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Abstract 

This study introduces a novel energy management model based on Deep Reinforcement Learning for IoT-based landslide early 
warning systems, aiming to achieve energy neutrality and enhance system resilience, efficiency, and sustainability. Unlike 
traditional energy optimization methods, the proposed model employs a Deep Q-Network (DQN) to dynamically optimize the duty 
cycle of sensor nodes by leveraging real-time energy availability. By adaptively balancing energy harvesting and consumption, 
sensor nodes can maintain continuous operation even under highly variable environmental conditions, maximizing their 
performance during high-energy periods while preserving battery life when energy is limited. Extensive simulations using real-

world solar radiation data demonstrate the model's superior capability in extending system longevity and operational stability 
compared to existing approaches. Addressing critical energy management challenges in landslide monitoring systems, this work 
enhances system reliability, scalability, and adaptability, offering a robust foundation for broader IoT applications deployed in 
energy-limited and dynamic environments. The proposed method represents a significant improvement over conventional 
techniques, as it autonomously optimizes energy resources to ensure the continuous and sustainable operation of IoT ecosystems. 

© 2023 DPU All rights reserved. 

 

 
* Corresponding author. Tel.: +90 (274) 443 42 68; fax: +90 (274) 265 20 13 - 14. 

E-mail address: seyfullah.arslan@dpu.edu.tr 

http://dx.doi.org/10.1016/j.cviu.2017.00.000  

. 



Arslan, S., Dörterler S. and Aydemir F., (2024) / Journal of Scientific Reports-A, 59, 32-57 

33 

 

Keywords: Reinforcement learning; internet of things; energy management optimization; landslide early warning systems 

1. Introduction 

Landslides are one of the serious natural disasters that cause significant loss of life and property worldwide. The 

2020 Gjerdrum landslide in Norway led to fatalities, the displacement of dozens of families, and millions of dollars 

in economic loss [1]. In regions such as South Asia, landslides frequently result in severe casualties and infrastructure 

destruction, particularly during heavy monsoon rains, further compounding the economic and social impact [2]. These 

disasters occur in mountainous and sloping areas and are triggered by sudden rainfall, groundwater movements, and 

weak soil structures [3]. Dense settlements and infrastructure projects in the regions where these disasters occur further 

increase the impact of landslides. Early warning systems have been developed to prevent loss of life and economic 

damages caused by landslides [4]. These systems identify the risk of landslides in advance, providing the opportunity 

to evacuate people living in affected areas to safe areas. However, the reliability of these systems depends on sensor 

networks that can provide accurate and continuous data [5]. Sensors used in landslide early warning systems must be 

capable of long-term operation, especially under harsh environmental conditions and energy constraints [6]. 

Therefore, energy management of sensors poses a significant challenge. 

In recent years, Internet of Things (IoT)-based sensor networks have been employed extensively in landslide early 

warning systems [7]. However, most of the sensors in these networks have limited battery life, which has increased 

the importance of energy harvesting techniques [8]. Energy harvesting sensors can sustain long-term operation by 

collecting energy from solar, wind, and environmental vibrations [9]. However, the irregular and unpredictable 

dynamics of energy harvesting are one of the main factors limiting the effectiveness of such systems. Energy-

harvesting sensors must efficiently utilize the harvested energy and sustain their duty cycles without power outages 

[10]. However, intelligent energy management algorithms are needed to optimize energy consumption. 

Reinforcement Learning (RL) has significant potential for application in the field of energy management and duty 

cycle optimization. The RL algorithms can potentially enable energy-neutral operation (ENO) through autonomous 

optimization of sensor nodes' energy harvesting and consumption processes [11]. In particular, Deep Reinforcement 

Learning (DRL) algorithms facilitate the expeditious adaptation of sensors to environmental alterations and enhance 

energy efficiency [12]. The RL algorithms utilized in these studies guarantee uninterrupted system operation by 

establishing a balance between the energy collection and consumption processes [13]. 

The objective of this paper is to present a novel energy management model for IoT-based landslide early warning 

systems. The proposed model uses a reinforcement learning algorithm to optimize the battery levels of solar-powered 

sensor nodes and increase their continuous operation capability. This study introduces a system to enhance the energy 

efficiency of IoT nodes in landslide early warning systems. Furthermore, a Deep Q-Networks (DQN) based 

reinforcement learning algorithm is developed to optimize the energy consumption of nodes. This algorithm aims to 

achieve energy-neutral operation by balancing the energy collection and consumption of nodes. 

Real-world solar radiation data is used to evaluate the performance of the developed system, and the energy 

harvesting process is simulated. Furthermore, the impact of the system on extending the battery life and improving 

the reliability of landslide early warning systems is analyzed. Simulation results show that the proposed model 

improves energy efficiency and ensures the uninterrupted operation of sensors. 

The main contributions of this study are as follows: 

- In early warning systems of natural disasters such as landslides, IoT nodes are provided to operate continuously 

without energy interruption. 

- The proposed model addresses a significant gap in achieving energy-neutral operation under dynamic and 

unpredictable environmental conditions, which has been a critical limitation in prior studies. 

- Energy consumption and harvesting processes are dynamically balanced using a reinforcement learning 

algorithm, specifically a Deep Q-Network (DQN), to adaptively respond to real-time variations in energy availability. 
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- Unlike conventional approaches, this model ensures uninterrupted operation of IoT nodes by preventing 

overcharging or depleting battery levels, which enhances both system longevity and reliability. 

- Simulations with real-world solar radiation data validate the model’s ability to self-adapt, demonstrating superior 

performance in extending battery life and maintaining operational stability compared to existing techniques. 

- The system introduces an autonomous and scalable solution to energy management challenges in harsh and 

energy-limited environments, providing a robust framework for broader IoT applications beyond landslide 

monitoring. 

- Using reinforcement learning, the model allows IoT nodes to intelligently optimize their duty cycles, enhancing 

energy efficiency without manual intervention. 

- The proposed approach lays a foundation for future advancements in reinforcement learning-based energy 

management systems, addressing key challenges such as energy variability, scalability, and operational sustainability. 

In conclusion, this study addresses energy management challenges in energy-harvesting IoT-based landslide early 

warning systems and introduces an approach to enhance their effectiveness. By optimizing energy harvesting and 

consumption processes, the model ensures uninterrupted sensor operation and supports the development of reliable 

early warning systems for natural disasters like landslides. 

This paper consists of 5 sections in total. The second section, "Related Work," provides a comprehensive review 

of previous work on landslide early warning systems and energy harvesting technologies. The third section, "Materials 

and Methods," presents details of the proposed reinforcement learning-based energy management model. This section 

describes the methods developed to improve energy efficiency for IoT nodes and the model's training process. The 

fourth section, "Results and Discussion," discusses the simulation results and the performance of the model. The last 

section, "Conclusion," contains the study's overall conclusions and recommendations for future research. 

