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ÖZET 

 

Bu çalışmada tüm dünyada yaygın şekilde kullanılan temel vektörel 

analiz ve elektromanyetizma kitaplarında karşımıza çıkan vektör 

operatörlerin (gradyan, diverjans ve rotasyonel) sürekli 

fonksiyonlar uzayındaki geleneksel tanımları incelenmiş, bu 

operatörlerin daha net ve doğru şekilde açıklanmaları amacıyla 

literatürden atıflarla beraber eleştiriler ve öneriler sunulmuştur 

 

Anahtar Kelimeler: Vektörel Analiz, Vektör Operatörler, Elektromanyetik 

Alanlar, Elektromanyetizma Eğitimi. 
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1. INTRODUCTION 

The importance of clear and precise comprehension of vector operators 

is of vital importance in classical electromagnetic theory. The proper 

physical interpretation of field equations rests on nothing but the 

mathematical descriptions of the gradient, curl and divergence 

operators in particular. It is for this reason that most introductory 

textbooks on electromagnetic theory start with a chapter or has an 

appendix that reviews vector calculus with emphasis on these vector 

operators. It can also be observed that the definitions, descriptions and 

style are generally alike in such review chapters, where the main 

concern is to provide a physical picture of a certain field equation in the 

first place by using most suitable (differential or integral) 

representations of the vector operators that serve to the purpose. 

However, such an introduction should be critisized since lack of proper 

and exact descriptions of the vector operators may yield confusion and 

misinterpretation. With regard to the importance of the concepts of 

vector calculus, in this paper I provide examples for the common 

definitions of vector (gradient, curl and divergence) operators in 
1

C , 

the space of continuous functions with continuous derivatives, raise 

critics and suggest approaches with quotations from literature in search 

of the most scientific introduction to the topic.  

2. The Gradient Operator 

In this section we shall first focus on the differential form definitons of 

the gradient operator. There are two alternative represenations to start 

which always yield another. The first approach is to introduce the 

gradient operator directly in Cartesian coordinates and generalize it by 

a directional derivative representation supported with physical 

interpretations involving the rate of change in altitute when walking up 

an incline or temperature distribution in a building. Among many such 

books written since mid 20th century some well known ones include [1, 

Sect.4.4], [2, Sect.33], [3, Sect.1.19], [4, Sec.1.8], [5, Sect.AII], [6, 

Sect.1.03], [7, Sect.2.3], [8, Sect.A.2], [9, Sect.1.7], [10, Sect.1.1], [11, 
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Sect.1.3], [12, Sect.1.22], [13, Sect.5.1], [14, Sect.V.14], [15, Sect.2.2], 

[16, pg.37,38],, [17, Ch.1], [18, Sect.3.4]. And the second is vice versa 

(cf. , [19, Sect.2], [20, Sect.1.2], [21, Sect.2.5], [22, Sect.2.13], [23, 

Sect.3.2.3], [24, Sect.3.7], [25, Sect.4.4], [26, Sect.4.6]). Let us quote 

from [16, pg.37,38] with equation numbers modified, which utilizes the 

first approach: 

“….Let us consider the change in the value of an arbitrary scalar field 

f  as we move from ( , , )x y z  to ( , , )x dx y dy z dz   . We will 

denote this change as df . From ordinary multivariable calculus, 

f f f
df dx dy dz

x y z

  
  
    

(1) 

This expression can be written as the following dot product between 

two vectors: 

 ˆ ˆ ˆ ˆ ˆ ˆ
f f f

df dx dy dz
x y z

   
      

   
x y z x y z

a a a a a a

 

(2) 

The vector on the far right is simply the differential displacement vector 

ld along the path of movement, so we can write Equation (2) in the 

form 

ˆ ˆ ˆ
f f f

df l
x y z

   
    

   
x y z

a a a d

 

(3) 

The vector quantity in paranthesis is called the gradient of f  and is 

denoted symbolically by fgrad . Hence 

df f l grad d
 

(4) 

where, in the Cartesian coordinate system, 

ˆ ˆ ˆ
f f f

f
x y z

  
  
  

x y z
grad a a a

 

(5) 

 “…. We can write Equation (4) in the form  
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cosdf f l f dl   grad d grad

