 =
1
4 > 0, B2 = −

3
32 , B3 =

1
4 , |2B2+B3| =

1
16 and |B3|+B1 =

1
2 .

So, |2B2 + B3| ⩾̸ |B3| + B1.
Therefore, application (2.5) of Lemma 2.3 yield,

2(|Γ2| − |Γ1|) ≤ 2|B3| =
1
2
=⇒ |Γ2| − |Γ1| ≤

1
4
. (5.1)

Further, 2(|Γ1| − |Γ2|) = −ψ+(d1, d2) = ψ−(d1, d2).
B1 =

1
4 and B4 + 2|B3| =

5
8 . Hence, B1 ⩾̸ B4 + 2|B3|,

where B2
1 =

1
16 and 2|B3|(B4 + 2|B3|) = 5

16 . So, B2
1 ≤ 2|B3|(B4 + 2|B3|). By virtue of (2.6) of Lemma 2.3 gives

ψ−(d1, d2) ≤ 2B1

√
2|B3|

B4 + 2|B3|
=

1
√

5
(5.2)

=⇒ 2(|Γ1| − |Γ2|) ≤
1
√

5
.

=⇒ 2(|Γ2| − |Γ1|) ≥ − 1
√

5
=⇒ |Γ2| − |Γ1| ≥ −

1
2
√

5
.

Therefore, from (5.1) and (5.2), we obtain

−
1

2
√

5
≤ (|Γ2| − |Γ1|) ≤

1
4
.

This completes the proof of Theorem 5.1. □

6. Generalized Zalcman Functional of Logarithmic Inverse Function

Lawrence Zalcman posed the conjecture that if f ∈ S given by (1.1), then

|a2
n − a2n−1| ≤ (n − 1)2 (n ≥ 2). (6.1)

Equality in (6.1) holds for the Koebe function k(z) = z
(1−z)2 (z ∈ D) or its rotation. The area theorem shows that the

conjecture is true for n = 2 [9]. Kruskal proved that the conjecture is true for n = 3 [13] and latter for n = 4, 5, 6.
However, the Zalcaman conjecture remains an open problem for n > 6. For f ∈ S, Ma [18] proposed the generalized
Zalcman conjecture

Jm,n( f ) = |anam − an+m−1| ≤ (n − 1)(m − 1) (n, m ≥ 2),
and has proved this conjecture for the classes S∗ and the class of all functions in S with real coefficients. In 2017,
Ravichandran and Verma [27] proved it for the classes of starlike and convex functions of given order and for the class
of functions with bounded turning. Now, we discuss Zalcman functional bounds in terms of Γn instead of an by fixing
n = m = 2 and n = 2, m = 3.

Theorem 6.1. Let f ∈ S ∗∗s,e be of the form (1.1) and its logarithmic inverse coefficients F f −1/2 is given by (1.8). Then,

J2,2(F f −1/2) = |Γ3 − Γ
2
2| ≤

2754681
14204928

= 0.1939243198.

Proof. Assume that, f ∈ S ∗∗s,e. Substituting the values of Γ2 and Γ3 from the relation (4.2) to (4.3), we have

Γ3 − Γ
2
2 = −

7
384

d3
1 +

7
64

d1d2 −
1

16
d3 −

d2
2

64
+

3
256

d2
1d2 −

9
4096

d4
1

=
1

12288
[−768d3 − 224d3

1 + 1344d1d2 − 192d2
2 + 144d2

1d2 − 27d4
1]. (6.2)

Applying Lemma 2.4 in the expression (6.2), we have

Γ3 − Γ
2
2 =

1
12288

[256d3
1 + 288d1tζ + 192d1tζ2 − 3d4

1 − 48t2ζ2 − 24d2
1tζ − 384(1 − |ζ |2)η]
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Taking t = 4−d2
1 from Lemma 2.4 and without loss of any generality we can write d1 = d ∈ [0, 2], in the above relation

and |ξ| = x ≤ 1 and |η| ≤ 1. Taking modulus on both sides of the above relation and then applying triangle inequality
with x ∈ [0, 1] and d ∈ [0, 2], we obtain

|Γ3 − Γ
2
2| ≤

1
12288

[256d3 + 288d(4 − d2)x + 192d(4 − d2)x2 + 3d4 + 48(4 − d2)2x2 + 24d2(4 − d2)x + 384(1 − x2)]

=
1

12288
[F(d, x)], where 0 ≤ d ≤ 2, 0 ≤ x ≤ 1.

Now, we have to find the maximum of F(d, x) in the rectangular region ω = [0, 2] × [0, 1]. Let us consider for the
corner points of the rectangular region ω

F(0, 1) = 768, F(2, 1) = 2096, F(2, 0) = 2480, F(0, 0) = 384.

Next is to check for the interior of the rectangular region ω. Taking partial derivative of F(d, x) with respect to d and x
we get he following.

∂F
∂d
= 192d3x2 − 96d3x − 576d2x2 + 12d3 − 864d2x − 768d x2 + 768d2 + 192dx + 768x2 + 1152x,

∂F
∂x
= 96d4x − 24d4 − 384d3x − 288d3 − 768d2x + 96d2 + 1536dx + 1152d + 768x.

Solving ∂F
∂d = 0 and ∂F

∂x = 0, we get (0,0) is only critical point which is not a interior point. Hence, it has no critical
point in the interior of the rectangle. Now further, to check on the edges of the rectangular region ω.