2. Related work 

Landslide early warning systems are highly essential in curbing devastating effects of natural disasters on human 

lives. These systems give early warning of future events of landslides, hence prompting the relocation of people in 

landslide-prone areas. Events of landslides are caused by various natural factors: excessive rainfall, soil moisture, fault 

movement, and rockfalls [14]. Accurate forecasting of these events will involve selecting the right sensors, efficient 

data processing, and optimization of decision-making processes. The research area of the landslide forecasting has 

witnessed a remarkable development in a number of techniques and methodologies over the last ten years. Some of 

these techniques include machine learning, artificial neural networks, data mining, geographic information systems, 

numerical modeling, and hybrid approaches. 

Machine learning has been successfully used to solve complex problems in areas such as optimization [15-17], data 

classification [18-20], object recognition [21], [22], medical diagnosis [23], [24], educational technologies [22], voice 

analysis [25], [26], image analysis [27], [28], and decision support systems [29-31]. Recently, energy optimization 

and efficient resource management in wireless sensor networks (WSNs) and Internet-of-Things (IoT) systems have 

gained increasing attention to enhance network lifetime and reduce energy consumption. Ali et al. propose a novel 

ARSH-FATI-based Cluster Head Selection (ARSH-FATI-CHS) algorithm integrated with ranked-based clustering to 

address the energy efficiency challenges in WSNs [32]. Their approach dynamically balances exploration and 

exploitation during the cluster head selection process, taking into account residual energy, communication distance, 

and workload parameters. Simulation results demonstrate that the ARSH-FATI-CHS algorithm outperforms 

traditional techniques, such as particle swarm optimization (PSO), achieving approximately 25% improvement in 

network lifetime. This study highlights the importance of advanced metaheuristic algorithms in reducing 

communication energy and prolonging the lifespan of sensor nodes in WSNs, which are fundamental components in 

IoT ecosystems. In addition, Ali et al. provide a comprehensive survey on energy optimization techniques for 

Multiprocessor System-on-Chip (MPSoC) architectures in IoT and consumer electronics systems [33]. They 

emphasize the critical role of workload mapping and scheduling approaches, such as Dynamic Voltage and Frequency 
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Scaling (DVFS), Dynamic Power Management (DPM), and inter-processor communication reduction, in achieving 

substantial energy savings. The study also underscores the significance of combining coarse-grained software 

pipelining techniques with DVFS to improve performance and energy efficiency. By evaluating the integration of 

MPSoCs in IoT systems, the authors offer insightful directions for future research, particularly in balancing 

computational performance and energy consumption. 

 Researchers have used various machine learning techniques, including supervised and unsupervised learning, to 

analyze extensive datasets from areas with high landslide risk. Artificial neural networks have achieved success in 

landslide risk prediction by using parameters such as soil moisture, rainfall, slope, and soil type. Thirugnanam et al. 

developed a landslide early warning system [34]. They divided early warning systems into six phases which are data 

collection, transmission, modeling, analysis, prediction, and warning. In the data collection and transmission phase, 

they used various rain, humidity, and slope meter sensors to collect their data in a center with the developed IoT 

system. These data from the field are analyzed in real time, and landslides are successfully predicted with the 

developed machine learning algorithm. In addition, the researchers took into account that the data transmission stops 

and the system does not work correctly in case of various IoT sensors not working, malfunctioning, battery depletion, 

etc. In such cases, they predicted the data that could not come from the sensors with machine learning algorithms and 

ensured the security of the system. In another study, Hemalatha et al. developed a landslide early warning system by 

collecting the parameters affecting landslides in real time with rainfall, humidity, water pressure, and motion sensors 

[35]. They trained their model with current-PWP and 24-PWP algorithms based on the Support Vector Regression 

method. The continuity of the warning system depends on the parameters coming from the sensors and the system 

sensors operate 24/7 depending on electricity. In case of a power outage, sensors powered by solar energy ensure the 

continuity of the system. They also used machine learning algorithms to predict sensor values as a second measure. 

Collini et al. used various machine learning methods by analyzing 341 landslide events in Florence, Italy, and obtained 

the most successful results with the XGBoost model [36]. In another study, Ng et al. developed landslide prediction 

models using meteorological and topographic data collected from landslide-free and prone areas [37]. Their results 

turned out to be more successful when using the random forest model. Data collection and analysis are one of the key 

components in this developed system that uses machine learning methods. A commodity of a large amount of historical 

and real-time data is being modeled and made meaningful in this process to produce forecasts and determine early 

warning systems. These data have been used for the development of various models of forecasting using different 

machine learning and deep learning algorithms, such as Logistic regression, Support Vector Machine, Random Forest, 

and Convolutional Neural Network. 

Another important technique that is normally used in the prediction of landslide risks includes data mining. 

Different machine learning algorithms analyze sensors or geographic information system data, such as soil type, 

measurement of moisture, GPS data, condition of weather, and variation in position for the prediction of risk from 

landslides. Franceschini et al. have generated a landslide inventory by applying methods of data mining and open-

source websites with diverse geological and hydrological data in Italy [38]. Based on this aspect of the study, web 

pages revealed the use of predefined descriptive keywords in crawling web pages related to landslide events between 

2010 and 2019, whereas those showing relevance were collected in an inventory. Subsequently, this was linked to 

several geographical databases that showed factors affecting landslides, such as population density, slope, rainfall, 

and geological structure. The relationships between these yielded a risk map related to areas prone to landslides and 

hence predicted future landslide events. As a result, the authors were then able to portray the usability of automated 

data mining methods in developing a landslide inventory and the usefulness of associating those methods with various 

geographical factors when conducting landslide risk analysis. Qian collected and analyzed data from many different 

sources and created a disaster emergency management system based on data mining [39]. They showed that this big 

data platform collected from various sources was successfully used as a disaster emergency management system and 

was more successful than traditional methods. Another study obtained images of 26 deep mountains and valleys in 

China. There were 146 landslide disasters in the locations where these images were obtained. Various machine 

learning algorithms classified these landslides according to landslide types and the results were compared with each 
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other. As a result, solutions are presented to prevent landslide disasters and ensure the sustainability of rural industries 

by using remote sensing technologies and IoT sensors [40]. Pennington et al. introduced a global landslide event 

reporting tool using photo data from social media and various sources and artificial intelligence algorithms [41]. This 

tool detects landslide events by collecting data from social media platforms such as Twitter and using natural language 

processing and machine learning techniques. With the system developed by the authors, landslide events were 

monitored with an accuracy rate of 76%, and useful and valuable information was provided to emergency teams and 

decision-makers. Many countries around the world have created national and regional landslide databases by 

collecting data from various social media and news sources to investigate the impact of landslide disasters, document 

damage and loss of life, identify dangerous areas, etc. [42-47]. These databases are then processed and analyzed with 

various artificial intelligence applications to mitigate the effects of the disaster or to develop early warning systems to 

warn decision-makers and the public before the disaster occurs [41]. 