 
(6) 

where   is the angle between fgrad  and ld . Dividing both sides by 

dl  yields 

cos
df

f
dl

 grad
 

(7) 

When the direction of the path is parallel to fgrad , cos 1  . Along 

such a path, df dl  attains its maximum value. Thus, 

max

df
f

dl
 grad

 

(8) 

Using Equation (8), we can define fgrad  as  

max

ˆ
f

f
l





n
grad a

 

(9) 

where  ˆ n
a  points in the direction of maximum increase in f . This 

definition is valid in all coordinate systems. Thus, the gradient fgrad  

is a vector that points in the direction of maximum increase of the 

function f . “ 

Comments: The main concern here is to provide the simplest, i.e. 

Cartesian representation of the gradient operator -among others- 

directly for a smooth introduction. Technically it should not be treated 

as a definition since a general definiton of a mathematical operator 

should always be coordinate-free. It should be realized that the more 

general (coordinate-free) definition (9) is derived from another 

definition (5). Of course, it is a minor issue since it could also be 

introduced in the first place which would yield (5) as a special case 

(cf.[18,Sect.3.6], [21, Sect.2.5], [27, Sect.2.5]). By the way, the change 

of notation from (8) to (9) in differentiation from d  to   operator is 

unnecessary and unjustified. However, what primarily concerns us is 
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the ambiguity of the definition (9). A proper mathematical definiton 

must also serve as a description while the definition (9) involves no 

information for determining neither 

max

f

l




nor ˆ

n
a . It certainly makes 

sense for geometrical and physical interpretations of the gradient 

operator associated with level (equivalue) surfaces or field lines of a 

scalar field but should not be considered as a definition in that regard. 

To summarize so far, in author’s view, neither of the differential form 

definitions (5) or (9) serves as a proper definition of the gradient 

operator for different reasons.   

The integral form representation of the gradient operator is also 

introduced – however only in textbooks on vector calculus- and is 

always derived as an application of divergence theorem for a vector 

field as A Cf , where C  is fixed but arbitrary vector, assuming that 

the gradient and divergence operators, divergence and mean value 

theorems are already introduced (cf.[28, Ch.6,pr.24], [29, Sect.4.3.4]). 

“At any point P    

0

1
ˆlimf f nd

  


 
 grad

 

(10) 

where   is an arbitrary volume enclosed by the surface   , n̂  is 

the unit outward normal of   and the limit is obtained by shrinking 

  to the point P .”  (modified from [Spiegel, Ch.6,pr.24]) 

 

Figure 1. An infinitely small region   with enclosure   

Comments: The integral definition of gradient operator is certainly its 

unique proper mathematical description since it is coordinate-free and 
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also yields the differential form representations in any curvilinear 

coordinate system provided that the arbitrary volume of integration 

  is chosen properly. It also does not need to introduce the concept 

of differential derivative, gradient or divergence operators, divergence 

theorem or mean value theorems in the first place. Then the relation (4) 

can be seen to be satisifed immediately which also yields (9) suitable 

for a physical interpretation. A careful eye can realize a minor 

inconsistency between the two sides of (10). The left hand side is a 

vector field, while the right hand side is not a function of space variables 

and only yields numerical values for a given observation point. For any 

algebraic operation on the integral definition of the gradient operator it 

needs to be modified by introducing the characteristic function of 

region  , 

1,
[ ]

0,

r
H

r







  

  

(11) 

into (10) as 

0

[ ]
ˆ( ) lim ( )

H
f r f r nd





 



 

 grad

 

(12) 

To sum up, for a proper mathematical definition of the gradient 

operator, (12) should be the starting point. A brief introduction to 

generalized curvilinear coordinate systems should have been given 

earlier so that the differential represenation of the gradient operator in 

orthogonal curvilinear coordinate system 1 2 3
( , , )u u u  with metric 

coefficients 1 2 3
( , , )h h h  can be achieved by choosing the volume 

element as 1 1 2 2 3 3
h u h u h u      and taking the limit as 1

u , 

2
u , 3

u  approach zero to get 

1 2 3

1 1 2 2 3 3

ˆ ˆ ˆ
f f f

f
h u h u h u

  
  

  
u u u

grad a a a

 

(13) 
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Then, based on the properties 
1 2 3

1 2 3

f f f
df du du du

u u u

  
  
  

, 

1 2 21 1 2 2 2 2
ˆ ˆ ˆl h du h du h du  

u u u
d a a a  it can be seen that the relation 

(4) is satisfied in any orthogonal coordinate system, from which one 

can also reach to (9) suitable for physical interpretations related to level 

(equivalue) surfaces or field lines. 

