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ABSTRACT

In this paper, a method for obtaining an exact and numerical solution of the
Cauchy and first type initial boundary value problems for a first order partial
differential equation with a non convex state function is suggested. For this
purpose, we introduce an auxiliary problem since it has some advantages over
the main problem, and it is equivalent to the main problem in a definite sense.
Using this auxiliary problem, we propose a efficient method for finding the
location of shock which appears in the solution of main problem and its
evolution in time. The suggested auxiliary problem permit also us to prove
of convergence in mean of a numerical solution to the exact solution of the
main problem. Moreover, using the auxiliary problem we can write the higher
order numerical scheme with respect to the time variable. Some results of the
comparison of the exact and numerical solutions are illustrated.

Keywords: Riemann’s and Buckley-Leveretts problems, non-convex
state function, convex and concave hull, numerical solution in a class of

discontinuous finctions

OZET

Makalede sabit katsayili adi diferansiyel denklemler sistemi icin yazilmis
Cauchy probleminin rezidii metodu ile gercek ¢oziimii elde edilmis ve
s0z konusu metot uygulanarak sabit gerilimli bir RC devre probleminin
¢Ozimiiniin bulunmast i¢in uygulanmistir.

Anahtar Kelimeler: Riemann ve Buckley-Leverett problemleri, konveks
olmayan durum fonksivonu, konveks ve konkav katman, stiresiz fonksivonlar

sintfinda sayisal ¢oziim
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1. INTRODUCTION

The theoetical investigation of many important problems of
physics and engineering are reduced to finding the solution of a
first order hyperbolic type equation as

1

0
ot ox (1.1)

with corresponding initial and boundary value conditions.

It is well known that the equation (1.1) is the model equation
of gas dynamics and has been used to model various problems of
hydrodynamics, [1], [2], [9], [11], [26], [28]. It has been proven
that, (see, for example, [3], [8], [12], [15], [18], [26], [28]), the
solution of the equation (1.1), becomes multi-valued if the initial
profile has both a positive and a negative slope. Similar features
appear in the solution of the Riemann problem too. Since a multi-
valued solution has no meaning from a physical point of view, (see,
[9], [12], [14], [18], [26], [28] ) the necessity arises to extend the
concept of a classical solution and propose a method for obtaining
a single-valued solution (weak solution) which may have
discontinuities with finite jumps.

The solution obtained by using the method of characteristics
has an implicit form as

u(x,t)= f(x—F'(u)), (1.2)

where f is any differentiable function. But, from this expression,
it is often impossible to obtain an explicit formula for the unknown
function. We will call the obtained functional relation (1.2) as the
alternative form of the equation (1.1).

The existence of the points of discontinuities in the solution
of (1.1) makes it vulnerable to the numerical schemes, due to the
fact that near a point of discontinuity, a finite difference
approximation to the first-order derivatives yields rather poor
results.

Various finite difference methods have been applied to find
the solution of the Cauchy problem for equation (1.1) (see, for
example ([2], [3], [4], [11], [16], [15], [19], [24], [25], [27]).
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In the literature, there are also such homogeneous finite
differences schemes that ignore the jump points which appear in
the solution. It is known that the classical finite difference schemes
when applied to (1.1) the so-called numerical viscosity appears in
the equation. Such numerical viscosity has a negative effect on the
solution. More precisely, it causes the numerical propagation rate
of the wave to be larger than the actual physical rate. Furthermore,
there exist some other numerical methods that employ the method
of characteristics, see [5], [6], [10], [11], [24], [25].

When we include the concept of a weak solution, a new
problem arises, as the location and time of the discontinuous points
become unknown. It is obvious that a weak solution defined for
nonlinear differential equations automatically fulfills the known
jump condition. However, this statement is not valid for the soft
solution [17].

The concept of a weak solution has been employed
extensively in obtaining differences approximation for the
equations of hydrodynamics. P. Lax showed [14] how it can be
used for numerical computation and Lax & Wendroff [15] showed
that the entire classes of difference methods lead to solutions which
converge to weak solutions of differential equations. However,
having finite difference solutions converging to the weak solution
of the hydrodynamics equations does not permit to approximate the
hydrodynamics equations by finite difference methods. As it is

shown in [3], when we approximate the equation (1.1), when
2

F(u)= u?, by the finite difference method, we do not obtain the

solution for the equation (1.1), in fact, we obtain the solution for
the modified equation below

u, +uu, = hu_, (1.3)

where 7 is the grid size.