Geographic Information Systems (GIS) are an important tool for real-time monitoring of natural disasters locally 

and globally and for emergency response. GISs collect data through aerial and satellite images [48-50], radars [48], 

[51], [52] and various sensors [53-55]. At the same time, GIS technology has been successfully used in the early 

detection and prevention of landslides [51]. In recent years, many studies have been conducted on the use of GIS and 

have shown the effectiveness of GIS in detecting landslides. Can et al. created a geographic information system into 

which citizens can voluntarily upload photos of landslides [56]. They further proposed the CNN architecture to 

automate the detection of landslide photos from image data in the system and evaluate the accuracy of the landslide 

events. The CNN architecture proposed detects landslide photos automatically, which will help the rapid assessment 

of the quality of data when a manual evaluation of data is time-consuming and costly. It therefore means that the CNN 

architecture could identify photos of landslides with 94% accuracy, which can be applied to community-based 

emergency response systems. Goniewicz et al. presented how geographic information systems technologies can be 

used in disaster risk analysis, emergency management, and post-disaster recovery and reconstruction processes [51]. 

As a result, they exemplified several illustrations of geographic information systems technology for disaster and 

emergency management and went forward to show that the use of such technologies was an important tool in disaster 

and emergency management. Yang et al. developed a web-based emergency response and visualization system using 

Cesium Digital Earth technology [49]. The system will be designed in such a way that it will be able to implement a 

geographic information system that can help the emergency responders take appropriate actions a lot faster and more 

potentially during natural disasters. Moreover, a landslide scenario example was used to design how the systems will 

be employed and the effectiveness they will have.  

Yet another technique is the numerical modeling technique. In this technique, landslide risk is estimated by 

simulating factors such as soil moisture, precipitation, slope, and soil type [57]. The numerical modeling techniques 

can also be combined with GIS data and machine learning techniques [58]. Similarly, Park et al. proposed a 

combination of statistical and physically based approaches for the development of a landslide early warning system 

[59]. It was a study within some regions in South Korea that needed to estimate landslide risk and develop early 

warning systems based on two different landslide modeling approaches. The first model represents a heuristic 

approach based on the statistical analysis of past landslides, while the second one is a physically based model that 

considers precipitation, soil moisture content, and other factors in predicting occurrences of landslide events. Whereas 

the statistical model offers information related to the analysis of past events, the physical model provides the estimate 

of landslide risk considering current conditions. Thus, it brings about a more efficient landslide early warning system 

by combining these two models into one space for both approaches to landslide early warning systems. 

Meanwhile, in another research finding, Harilal et al. have also proposed a system for early warning against 

landslides by issuing warnings for the onset of rainfall conditions that exceed a certain threshold [57]. Landslide 

probabilities could then be determined based on the geographical characteristics and daily rainfall data latitude 

provided by the Indian meteorological service. It was then compared with real-time rainfall data, and automatically, 

in the case of increased risk of landslide, a warning message was generated. The performance of the system was also 

evaluated. Since then, it found that the rainfall threshold determination for developing a real-time landslide early 
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warning system yielded successful results. Salvatici et al. discussed in their paper [60] the application of physically 

based models for regional-scale predictions of rainfall-induced shallow landslides. Causes, mechanisms of occurrence, 

characteristics of shallow landslides, and estimation of shallow landslide probabilities in light of precipitation, 

moisture, slope, soil properties, and vegetation cover were studied. The model performance is assessed in the paper 

by comparisons to measurements made at a site known for its accuracy. The results proved that the model makes good 

predictions of shallow landslide probability and can be used as an uncomplicated early warning system.  

Another methodology that could be used either for the detection of areas where landslides occur or to forecast 

landslide disasters is hybrid approaches. The data obtained by image processing, satellite images, aerial photographs, 

drone images, or various sensors are rendered meaningful through different techniques. Using artificial neural 

networks, possible scenarios of natural disasters that may happen in the future can be created by analyzing variously 

obtained data. These high-resolution satellite images identify the landslides. Characteristics of landslide features can 

be identified by applying techniques of image processing to these images. The occurrence of the landslide can also be 

identified by image processing methods, which in turn identifies the factors that cause the occurrence of it to help 

determine damages caused by landslides and take measures for the safety of the local people. Interferometric synthetic 

aperture radar and Google Earth imagery were used to develop a landslide early warning system by Nhu et al. in their 

study [61]. The data they obtained was used to develop a geographic information system, in which those data were 

classified using machine learning algorithms. For the learning process of landslide susceptibility mapping, they used 

AdaBoost, Decision Tree, and hybridized versions of these two machine learning algorithms and obtained the most 

successful results from the AdaBoost model. Thus, they have shown that data obtained with image processing 

techniques and machine learning algorithms can be used efficiently for the detection of landslides. 

A literature synthesis reveals that the principal structure of landslide disaster early warning systems is as follows: 

data collection, data transmission, modeling, analysis, prediction, and warning. Data is collected through various 

sensors such as rain gauges, moisture meters, slope meters, groundwater level meters, strain gauges, and geophones 

in the data collection phase. Data transmission is provided using GPRS, internet, telephone connections, telemetry, 

Wi-Fi, and various IoT systems. The collected data is then analyzed using various methods to make landslide 

predictions, and the warning system is activated. Data collection and transmission are among the most critical 

components of this system. However, if we consider the system as a chain in this way, the system will not work if 

there is a problem with any link in the chain. Sensors, which are one of the critical components of the system, may be 

damaged in harsh environmental conditions, or suitable conditions may not be provided for the battery conditions of 

the sensors, power outages may occur, and the data collection/transmission component will be adversely affected, and 

the modeling, analysis, and prediction component will not work. Therefore, without data, no output will be produced, 

and the system will become unusable. Researchers have taken various measures and developed alternative solutions 

to keep the system running in these and similar situations. Thirugnanam et al. proposed a solution with machine 

learning algorithms [34]. With the proposed solution, they predicted the data that could not be received from the 

sensors. They used the previous values of these parameters to predict the changes in slope, which are frequently seen 

in landslide events and sent them as input to other system components. Harilal et al. [57], Hariharan et al. [62], Guntha 

et al. [63], and Guntha and Ramesh [63] used multiple meteorological and meteorological data sensors to maintain 

the system. Huang et al. [64], Fathani et al. [65], Hemalatha et al. [66], and Harilal et al. [57] used multiple data 

transmission links to overcome data transmission problems. Fathani et al. [65], Hemalatha et al. [66], and Harilal et 

al. [57] used multiple thresholds in case of data flow problems. 