3. The Curl Operator 

The curl of a vector field is generally introduced by a line integral as a 

measure of its “circulation” around a closed path that encircles the point 

of interest and shrinks onto it in the limit. It is generally introduced 

either in determinant form in Cartesian coordinates (cf. [1, Sect.4.6], [4, 

Sect.1.11], [8, Sect.A.2], [9, Sect.1.8], [12, Sect.1.25], [17, Ch.1], [23, 

Sect.3.2.5], [25, Sect.4.1], [30, Sect.7]) or via its component in an 

arbitrary direction which yields an entire represenation (cf. [16, pg.46], 

[25, Sect.4.3], [31, Sect.1.12], [21, Sect.2.7], [24, Sect.3.8.1], [14, 

Sect.V.18], [6, Sect.1.03], [7, Sect.2.15], [5, Sect.AII], [22, Sect.5.18], 

[26, Sect.8.4], [10, Sect.1.6], [11, Sect.1.5], [32, Appx.C], [15, 

Sect.2.4]) or vice versa (cf. [27, Sect.2.8]). 

“….We define the component of curl A  in the direction ˆ i
a  by  

 
0

1
ˆ lim

i

i

i s
i C

l
s 

   
 i

curl A a curl A A d

 

(14) 

where i
s  is a small surface that is bounded by the contour (i.e., path) 

i
C  and has unit normal ˆ i

a . The direction of i
C  is governed by the 

right-hand rule, which says that when the right-hand thumb is placed 

along the path, the remaining fingers “poke” through the surface i
s  

in the direction of ˆ i
a . 

Since curl A  is a vector, we can represent it by its magnitude and 

direction, which we will denote as curl A  and ˆ n
a ,  respectively. To 
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find curl A , we notice from equation (14) that the values of the 

components of curl A  vary with the orientations of the integration 

path i
C . Since the maximum value that any component of a vector can 

attain equals the vector’s magnitude, we can conclude that 

0
max

1
lim
s

C

l
s 

 
  

 
curl A A d

 

(15) 

where C  is the differential path that maximizes the circulation integral. 

Thus we can write curl A  as 

0
max

1
ˆ lim

s
C

l
s 

 
  

 
n

curl A a A d

 

(16) 

where ˆ n
a  is perpendicular to the surface bounded by C  and points in 

the direction determined by the right-hand rule. (modified from [16, 

pg.46]) 

Comments: Regarding the “definition” (14) it should be questioned 

how meaningful it is to introduce a component of curl A  rather than 

its entire represenation (16) in the first place. In electromagnetics 

textbooks it is preferred for a quick introduction since it is easily 

deduced from Stokes theorem and helps visualize surface magnetic 

currents (cf.[33, Ch.1, Sect.19]) or the rotation of a paddle wheel in a 

fluid with a simple device called curl meter (cf. [3, Sect.1.12], [7, 

Sect.2.18], [24, Sect.3.9.2], [25, Sect.4.3]). This is explained in [32, 

Appx.C] as follows: “…Since the curl of A  is a vector, a prescription 

for calculating it at a point implies a prescription for calculating its 

components along an arbitrary direction”. However, starting with (14) 

does not make much sense unless the analytical relations between 

ˆ( , , )
i i

s C
i

a  and ˆ( , , )s C
n

a  are provided. Besides, (16) is an 

ambigious definition (as was (9)) since it involves no information for 

determining neither ˆ n
a  or 
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0
max

1
lim
s

C

l
s 

 
 

 
A d

 

For a precise definition of the curl operator one needs to introduce its 

integral definition. This is available in textbooks on rather vector 

calculus than electromagnetic theory. Similar to the case with the 

gradient operator, it is derived as an application of divergence theorem 

assuming that the divergence operator, divergence and mean value 

theorems are already introduced (cf. [28, Ch.6,pr.24]).  