We emphasize that the solution of the equation (1.1) has
unknown points of discontinuities, and the equation (1.1) can not
be approximated by the finite differences method. Furthermore, the
principle of causality is violated. That is, when we directly
approximate the equation by the finite differences method we

157



Mahir RESULOV, Ethem Ilhan SAHIN

artificially take the wave to a point which it has not physically
reached. This approach leads us to the wrong solutions.

Equation (1.3) is called Burgers’s equation and it includes the
diffusion and the convection effects. G.B.Whitham showed in [28]
that, if the diffusion term is small enough it removes the effect of
the convection term which leads to a continuous solution. This in
fact corrupts the physical structure of the problem.

In the case where the initial function is piecewise constant or,
in general, if u(x,0)e L_(R*) and F"'(u)>0 (or I"(u)<O0) then
it is noted that (see, [12], [14], [16], [26], [28]) the Cauchy problem
has multi-valued solutions from which the physically efficient

solution can be obtained by imposing the so-called entropy
condition. In [8], [13], [14], [16], [18], [26], [27], [28], under the
assumption that /" (u) does not change sign, a method for
obtaining the extended solution satisfying the entropy condition is
proposed.

In this study, we consider the Cauchy and first boundary
value problems for a one-dimensional first-order nonlinear wave
equation and propose a method for obtaining the exact and
numerical solution in a class of discontinuous functions when
F"(u) has alternative sings. Unlike the classical schemes, the

proposed scheme does not require regularity assumptions on the
unknown function and remains valid for higher dimensions.

2. THE EXACT SOLUTION OF THE CAUCHY PROBLEM

As usually, let R*(x,#) be the Euclidean space of points
(x,1)We  denote  Q,={xeR 0<r<T}c R*(x,t), here
R = (~0,0)

In this section we will construct the exact solution of the
equation (1.1) with the following initial condition

u(x,0) = u,(x), (2.1

and investigate some properties of this solution. Here, #,(x) is a

known measurable and bounded function in particular case with
compact support having both a positive and a negative slope.
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Suppose that the function F(u) is known and satisfies the
conditions:

e F(u) is a twice continuously differentiable and bounded
function for bounded u ;

e F'(u)=0 foru=>0;
e F"(u) is afunction with alternating sings i.e. F has convex
and concave parts.
2.1. Continuous Initial Profile

A solution of the problem (1.1), (2.1) can easily be
constructed by the method of characteristics [1], [8], [9], [11], [12],
[13], [14], [16], [26], [27], [28] and it has the form

u(x,t) =u,(&), (2.2)
here,

E=x—F'(ux (2.3)
where, ¢ is the spatial coordinate moving with speed F'(u).

From (2.2), (2.3) we have

Su(x,t) _ uy(£) (2.4)
ax  (Hu(OF )’ |
ou(x,t) _  u(H)F'(u) (2.5)
ot A+ ul(&)F" ) '

Relation (2.4) expresses the slope of the profile u(x,7) at the
point (x,7) in terms of the slope of the initial profile at
(x=£&,1=0) . If u; <0 and F">0, or (u,>0 and F" <0) then

for ¢ we have u (x,1)=o. At these points u,(x,7)

-1
uo(E)F" (u)
also becomes infinite. Therefore, the problem (1.1), (2.1) does not
have a classical solution.
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Definition 1. The function u(x,?) satisfying the initial

condition (2.1) is called the weak solution of the problem (1.1),
(2.1) if the following integral relation

| jQT {o,(x.0uCx.0) + 0, (x. D F @) et + [ u(x.0)p(x.0)dx =0 (2.6)

holds for every function ¢(x,t), which is defined and twice
differentiable in the upper half plane and which vanishes for
sufficiently larget + | x|.

2.2. The Auxiliary Problem

In order to determine the weak solution of the problem (1.1),
(2.1), in accordance with [20], [21] the auxiliary problem

@JFF[@J:O’ (2.7)
ot ox
(x,0) = v,(x) (2.8)

is introduced. Here, v,(x) is any absolutely continuous function
satistying the following equation

avy(x) _

e u,(x). (2.9)

Theorem 1. If v(x,7) is a solution of the auxiliary problem
(2.7), (2.8), then the function u(x,7), defined by

u(x,t)= % (2.10)

is the soft solution of the main problem (1.1), (2.1).