Studies on energy management and energy harvesting of sensors offer essential solutions for wireless sensor 

networks and IoT applications. Researchers have developed different methods to ensure sensors' energy independence 

and guarantee the continuity of data collection/transmission processes, especially in harsh environmental conditions. 

In addition to these methods, reinforcement learning and energy harvesting strategies stand out. Zhang and Lin used 

RL algorithms to optimize energy-neutral operations in hybrid energy-harvesting wireless body area networks, 

TBANs [67]. In the work here, energy efficiency is improved by using DQN. Murad et al. optimized the automatic 

management of energy harvesting IoT nodes with the Proximal Policy Optimization algorithm and gave more 
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autonomous energy management [68]. Omidkar et al. used Q-learning in optimizing spectrum and power allocation 

in energy harvesting-enabled device-to-device (D2D) communications [69]. Chu et al. optimized power control in 

multiple access systems with reinforcement learning and improved the system's energy efficiency [70]. Finally, 

Aoudia et al. developed a reinforcement learning-based energy management algorithm called RLMan [71]. This 

algorithm optimizes the energy consumption of nodes in wireless sensor networks and dynamically adjusts the power 

usage based on the state of charge of the node's energy storage device. The algorithm achieved high performance 

under time-varying energy resource conditions and increased packet transmission rates by up to 70%. 

The literature presents significant progress in energy management and harvesting techniques, with various studies 

proposing innovative methods to improve energy efficiency and ensure the continuous operation of IoT systems. 

Techniques such as reinforcement learning, dynamic duty cycling, and adaptive power optimization have shown 

promise in enhancing system performance. However, their original contributions to balancing energy harvesting and 

consumption remain limited. Many existing approaches focus on optimizing either energy collection or energy 

consumption independently rather than integrating both processes into a unified and adaptive framework. 

Additionally, while reinforcement learning algorithms such as Q-learning, DQN, and Proximal Policy Optimization 

have been applied, their scalability, real-time adaptability, and performance under dynamic and unpredictable 

environmental conditions are not consistently validated with real-world data. The effectiveness of current methods for 

achieving energy-neutral operations (ENO) in IoT devices, especially under tough conditions, remains uncertain. 

The proposed model aims to fill the critical gaps identified in the literature by introducing a reinforcement learning-

based energy management approach that is designed for IoT-based landslide early warning systems. A Deep Q-

Network (DQN) is exploited to address the key limitation of the previous methods in achieving an energy-neutral 

operation under dynamic and unpredictable environmental conditions. Model can be used for dynamically balancing 

energy-harvesting and power-consumption processes at IoT nodes, adapting to any real-time variations in energy 

availability. Thus, model guarantees faultless operation and prolongs the operating life of a system by avoiding 

overcharging or deep depletions of the batteries. Besides, in-depth simulations for real-world solar radiation have also 

confirmed the good self-adaptability features of the model, showing superior performances compared to traditional 

approaches. Proposed model enhances the dependability and scalability of the landslide monitoring system and gives 

the basic foundation for general IoT applications in energy-limited environments. 

This paper discusses the most important challenge of any landslide early warning system, how to ensure the long-

term energy independency of IoT sensors with continuing their operation. The strategy proposed in this paper seeks 

to optimize a combined reinforcement learning-energy harvesting model in a coherent, self-adjusting framework that 

furnishes an integrated solution to a problem that was separately solved by earlier works dealing specifically with 

either energy harvesting or consumption policies, respectively. With dynamic optimization of energy harvesting and 

consumption, continuity for data collection and transmission has been provided in changing environmental conditions 

or in case of a power outage. In this way, model ensures enhancement in the reliability, scalability, and adaptability 

features with significant contributions to IoT-based natural disaster management systems and beyond. 

3. Material and methods 

This section describes the material used and methods adopted to develop and validate the reinforcement learning-

based approach for optimizing energy management in IoT nodes for the proposed landslide early warning system. 

3.1. Reinforcement learning framework and Deep Q-Network (DQN) 

This work implements reinforcement learning to enhance energy efficiency in IoT-based landslide early warning 

systems. RL is a learning process whereby an agent develops a strategy that maximizes its cumulative rewards through 

interactions with the environment [72]. Accordingly, with respect to each instance, the agent perceives its current 

state, performs an appropriate action, and obtains a reward as feedback. These rewards contribute to the agent's long-
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term strategy that involves maximizing the total expected rewards. This total discounted reward, which the agent will 

try to maximize, is described in Equation 1. 

𝑅𝑡 = ∑ 𝛾𝑡′−𝑡𝑟𝑡′

𝑇

𝑡′=𝑡
                                                                                                                (1) 

In this equation, 𝑅𝑡 represents the cumulative discounted reward at time step 𝑡, with 𝛾 serving as the discount factor 

that reduces the influence of future rewards on current decision-making, with 0 ≤ 𝛾 ≤ 1. The term 𝑟𝑡′ denotes the 

instantaneous reward received at each time step, and 𝑇 is the time step at which the task concludes. By adjusting 𝛾, 

the agent can balance the trade-off between immediate and future rewards, optimizing its long-term strategy. The 

agent’s objective is to learn a policy that selects actions yielding the highest expected rewards in each state. 

To achieve optimal action selection, the Q-learning algorithm estimates an optimal action-value function 𝑄∗(𝑠, 𝑎), 

defined through the Bellman equation. This Equation allows the agent to determine the most suitable action in a given 

state by considering the maximum expected reward obtainable in the subsequent state. The Bellman equation is 
formulated in Equation 2 [73]. 

 

𝑄∗(𝑠, 𝑎) = 𝐸𝑠′~𝐸[𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑄∗(𝑠′, 𝑎′)|𝑠, 𝑎]                                                                                                   (2) 

In Equation 2, 𝑄∗(𝑠, 𝑎) represents the optimal action-value function for a given state-action pair (𝑠, 𝑎). The 

expectation operator 𝐸  represents the expected value over all possible outcomes. The variable 𝑠′  denotes the 

subsequent state, and 𝐸 represents the environment governing state transitions. The term 𝑟 signifies the immediate 

reward, while 𝛾 is the discount factor that scales down the importance of future rewards. Finally, 𝑚𝑎𝑥𝑎′𝑄∗(𝑠′, 𝑎′) 

identifies the maximum Q-value for the next state 𝑠′ across all possible actions 𝑎′. This equation enables the agent to 

leverage information about future states to make optimal decisions at each step. 