“At any point P    

0

1
ˆlim n d

  


  
 curl A A

 

(17) 

where   is an arbitrary volume enclosed by the surface   , n̂  is 

the unit outward normal of   and the limit is obtained by shrinking 

  to the point P .”  (see Fig.1) 

Comments: For algebraic purposes this needs to be improved as  

0

[ ]
ˆlim

H
n d





 



  

 curl A A

 

(18) 

When the definition (18) is taken as the starting point, the property (14) 

can be obtained as an application in an infinitely small cylinder pointed 

in the direction ˆ
i

a  with cross area i
s  (cf.[29, Sect.4.4.5], [2, 

Sect.3.6]), which also yields (16). Similarly, by choosing the volume 

element as 1 1 2 2 3 3
h u h u h u     , the differential representation 

of the curl operator 

1 2 3

1 2 3

1 1 2 2 3 3

ˆ ˆ ˆh h h

u u u

h A h A h A

      

1 2 3
u u u

curl A

 

(19) 

can also be obtained simultaneously.  
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4. The Divergence Operator 

The divergence operator is mostly defined in integral form 

0

1
ˆlim nd

  


  
 div A A

 

(20) 

in textbooks either directly or by deriving from the divergence theorem. 

The reason that it is generally introduced in integral form in the first 

place is that the divergence operator is always associated with the laws 

of conservation of electric and magnetic flux and the representation (20) 

is most suitable for physical interpretation. The integral form definition 

(20) also yields the differential form representation 

1 2 3 2 3 1 3 1 2

1 2 3 1 2 3

1
( ) ( ) ( )A h h A h h A h h

h h h u u u

   
   

   
div A

 

(21) 

The definition (20) is compatible with (12) and (18) except that it needs 

to be modified as  

0

[ ]
ˆlim

H
nd





 



  

 div A A

 

(22) 

for algebraic purposes. An exception is observed in [8, Sect.A.2] where 

the divergence operator is introduced in differential form in Cartesian 

coordinates from which the integral form (20) is derived. 

5. On Nabla Operator 

The introduction of nabla (aka del) operator is prone to critical 

misinterpretation in vector calculus. In almost every textbook the 

differential form representations of gradient, divergence and curl 

operators in Cartesian coordinates are introduced as ordinary 

multiplication, scalar and vector products of the nabla operator with the 

associated scalar/vector function, respectively (cf.[28, Ch.4]). First let 

us quote from [13, Sect.5.1]:  
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“The operator   is a symbolic vector with components 

1
x




, 

2
x




,

3
x




It may be applied to a scalar function 1 2 3

( , , )F x x x  or to a vector 

function 1 2 3
( , , )y x x x  with components 1 2 3

( , , )
i

y x x x , 1,2,3i  . In 

the latter case, we have either the scalar product y   or the vector 

product y . The usefulness of the symbol lies in the fact that it 

makes many physical formulas more compact” 

Next, let us quote from [12, Sect.1.2.3] on the description and use of 

nabla operator: 

“The gradient has the formal appearance of a vector,  , “multiplying” 

as scalar T : 

ˆ ˆ ˆT T
x y z

   
    

   
x y z

a a a

 

(23) 

(I write the unit vectors to the left, just so no one will think this means 

ˆ

x





x
a

, and so on – which would be zero, since ˆ x
a  is constant). The term 

in paranthesis is called ‘del’: 

ˆ ˆ ˆ
x y z

  
   

  
x y z

a a a

 

(24) 

Of course, del is not a vector, in the usual sense. Indeed, it is without 

specific meaning until we provide it with a function to act upon. 

Furthermore, it does not “multiply” T ; rather, it is an instruction to 

differentiate that function. To be precise, then, we would say that   is 

a vector operator that acts upon T , not a vector that multiplies T . 

With this qualification, though,   mimics the behavior of an ordinary 

vector in virtually every way; almost anything that can be done with 
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other vectors can also be done with  , if we merely translate 

“multiply” by “act upon”. So by all means take the vector appearance 

of   seriously: it is a marvellous piece of notational simplification, as 

you will appreciate if you ever consult Maxwell’s original work on 

electromagnetism, written without the benefit of   

Now an ordinary vector A  can multiply in three ways: 

Multiply a scalar a  : aA  

Multiply another vector B , via the dot product: A B  

Multiply another vector via the cross product: A B  

Correspondingly, there are three ways the operator   can act: 

On a scalar function T : T  (the gradient) 

On a vector function v , via the dot product:  v  (the “divergence”) 

On a vector function, via the cross product:  v  (the “curl”)” 

Comments: The history of nabla operator and its use in vector calculus 

have been investigated in detail in the works of Chen-To Tai. Regarding 

the use of scalar and cross product operations between the nabla 

operator and a vector function, the notation was introduced by Gibbs 

[34] while a scalar or vector product operation was never pronounced. 