Suppose that v(x,7) is a solution of the problem (2.7), (2.8).
We introduce the following notations

Using these notations the equation (2.7) is written as

7(p,q)=p+F(q)=0.
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Differentiating the last equation with respect to x and ¢, we

have

ap  ~9q ap  ~9q
—+(—=0, —+Q—=0
ox Q@x T ot Qaz ’

here, 0= 8_F Noting that Z— = %, for the unknown variability
X

characteristics in the space (x,7,v, p,q), we get

dt dx dp dq dav

—=1, —=F' —=0, —=0, —=p+F'(g). 2.11

oL T @, —o=0,—0=0, —=p+Fi(g. (21D

The system (2.11) uniquely determines x,z,v,p and ¢ as
functions of s provided their initial values are known. The initial
conditions for the system (2.11) at s =0 are given in the form

Vo, €11,
t,_ =1, x|_,= V] =4
|s—0 > |s—0 57 |s—0 {O, |§|>l>
8\7 8‘) an |§|Sl>
o =_F =0 =110 = 212
p|S*0 [ax J? q|s—0 ax {O, |§|>l ( )

The solution of the problem (2.11), (2.12) can easily be
obtained, and has the form

_|ov fov ov
v(x,1) —{aF[aj—F[aﬂﬂrVO(@, (2.13)
E=x- F'[%jt.
ov(x,1)

By calculation, it can be easily shown that u(x,f)= .
X

It is also easy to see that an integrable soft solution is a weak
solution [17], that is, the following theorem holds.

Theorem 2. If v(x,7) is the solution of the auxiliary problem
(2.7), (2.8), then
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1° . the function u(x,t) defined by (2.10) is the weak solution
of the main problem;

2° . w(x,7) is an absolutely continuous function.

The auxiliary solution has the following advantages:

e The function v(x,?) is smoother than u(x,?);

e u(x,t) can be determined without using the derivatives

ou ou
— and —
ox ot

points of discontinuities.

which are not defined at the neighborhoods of the

2

According into consideration (2.10) the equation (2.7) can be
rewrite in the form

[[u&.0dé + [[Fu(x,0) - Fu(r,o)ldz =0, (2.14)

here 7 is any real number 7 € (—0,0).

2.3. Shock Fitting

In order to obtain the location of the points of discontinuity
which arise in the solution of the main problem we will use the

facts that _[ u(x,1)dx = const , and that this integral exists not only

for multi-valued and continuous functions, but also for single-
valued piecewise continuous functions. In addition, it is known that
the equation (1.1) expresses the conservation law of mass. Let
E, (1) denote the following integral

amzkmﬁm.
Definition 2. The number £, (0), defined by
E,(0) = [ u(x,0)dx

is called the critical value of the function v(x,?).

Now we investigate the problem of finding the locations of
discontinuous points of #(x,7) and the time evolution of these
points. As it was expressed before, the solution of an auxiliary
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problem is not unique. Some additional conditions are required in
order to find a physically meaningful and unique solution.

Definition 3. For every ¢, the geometrical location of the
points, where v(x,7) takes a critical value is called the front curve.

Let x, =x,(¢) be the equation of the discontinuity curve of

v(x,t) . Considering Definition 3 and expression (2.10), we have

v(x, (0).0) = [ Tu(x,0)dx = E(0).
From the last relation we have

dx, (1) _[F)] |
dt ] =% O%

(2.15)

Here [ /] shows the shock of the function f at a point x=Xx,, i.e.
/1= /(% +0)—f(x,—0).
Definition 4. The function defined by
v(x,1), v<E(0),
Ve (X,0) =
E(0), v=E(0)
is called the extended solution of the problem (2.7), (2.8).

From Theorem 1, for the weak solution of the main problem
(1.1), (2.1), we have
6Vext('x> Zt)

uext (.X, Zt) = ax

This means that a point of discontinuity for u#(x,7) is one to

the right of which the solution of the problem (1.1), (2.1) is equal to
Zero.

From (2.15), we easily obtain

dxf(l) — F(Ll) |
dt u )
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0 dx
F'(u)

hence, 1 = fo

Thus the necessary and the sufficient condition for the
existence of a jump for u(x,?) is that the integral

(€3]
Iffwm<

v(x,1)—v(x—a,t)

Now we consider the relation p for any
a>0
MDZNIZD - L (e 2) - Pt o)
a
é jOT[F(u(x, ) - Fu(r, 7))z < % (2.16)

2 . e
here FE, =—sup, /(). This is the entropy condition in sense
a

Oleinik, (see, [18], which show the rate of spreading of
characteristics. Hence v(x,7) is the entropy solution to the problem

2.7), (2.8).

/

£

;/

- X

Figure 1. Charactenstlcs and initial data
3. THE INITIAL BOUNDARY VALUE PROBLEM

In the previous section we found the solution of the Cauchy
problem for first-order nonlinear equation of the hyperbolic type.
But, many important practical problems such as the displacement
of fluid by water in a porous medium, the traffic flow problem etc.
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are expressed by the initial boundary value problem for the
mentioned equation [7], [16], [19], [21], [23].