Applying Q-learning in large and complex state spaces presents significant challenges [74]. To address this, Deep 

Q Networks (DQN) are utilized in this study to approximate the Q-function in high-dimensional state spaces using 

neural networks [75]. DQN leverages deep neural networks to enhance the learning process, allowing the agent to 

make efficient decisions in complex environments [76]. In DQN, a loss function 𝐿𝑖(𝜃𝑖) is defined and iteratively 
optimized, as shown in Equation 3. 

𝐿𝑖(𝜃𝑖) = 𝔼𝑠,𝑎∼𝜌(⋅)[(𝑦𝑖 − 𝑄(𝑠, 𝑎; 𝜃𝑖))2]                                (3) 

In Equation 3, 𝐿𝑖(𝜃𝑖) denotes the loss function at iteration 𝑖, where 𝜃𝑖 represents the network's weight parameters 

for that iteration. The behavior distribution 𝑝(𝑠, 𝑎) indicates the probability distribution over the agent's experiences 

in state 𝑠 and action 𝑎. The target value 𝑦𝑖  at each iteration 𝑖  is given by 𝑦𝑖 = 𝐸𝑠′~𝐸[𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑄∗(𝑠′, 𝑎′)|𝑠, 𝑎], 

which depends on the expected reward and the maximum estimated Q-value from the previous iteration's 

parameters 𝜃𝑖−1. This loss function guides weight parameter updates, enhancing the Q-function approximation's 

accuracy in each iteration. 

The gradient of the loss function concerning the weights is computed to update the network parameters, as defined 

in Equation 4. 

𝛻𝜃𝑖
𝐿𝑖(𝜃𝑖) = 𝔼𝑠,𝑎~𝜌(·);𝑠′~𝐸[(𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′ , 𝑎′; 𝜃𝑖−1) − 𝑄(𝑠, 𝑎; 𝜃𝑖))𝛻𝜃𝑖

𝑄(𝑠, 𝑎; 𝜃𝑖)]                    (4) 

In Equation 4, 𝛻𝜃𝑖
𝐿𝑖(𝜃𝑖)  represents the gradient of the loss function at iteration 𝑖  concerning the weight 

parameters 𝜃𝑖. The terms 𝑠 and 𝑎 indicate the current state-action pair, while 𝑠′~𝐸 specifies that the next state is 

sampled from the environment 𝐸. The expression 𝑟 denotes the immediate reward obtained, and 𝛾 is the discount 



Arslan, S., Dörterler S. and Aydemir F., (2024) / Journal of Scientific Reports-A, 59, 32-57 

40 

 

factor emphasizing present over future rewards. The term 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′; 𝜃𝑖−1) selects the a value that gives the 

highest Q-value for the next state 𝑠′, based on the parameters from the previous iteration. Finally, (𝑠, 𝑎; 𝜃𝑖) denotes 

the predicted Q-value for the current state-action pair with the current parameters 𝜃𝑖. 
This gradient optimizes the network's weight parameters by minimizing the difference between predicted and target 

Q-values. By leveraging this structure, DQN enables the agent to efficiently learn optimal actions in high-dimensional 

environments, improving its decision-making process and leading to more accurate policy learning. 

3.2. Dataset 

The present work proposes a model that uses instantaneous battery level, air temperature, and energy harvesting 

amount to maintain the battery at an optimum level. To avoid randomness, energy harvesting is simulated. A solar 

radiation dataset, containing hourly radiation data, is used to calculate the energy harvested by a specified solar panel. 

The dataset used is taken from the European Commission Photovoltaic Geographic Information System, and it 

includes measurements taken in Istanbul-Turkey between 2019 and 2020 [77]. There are 17544 data in the dataset 

used in training. The first 100 hours of the same dataset were used in the testing phase. 

The data used has six columns, which include time, G(i), H_sun, T2m, WS10m, and Int. The time column gives 

the date and time of measurement. G(i): the amount of global radiation on the inclined plane, a unit of W/m2. H_sun: 

solar altitude, unite of degree. T2m: air temperature 2 meters above the ground, its unit is degree Celsius. WS10m 

total wind speed 10 meters above the ground, its unit is m/s. "Int" takes values 0 or 1; 1 is the value when the solar 

radiation value is reconstructed. During training, G and values are being used for the state space. 

3.3. Proposed model 

This study proposes a reinforcement learning model to improve energy efficiency and optimize the battery life of 

IoT nodes used in landslide early warning systems. The proposed model aims to balance IoT nodes' energy 

consumption and energy harvesting to prevent batteries from being completely depleted or overcharged. In this way, 

the reliability of landslide early warning systems will be increased by ensuring the uninterrupted and efficient 

operation of IoT nodes in the field. 

It is not feasible to sustain the continuous energy demands of IoT nodes in regions prone to landslides with 

conventional energy sources. Therefore, the energy needs of IoT nodes should be met by renewable energy sources 

such as solar energy. In the proposed model, each IoT node is equipped with a solar panel and a rechargeable battery. 

The energy harvested through the solar panel charges the battery and meets the energy needs of the node. The 

architecture of this reinforcement learning-based energy management system for IoT nodes is illustrated in Figure 1. 
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Fig. 1. Architecture of the reinforcement learning-based energy management system for landslide early warning 

Figure 1 illustrates the architecture of the IoT-based landslide early warning system that is powered by 

reinforcement learning-based energy optimization. The formed system includes several IoT nodes equipped with 

different sensors for monitoring environmental conditions. Each node gathers environmental data such as soil 

moisture, temperature, and humidity, and sends it wirelessly to a central edge device using the MQTT protocol. The 

IoT nodes harvest energy through solar panels to meet their energy requirements, with this harvested energy stored in 

the nodes' batteries.  

The reinforcement learning model will analyze data collected to come up with optimum energy consumption by 

the IoT nodes. The model dynamically adjusts the duty cycle of nodes with consideration of the present level of the 

battery and how much energy has been harvested. In this way, the system can improve energy efficiency for non-

interrupted operation. This architecture is designed to improve energy sustainability in IoT nodes and enhance the 

reliability of the landslide early warning system. 
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3.3.1. Reinforcement learning model 

The proposed approach is modeled as a Markov Decision Process (MDP) within the reinforcement learning 

framework. An MDP is defined by the tuple ⟨𝑆, 𝐴, 𝑃, 𝑅, 𝛾⟩, consisting of four main components: 𝑆 represents the state 

space, 𝐴 represents the action space, 𝑃 denotes the state transition probabilities, 𝑅 denotes the reward function, and 𝛾 

is the discount factor. 