It has been Wilson [35, Sect.70] who misinterpreted the notation as 

formal scalar and vector product operations between nabla operator and 

a vector function. Let us qoute from [36]: 

“...Unfortunately, the ‘scalar product’ model is not a valid method at 

all. The interpretation was forced on the notation for the divergence 

introduced by Gibbs, namely   f , who also introduced the notation 

for the curl as  f . The fact that both the ‘scalar product’ and the 

‘vector product’ of   and f  do not exist can be illustrated by a simple 

arithmetic analogy. For example, an assembly of numbers and signs, in 

the form of 2 3  , has no meaning in arithmetic. But if we move the 

plus sign to the front, we create a well-defined number, 6 , and if we 
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move the plus sign to the back, we create a numerical operator, 6  . 

Neither of these two expressions is equivalent to the original assembly. 

Now if one considers Gibbs’ notation for the divergence in a Cartesian 

system as the ‘scalar product’ between   and f , then 

ˆ ˆ
j

i ji

f
x

  
      

   
 i j

f a a

 

(25) 

The right member of (25) is meaningless, because it consists of an 

assembly of functions and symbols. Let us assume for the time being 

that the distributive rule is applicable to the two groups in (25). Then, 

one member of the assmebly has the form 

1

1

ˆ ˆf
x





1 1

a a

 

(26) 

Analogous to the arithmetical example, (26) is also an assembly. It is 

not a meaningful expression. We cannot arbitrarily move the dot sign 

to the front of the differential sign to create an expression of our liking, 

viz. 

1
1

1 1

ˆ ˆ
f

f
x x

 
 
 

1 1
a a

 

(27) 

nor can we move the front unit vector behind the differential sign and 

put two brackets around the remaining functions to create the same 

partial derivative as in (27), viz., 

  1
1

1 1

ˆ ˆ
f

f
x x

 
 

 
1 1

a a

 

(28) 

Neither (27) nor (28) is equivalent to the original assmebly, (28). This 

is not a matter of interpretation; it is a manipulation which is not 

allowed in mathematics.” 

The second reason why the scalar/vector product interpretation fails is 

given in [36] as follows: 
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“...The fact that the expression so arbitrarily created from (25) does not 

represent the correct expression for the divergence in a Cartesian 

system has fooled many people about the true nature of the ‘scalar 

product’ model. When the same model is applied to a curvilinear 

coordinate system, people found that it does not work [37, Appx.C, 

p.325], but they never questioned the meaning of the model itself. In 

other words, they did not realize that they were dealing with an 

assembly to ‘derive’ the differential expression of the divergence in the 

Cartesian system. The amazing story is that mathematicians, physicists, 

and engineers who used Gibbs’ notation have practiced this 

manipulation for generations, and it has reached every corner of the 

world”. 

6. Concluding Remarks 

In this review paper I focused on various representations of the vector 

operators in standard undergraduate textbooks on electromagnetics and 

vector calculus, raised critics with quotations from literature and 

suggested approaches for their clear and precise comprehension. To 

conclude, the critics raised in the present paper can be summarized as 

follows: 

1. With so many misconceptions and misinterpretations embedded in 

literature for over a century regarding the nabla operator, its 

introduction in basic textbooks should be handled very carefully. 

With this in mind, the author has preferred to avoid the nabla 

operator and always adopted the old notation (‘grad’, ‘div’, ‘curl’) 

throughout his career and scientific works following the teachings 

of Prof. Mithat İdemen with the concern that it makes no sense 

mathematically except for being practical for memorizing the 

differential Cartesian represenations of these operators. 