F(0, x) = 384x2 + 384 ≤ 768, F(d, 0) = 3d4 + 256d3 + 384 ≤ 2480,

F(2, x) = −384x2 + 2480 ≤ 2480, F(d, 1) = 27d4 − 224d3 − 288d3 + 1920d + 768 ≤
2754681

1156
.

Hence, we conclude that |Γ3−Γ
2
2| ≤

(
1

12288

) (
2754681

1156

)
= 2754681

14204928 = 0.1939243198. This completes the proof of Theorem
6.1. □

Theorem 6.2. Let the function f ∈ S ∗∗s,e. Then, |Γ4 − Γ2Γ3| ≤
917
1536 .

Proof. Suppose that f ∈ S ∗∗s,e. Substituting values of Γi (i = 2(1)4)’s from (4.2)-(4.4) in the expression Γ4 − Γ2Γ3, we
get

Γ4 − Γ2Γ3 = d1

(
−

19
256

d1d2 +
13

6144
d3

1 +
5

64
d3

)
+ d2

1

(
−

91
12288

d1d2 +
3

1024
d3

+
7

8192
d3

1

)
−

1
16

(d4 − d2
2) −

1
128

d2

(
d3 −

7
4

d1d2

)
. (6.3)

Taking modulus on both sides of (6.3) and followed by triangle inequality and applying inequalities (2.2), (2.3) of
Lemma 2.1 and (2.4) of Lemma 2.2, we have

|Γ4 − Γ2Γ3| ≤ 4
{ ∣∣∣∣∣ 13

6144

∣∣∣∣∣ + ∣∣∣∣∣ 19
256
−

13
3072

∣∣∣∣∣ + ∣∣∣∣∣ 13
6144

−
19

256
+

5
64

∣∣∣∣∣ }
+ 4

{ ∣∣∣∣∣ 7
8192

∣∣∣∣∣ + ∣∣∣∣∣ 91
12288

−
7

4096

∣∣∣∣∣ + ∣∣∣∣∣ 7
8192

−
91

12288
+

3
1024

∣∣∣∣∣ }
+

1
8

max
{

1, |2 − 1|
}
+

1
64

max
{

1,
∣∣∣∣∣72 − 1

∣∣∣∣∣ } = 917
1536

.

This completes the proof of Theorem 6.2. □
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7. Krushkal Inequalities for the Class S ∗∗s,e

We observe from Corollary 3.3 that the well-known inequality:

|ap
n − ap(n−1)

2 | ≤ 2p(n−1)−np
(7.1)

holds for particular pair of values of n = 3, p = 1. We will investigate smaller upper bounds for the above inequality
for the logarithmic inverse coefficient Γn for the class S ∗∗s,e. The inequality (6.1) was originally introduced and proved
by Krushkal for the class of normalized univalent function f ∈ S and integers n ≥ 3 , p ≥ 1, while it is sharp and
equality holds for the Koebe function ( see [14], Theorem 6.1, p.7).
The following theorem gives upper bounds of l.h.s of (7.1) for logarithmic inverse coefficients when n = 4 and p = 1
for the class S ∗∗s,e .

Theorem 7.1. Assume that f ∈ S ∗∗s,e. Then, |Γ4 − Γ2
3| ≤ 495

1024 .

Proof. Suppose that f ∈ S ∗∗s,e. Making use of (4.2) and (4.4) in the expression Γ4 − Γ
3
2, we have

Γ4 − Γ
3
2 = −

1
16

(d4 − d2
2) +

5
64

d1

(
d3 −

19
20

d1d2 +
13

480
d3

1

)
+

1
512

d2
2

(
d2 −

9
8

d2
1

)
+

27
32768

d4
1(d2 −

1
8

d2
1). (7.2)

Application of triangle inequality on both sides of (7.2) gives

|Γ4 − Γ
3
2| ≤

1
16
|d4 − d2

2 | +
5

64
|d1|

∣∣∣∣∣d3 −
19
20

d1d2 +
13

480
d3

1

∣∣∣∣∣ + 1
512
|d2|

2
∣∣∣∣∣d2 −

9
8

d2
1

∣∣∣∣∣
+

27
32768

|d1|
4
∣∣∣∣∣d2 −

1
8

d2
1

∣∣∣∣∣ .
By virtue of inequalities (2.2), (2.3) of Lemma 2.1 and (2.4) of Lemma 2.2 with α = 13

480 , β =
19
20 and γ = 1, we get

|Γ4 − Γ
3
2| ≤

1
16

(2) +
5

16

[
13

480
+

∣∣∣∣∣19
20
−

13
240

∣∣∣∣∣ + ∣∣∣∣∣ 13
480
−

19
20
+ 1

∣∣∣∣∣]
+

8
512

max
{

1,
∣∣∣∣∣94 − 1

∣∣∣∣∣ } + 27
32768

(16)(2) =
495

1024
.

This completes the proof of Theorem 7.1. □

Concluding Remark: In the present paper with aid of subordination between two analytic functions, the authors
introduced a class of starlike functions with respect to symmetric points associated with cardioid domain. We mainly
investigated the upper bounds of the first four initial coefficients, Fekete-Szegö functional and Hankel determinant
of order two for Taylor-Maclaurin’s coefficients of f for the class S ∗∗s,e. Further, we determine Initial bounds, Han-
kel determinant, Toeplitz determinant, Hermitian-Toeplitz determinants, Zalcman conjecture, Krushkal inequality and
Modulo difference for logarithmic inverse coefficients for the class S ∗∗s,e. Most of the results are sharp; however, for the
remaining bounds that are not, researchers can work on improving them.
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