In this study, the state space is represented by a three-dimensional vector: 

𝑠𝑡 = [𝐵𝑡 , 𝑇𝑡 , 𝐸ℎ,𝑡]                     (5) 

𝐵𝑡 = (
𝐵current

𝐵max
) × 100                                   (6) 

The vector 𝑠𝑡 , which is provided as input to the trained DQN model, represents the state at time 𝑡. Here, 𝐵𝑡  indicates 

the battery level at time 𝑡 (expressed as a percentage of mAh), which represents the current state of the energy storage 
in the IoT node and serves as a critical parameter for determining the appropriate duty cycle based on energy 

availability. 𝑇𝑡  represents the ambient temperature at time 𝑡 (in °C), and  𝐸ℎ,𝑡  is the amount of harvested energy at 

time 𝑡 (in mAh). 

The action space encompasses the potential decisions the trained agent can make. In this study, the action space 

consists of five distinct duty cycle levels. 

𝐴 = {𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5}                   (7) 

In the above representation, 𝐴 defines the state space, and 𝑎1, 𝑎2, 𝑎3, 𝑎4, and 𝑎5 correspond to 20%, 40%, 60%, 

80%, and 100% duty cycles, respectively. By simulating energy consumption under these duty cycles, the battery 

level is updated according to Equation 8. 

𝐸𝑐,𝑡 = 𝑃min + (𝑃max − 𝑃min) × (
𝐷(𝑎𝑡)−𝐷min

𝐷max−𝐷min
) × 𝛥𝑡                         (8) 

where 𝐸𝑐,𝑡  denotes the amount of energy consumed over a given time interval. 𝑃min  and 𝑃max  represent the 

minimum and maximum energy consumption levels of the IoT node, respectively. 𝐷(𝑎𝑡) is the duty cycle action 

selected for time 𝑡, while  𝐷min and 𝐷max  define the minimum and maximum selectable duty cycles, respectively. 

Following this, the amount of energy harvested from the solar panel during the specified time interval is calculated 
using Equation 9 to determine the increase in battery level. 

𝐸ℎ,𝑡 =
𝐺𝑡×𝐴𝑝×𝜂𝑝

𝑉𝑠
× 1000 × 𝛥𝑡                        (9) 

In Equation (9), 𝐸ℎ,𝑡 represents the energy harvested during the time interval 𝑡 (in mAh). 𝐺𝑡  is the solar irradiance 

at time  𝑡 (W/m²), 𝐴𝑝 is the area of the solar panel (m²), 𝜂𝑝 is the efficiency percentage of the solar panel, and 𝑉𝑠 is the 

system voltage (V). The battery level update is performed based on Equations 10 and 11. 

𝐵𝑠 = 𝐵𝑡 − 𝐸𝑐,𝑡 + 𝐸ℎ,𝑡                    (10) 

𝐵𝑡+1 = 𝑚𝑖𝑛(𝑚𝑎𝑥(𝐵𝑠 , 0), 𝐵max)                     (11) 
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In these equations, 𝐵𝑠 represents the total energy available in the battery after accounting for both the energy 

consumed by the IoT node and the energy harvested through the solar panel. 𝐵𝑡+1 denotes the battery level in the next 

time step; if the total harvested energy causes the battery to exceed its maximum capacity, the level is capped at 𝐵max . 

The goal of the Reinforcement Learning agent is to maintain the battery level at an optimal level continuously and 

to be rewarded for the duration it remains at this level. Therefore, the agent is penalized during training for 

overcharging or discharging. The reward function defined below is used to determine the reward-penalty amounts. 

𝑑𝑛 = |𝐵𝑡+1 − (𝐵max × 0.8)|                  (12) 

𝑂𝑡 = {
(

𝐵𝑠−𝐵max

𝐵max
) ×

4−𝑘

4
,      𝐵𝑠 > 𝐵max

           
0,                            otherwise

                   (13) 

𝑅𝑡 = {

5,                                𝑑𝑛 < 500

5 − 50 × (
𝑑𝑛

𝐵max
+ 𝑂𝑡) ,          500 ≤ 𝑑𝑛 < 3000

−50,                             𝑑𝑛 ≥ 3000

                      (14) 

Here, 𝑑𝑛 represents the energy neutrality distance, which increases as the battery level deviates from the optimal 

level of 80%. 𝑂𝑡  denotes the amount of overcharge. If the battery level at a given time and the total harvested energy 

in that interval exceed the maximum battery capacity, and the duty cycle selected is less than 100%, the penalty rate 

increases. In Equation 13, the value 𝑘 represents the coefficient for the overcharge penalty, indicating the index of the 

chosen action in the action space, ranging from 0 to 4. The highest penalty is given when the duty cycle is set to 20%. 

Finally, using the values of 𝑑𝑛  and 𝑂𝑡  , the total reward 𝑅𝑡  is calculated. 𝑅𝑡  reflects the balance between energy 

efficiency and operational performance, penalizing deviations from the optimal battery level and rewarding actions 

that maintain energy neutrality 

3.3.2. Deep Q Network architecture and model training 

The proposed model employs the Deep Q-learning (DQN) algorithm as the reinforcement learning method. DQN 

is an extension of the traditional Q-learning algorithm using deep neural networks, enabling it to operate effectively 

in high-dimensional state spaces. The DQN network here consists of a three-dimensional input layer that takes the 

state space as input, three hidden layers of 64, 32, and 8 dimensions, respectively, and a five-dimensional output layer 

that provides an action from the action space as output. The architecture of the network used in training is shown in 

Figure 2. 



Arslan, S., Dörterler S. and Aydemir F., (2024) / Journal of Scientific Reports-A, 59, 32-57 

44 

 

 

Fig. 2. Architecture of the DQN used in training. 

This neural network is used to approximate the 𝑄(𝑠, 𝑎; 𝜃) state-action value function, where 𝜃 represents the neural 

network's weights. 

During the training process, the neural network parameters 𝜃 are initialized randomly. The Epsilon-Greedy strategy 

is applied in training, with the epsilon (𝜀) value initially set to 1,0 [78]. A random number between 0 and 1 is then 

selected and compared with the 𝜀 value. If the randomly chosen number is less than 𝜀, an action is chosen randomly 

from the action space. Otherwise, the action with the highest Q value, as predicted by the neural network, is selected. 

At the end of each time step, the value of ε is reduced according to Equation 15.  