2. Regarding the most proper introduction to vector operators, the 

integral form uniform and coordinate-free definitions (12), (18), (22) 

should be introduced in the first place in defining the vector 

operators simultaneously without any reference to their physical 

interpretations (cf.[2, Sect.3.6], [38]). An introduction to general 
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curvilinear coordinate systems 1 2 3
( , , )u u u  should have been given 

earlier. As a second stage the integrations (12), (18) and (21) should 

be performed in a volume 1 1 2 2 3 3
h u h u h u      so that the 

differential forms of the vector operators (13), (19) and (21) are also 

obtained simultaneously. It should be noted that one can also start 

with (13), (19) and (21) and integrate over 

1 1 2 2 3 3
h u h u h u     . However, in that case one only obtains 

(12), (18) and (22) as expressed in 1 2 3
( , , )u u u  system, not the 

general coordinate-free definitions over an arbitrary domain. This 

view is also supported in the Introduction section of [39] as follows:  

“Vector analysis is a classical subject in applied mathematics and is an 

important tool in various branches of physical science and engineering. 

In many early books on vector analysis [40], [41], the differential forms 

of three key functions, namely the divergence, curl, and gradient, are 

usually introduced in the Cartesian coordinate system with aid of the 

del operator (some authors call it Nabla operator or Hamilton operator). 

Although the differential expressions of these functions in other 

orthogonal coordinate systems can be found by a transformation of 

coordinate variables, it is simpler to start with the definition of these 

functions in a form independent of the choice of the coordinate system 

and then derive their differential expressions in a general curvilinear 

orthgonal system. Several different approaches are available to execute 

the derivation. They are found in [30], [38], [42-44].” 

To overcome the deficiencies of the nabla operator Chen-To Tai has 

introduced a new symbolic (functional) S-operator and its associated 

operators in [39] (see also [45]) which do not have explicit differential 

forms and satisfy commutative property. With these operators he has 

been able to present a systematic treatment of the entire subject of 

vector analysis, while it can also be extended to dyadic analysis. 

Moreover, the integral form definitions (12), (18) and (22) can also be 

extended from the space of continuous functions to the space of 

Schwartz-Sobolev distributions directly when point, space curve or 
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surface type singularities are involved, which have also been subjects 

of previous investigations by the author (see [46-48]). 

3. Regarding the physical interpretation of the gradient operator, (13) 

directly requires the identity (4), from which one finally obtains (9), 

which is most suitable associated with the level (equivalue) surfaces 

or field lines of a scalar field. 
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4. Regarding the physical interpretation of the curl operator on a 

surface, the relations (19),  (14) and eventually (16) can be obtained 

respectively from the definition (18) in a straightforward manner as 

shown in [2, Sect.3.6] or [29, Sect.4.4.5]. 
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5. The integral form definition (22) of the divergence operator is 

already its most suitable form for a physical interpretation associated 

with conservation laws. Integration over a differential volume 

element for an orthogonal curvilinear coordinate system directly 

yields (21). 
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6. Regarding a systematic treatment of vector analysis, differential 

forms, dyadics, bivectors, tensors, quaternions, and Clifford algebras 

stand out as advanced analytical tools. Among them the calculus of 

differential forms, developed by H.G. Grassmann [49] and E. Cartan 

[50], establishes a direct connection to geometrical images, which 

provides an ability to visualize vector operators. They have been 

applied to electromagnetic theory among other branches of physical 

sciences since [51]. Their advantages over traditional methods are 

out lined in [52] as follows: “First, forms clarify the relationship 

between field intensity and flux density, by providing distinct 

mathematical and graphical representations for the two types of 

fields. Second, Ampere’s and Faraday’s laws obtain graphical 

representations that are as intuitive as the representation of Gauss’ 

law. Third, the vector Stokes theorem and the divergence theorem 

become special cases of a single relationship that is easier for the 

student to remember, apply, and visualize than their vector 

formulations. Fourth, computational simplifications result from the 

use of forms. Derivatives are easier to employ in curvilinear 

coordinates, integration becomes more straightforward, and 

families of vector identities are replaced by algebraic rules”. For an 

introduction to differential forms with applications in 

electromagnetic theory one may refer to the recent survey paper [53] 

and the references cited therein. 

7. Finally, a history of notations in Vector Analysis can be reached at 

[54, Vol.II, pp.495-501]. On the other hand, for a review of the 

contributions of Gibbs and Heaviside on the development of the 

modern system of Vector Analysis the reader may refer to [55, 

Ch.5]. 
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