𝜀 = 𝑚𝑎𝑥(𝜀𝑚𝑖𝑛 , 𝜀 × 𝜀decay)                                (15) 

where 𝜀𝑚𝑖𝑛  is the minimum allowable epsilon value, and 𝜀decay  is the decay rate per time step. After these 

operations, the action 𝑎𝑡  is used to select a duty cycle, resulting in the next state 𝑠𝑡+1  and the reward 𝑅𝑡 . The 

information from this experience is then stored in the experience replay memory. An example of the format for stored 

data in the replay memory is shown below: 
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(𝑠𝑡 , 𝑎𝑡 , 𝑅𝑡 , 𝑠𝑡+1,∂)                  (16) 

Here, ∂ is a boolean variable indicating whether the training episode ends after this step. Experience data is stored 

in memory until a specified memory size is reached. 

There are two main components in the application of the DQN model. One is the primary model used while the 

agent continuously interacts with the environment. The other is the target model, which is used to prevent instability 

caused by rapid changes in the weights of the primary model. The weights of the target model are gradually transferred 

from the primary model to the target model using a method known as soft update [79]. 

𝑦𝑗 = {
                    𝑅𝑗 ,                                  if ∂𝑗 = True

𝑅𝑗 + 𝛾 × 𝑚𝑎𝑥𝑎′𝑄(𝑠𝑗+1, 𝑎′; 𝜃−),         otherwise
                   (17) 

where 𝑦𝑗 represents the target Q values, 𝜃− represents the parameters of the target network and 𝛾 represents the the 

discount factor, which determines the importance of future rewards compared to immediate rewards. A value of 𝛾 

close to 1 prioritizes long-term rewards, while a lower value focuses on short-term gains, allowing the model to 

balance immediate performance with sustainable energy neutrality over time. The weights of the target network are 
adjusted to approach the weights of the main network according to the following assignment: 

𝜃− ← 𝜏 × 𝜃 + (1 − 𝜏) × 𝜃−                 (18) 

Here, 𝜏 is the soft update rate, typically a small value like 0,001. The loss function used in the trained model is the 

Mean Squared Error (MSE), calculated for the specified model as follows: 

𝐿(𝜃) =
1

𝑁
∑ (𝑦𝑗 − 𝑄(𝑠𝑗 , 𝑎𝑗 ; 𝜃))2

𝑖
                (19) 

Figure 3 presents the pseudocode of the proposed model, which outlines the step-by-step process of the 

reinforcement learning-based energy optimization framework, including initialization, action selection, energy 

calculations, reward assignment, and model updates. 
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Fig. 3. Pseudocode of the proposed model. 



Arslan, S., Dörterler S. and Aydemir F., (2024) / Journal of Scientific Reports-A, 59, 32-57 

47 

 

4. Results and discussion 

This section covers the results from our study on how the RL-based model works in optimizing energy management 

in IoT nodes to allow for early detection of natural hazards like landslides and outlines some benchmark parameters 

that had been used for training the RL model and the agent and a simulation environment which was set up with these 

parameters. Details of the parameters and the values used for training are listed in Table 1. 

Table 1. Parameters and configuration for agent training and simulation environment. 

Parameter Type Parameter Name Parameter Value 

Agent State Space Size 3 

Agent Action Space Size 5 

Agent Exp. Replay 

Memory Size 

1000 

Agent Gamma (𝛾) 0.95 

Agent Epsilon Decay 

(𝜀decay) 

0.9995 

Agent Tau (𝜏) 0.001 

Model Hidden Layer 

Activation 

ReLU 

Model Output Layer 

Activation 

Linear 

Model Optimizer Adam 

Model Optimizer 

Learning Rate 

0.001 

Model Loss Function MSE 

Environment Panel Area (𝐴𝑝) 0.5 m2 

Environment Max Battery Level 

(𝐵max) 

5000 mAh 

Environment Panel Efficiency 

(𝜂𝑝) 

0.15 

Environment Optimum Battery 

Level 

4000 mAh 

Environment System Voltage 5 Volt 

Training Batch Size 32 

Training Episode 1000 

 

The variables in Table 1 describe the parameters and configurations used for the training and simulation 

environment of the reinforcement learning model proposed in the article. State Space Size refers to the three-

dimensional data vector that the model receives as input, while Action Space Size defines five different duty cycles 

that the model can choose from. Exp. Replay Memory Size indicates the amount of experiences retained during the 

learning process. Gamma value is the discount factor that determines the effect of future rewards on today's rewards. 

Epsilon Decay regulates how the selection rate of random actions in the epsilon-change strategy decreases over time. 

Tau defines the soft update of the weights of the target model to the main model. The Hidden Layer Activation and 

Output Layer Activation functions used in the training of the model specify how the activation between layers will 

occur during the learning process of the neural network. Optimizer and Optimizer Learning Rate determine the weight 
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update strategy and speed of the model, while Loss Function is an error measure that evaluates the performance of the 

model. Parameters such as Panel Area, Panel Efficiency, System Voltage, Max Battery Level and Optimum Battery 

Level used in the simulation environment describe the physical properties used in energy collection and consumption 

calculations. Finally, Batch Size and Episode define the amount of data processing in the training process of the model 

and the total number of training cycles. These parameters allow the proposed model to be configured for energy 

management optimization. 

Training and simulations were performed using the computer hardware specification: AMD Ryzen 5600X, 

NVIDIA RTX 3060 with CUDA for training acceleration, and RAM 16 GB. The results demonstrated a balance 

between energy harvesting and consumption, enabling the IoT node to operate continuously within the specified duty 

cycles. It is observable from Figure 4 that during highly energy-available periods of the year, the battery level remains 

full. During winter, when energy becomes really scarce, the level of the battery decreases but never to zero. This 

means the model maintains the IoT node always on by keeping the battery at an optimal level even when energy 

harvesting is low. In this way, the IoT node can operate continuously without interruption and never allow the battery 

level to drop to zero. 

 

 

Fig. 4. Variation of battery level over time. 

As shown in Figure 5, the energy harvesting data reveal that the model dynamically adjusts the IoT node's 

operational cycle by considering seasonal variations throughout the year. This allows for maximum energy harvesting 

during summer months with high solar irradiance. Therefore, the model is able to maintain a higher level of battery 

and increase its IoT node activity cycle. The model improves system performance by allowing it to operate at a high-

duty cycle when the battery level and energy harvesting are high. Conversely, if the energy harvesting during winter 
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is low, the proposed model optimizes the energy consumption by operating an IoT node on a low-duty cycle. It is an 

effective adaptiveness for energy neutrality, enabling the system to utilize energy efficiently. 

 

Fig. 5. Variation of harvested energy over time. 

Figure 6 illustrates how dynamic and adaptive structure of the model adjusts the duty cycle in response to varying 

battery levels, ensuring energy neutrality. At lower battery levels (e.g., 20%-40%), the model automatically switches 

to a reduced duty cycle (20%-40%) to minimize energy consumption and prevent over-discharging. On the other hand, 

when the battery level increase (e.g., 80%-100%), the model progressively selects higher duty cycles (80%-100%), 

maximizing performance and data collection while maintaining energy sustainability. 

This adaptive behavior highlights the ability to balance energy harvesting and consumption, ensuring uninterrupted 

operation even during periods of limited energy availability. The figure clearly demonstrates this relationship, with 

annotations providing additional clarity on the specific duty cycles selected at various battery levels. This feature 

ensures the IoT node operates efficiently and remains energy-neutral, adapting seamlessly to fluctuations in energy 

availability 
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Fig. 6. Relationship between battery level and selected duty cycle. 

This adaptive operational strategy is further corroborated in the relationship between total reward and duty cycle 

as depicted in Figure 7, whereby actions by the agent return higher rewards than random actions. It changes the duty 

cycle, depending on the battery level, for doing some energy efficiency enhancement. In this way, the IoT node gets 

operated uninterruptedly. This signifies that decisions made by the model are optimum concerning power management 

and thereby highest efficiency in the operation of the IoT node. 
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Fig. 7. Relationship between selected duty cycles and obtained rewards. 

In Figure 8, which illustrates the relationship between action types and total reward, the difference between random 

actions (denoted as Action Type 0) and the actions selected by the trained RL agent (denoted as Action Type 1) is 

evident. The trained RL agent has achieved significantly higher rewards compared to random actions. This 

demonstrates that the RL agent makes more informed and optimized decisions regarding the energy management of 

the IoT node. The model selects appropriate duty cycles at every given time, taking into consideration the battery level 

and energy harvesting, hence increasing energy efficiency and feeding the continuous operation of the IoT node. It 

prefers low-duty cycles mainly during the periods of low-energy harvesting to save energy, while during high-energy 

harvesting periods, it operates the system more efficiently with high-duty cycles. These prove that the model is more 

successful than random actions and it can select the optimal action for continuous and efficient operation of IoT node. 
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Fig. 8. Total rewards obtained by random actions and those selected by the agent. 

 

Finally, it is observed from Figure 9 that the line that shows the relation between the epsilon value and total reward 

is such that while the epsilon value decreases, the total reward increases. This indicates that the total reward obtained 

with randomly determined actions was substantially lower, but higher rewards were achieved when the model chose 

the actions to be performed. This reflects the effectiveness that the model gained during the learning process. 
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Fig. 9. Relationship between epsilon value and obtained reward. 

These results confirm the efficiency of the proposed model based on reinforcement learning towards improving 

energy efficiency in IoT-based landslide early warning systems and enabling continuous operation. The model helps 

the IoT node use energy efficiently by keeping the battery level in an optimal state and enhances system reliability. 

These reflect that a dynamic balance exists between energy harvesting and the duty cycle and that the model effectively 

presents a sustainable solution for energy management in IoT systems. 

    Table 2. Uptime comparison with studies in the literature. 

Study Uptime (Seconds) Uptime (Hours) Uptime (Days) 

Ait Aoudia et al. [80] 23,328,000 6,480 270 

Murad et al. [81] 604,800 168 7 

Charef et al. [82] 500 0.14 ~0.006 

Abadi et al. [83] 3,000 0.83 ~0.035 

Proposed Method 63,158,400 17,544 731 

 

The comparison in the table clearly shows that the proposed model provides a significant superiority over the 

existing studies in the literature in terms of the working time of the IoT node. The proposed method worked 

continuously for 17544 hours (731 days, 2 years), exceeding the highest time of 270 days in the table by approximately 

2.7 times. These results show that the proposed model offers a more efficient strategy in terms of duty cycle 
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optimization and battery management, and ensures that the IoT node remains operational for a long time. This is a 

significant advantage, especially in remote and maintenance-requiring environments where energy collection is 

limited. 

5. Conclusion 

This work presents a novel RL-based model to improve energy efficiency and operational sustainability in IoT-

based landslide early warning systems. This study will employ the DQN algorithm to achieve energy neutrality by 

effectively optimizing the balance between energy harvesting and consumption. Our strategy is centered on an 

optimum level of the battery of IoT sensor nodes in such a way that continuous operational capability would be ensured 

for those nodes installed or deployed in remote disaster areas where the probability of frequent maintenance is not 

feasible. Unlike conventional energy management models, our model dynamically adapts to variations in 

environmental energy availability—solar radiation specifically—through adjustment in the duty cycle of sensor nodes. 

Thus, when energy harvest is high, the model increases the duty cycle to capture and utilize more data for better system 

reliability and response. At low energies, the model reduces the duty cycle—a reason being to save the battery life 

without completely compromising any core functionalities. 

However, the study has some limitations that should be addressed in future work. Firstly, while the model was 

validated using real-world solar radiation data, its performance under other environmental conditions (e.g., wind 

energy, vibration-based energy harvesting) was not considered. Future research could expand the scope by 

incorporating multi-source energy harvesting and investigating the impact of environmental variability on system 

performance. Future studies will also focus on validating the proposed model using different datasets collected from 

various geographic locations and environmental conditions to further enhance its robustness and applicability 

These results from the simulation verify that the model is effective in ensuring continuity during prolonged 

operations. We have used real-world solar radiation data to demonstrate that the model's adaptive management can 

enable IoT nodes to attain high-duty cycles during energy-rich conditions and low-duty cycles during energy-starved 

conditions. This kind of strategy extends not only the battery lifetime of sensor nodes but also enhances landslide 

early warning system resilience to keep it operational through seasonal cycles and inclement weather. 

As the limitation, this study relied on simulations for validation. While the results are promising, deploying the 

model in real-world landslide-prone areas and monitoring its long-term performance would provide more robust 

insights. This can include assessing the model's ability to adapt to hardware failures, unpredictable weather patterns, 

and sensor inaccuracies. 

These features make the proposed RL-based model quite suitable for IoT applications in unpredictable and energy-

limited environments. The work also contributes to a wide variety of energy management issues in IoT by showing 

how reinforcement learning can manage energy resources autonomously in this study. Additionally, further work 

could focus on the following directions: integrating advanced machine learning techniques, such as hybrid 

reinforcement learning or transfer learning, to enhance the system's adaptability and decision-making in highly 

dynamic environments. Developing more energy-efficient hardware for IoT nodes to complement the software-based 

optimization approaches. Exploring the scalability of the proposed model in larger IoT networks with heterogeneous 

energy sources and varying duty cycle requirements. 

 Our findings have proved that the RL approach can be expanded and tailored to accommodate complex demands 

for energy in IoT systems other than landslide monitoring, providing a foundation for future research focused on RL-

based energy management in diverse IoT applications. 
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