Suppose that the solution of the equation (1.1) is given on a
curve ¢ =/((¢) in a plane (¢,x). It is known that, [11], [21], [28], if
the characteristics of the Eq. (1.1) intersect this curve once, then the
solution of the equation (1.1) is determined uniquely, and this is
called a Cauchy problem. In other words, from the trace of the
solution on the initial curve, the solution may be determined in the
entire region which has been covered by the characteristics of the

Eq. (1.1).

If the characteristics of the equation (1.1) intersect the given
initial curve twice, as shown in Fig. 1, than we give the initial
condition either on the AB or the BC curve. Otherwise, the
solution defined on the curve 4B and the one defined on the curve
BC do not match. Since the slope of the characteristics of the
equation (1.1) depends on the solution, usually, it is not possible
beforehand to know the region covered by the characteristics of the
equation (1.1) where the boundary conditions are given.

The typical initial boundary value problem describing the
distribution of some signal in D ={x>0, #>0} is

o + o) _ 0, (3.1
ot ox

u(x,0) = u,(x), (3.2)
u(0,1) =u,(1). (3.3)

Here, u,(x) and u,(f) are given functions, and #,(0) > u,(0).
It is obvious, that the solution of the problem (3.1)-(3.3) may
be connected with solutions of two Cauchy problems, for any F'(u)

function, when F'(#)>0. We introduce the following Cauchy
problems:

u OF(u) _
ot ox

u(x,0) = 1y (x);

0

2
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ou N oF (u) _
ot ox

u(0,1) =u, (7).

The exact solution of the main problem (3.1)-(3.3) was
constructed in [21], [23], [28], and has the form

0

2

(&), §>F'<u0>,
u(x,1) = G<§>, F'(u,) < f < F'(u,), (3.4)
w@., < Fw).

here G(&) is the inverse function F”(u) over [ug,u,].

As noted in [21], [23], and [28] the solution (3.4) is a multi-
valued function forany x>0 and 7> 0.

The weak solution of the problem (3.1)- (3.3) is defined as.

Definition 5. The function wu(x,f) and satisfying the

conditions (3.2),(3.3) is called the weak solution of the problem
(3.1)- (3.3) if the following integral relation

[] e+ £.Ge, ) F )Yt + [ u(x,0) 1 (x,0)dx

+ [ F@u(0.0)£(0.dt =0 (3.5)
holds for any test functions f(x,#) for which f(x,7)=0.

In order to obtain the weak solution of the problem (3.1)-
(3.3) in sense of (3.5), according to [21], [22], the following
auxiliary problem, known as the first kind auxiliary problem

V) | F[ ov(x, t)j _5 (3.6)
ot ox ’ |
v(x,0) = v, (x), (3.7)
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ov(0,1) _
ox

is introduced.

u, (1) (3.8)

It is note that, the Theorem 1 is valid for the problem (3.6)-
(3.8). As is obvious from Eq.(3.6), in this case the function u(x,7)
may be discontinuous, too. Besides, the auxiliary problem allows
us to write economical and efficient higher-order finite differences
schemes for obtaining the solution of the problem (3.1)-(3.3). The
solution of the problem (3.6)-(3.8) is

V(&) + [ (OVF (16 (8)) = F (o (SN ; > F'(u (),
v(x.6) = IOXG(é)dg, F'u,) < ; < F'(u),3-9)
F (Z/ll (7)) (" x '
4 e (o [ Fas @), - <F).

The exact solution of the problem (3.6)-(3.8) was
investigated in detail in [21], [23].

In order to is constructed the weak solution of the problem
(3.6)-(3.8) we may be to use the second kind auxiliary problem as

% u(E0dE = Fu (1)~ Fu(xn), (3.10)

u(0,1) = u,(x). (3.11)

let us define E(¢) as

E(t) = [u(g.0dé = [[F(@,0) - Fu(x.0)dz, (3.12)
and

v(x, 1), v(x,t)<E(1),
Vet (X,7) = (3.13)
E®), v(x,t)> E(1).

According to the Theorem 1 we have
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Pl %) -y 1y < B,
ox

U (X, 1) = (3.14)
0 v(x,1) > E(t).

2

Taking into consideration (2.10) and (2.14), for value of
t>0 and a >0 we now consider

vx,H)—v(x—a,t) _
a

é{ [[[Fux —a,0) ~ Fu(x,0)ldr} <

L[ 1Fax-a,0) - Faux,oldey <22,
a 0 t

here £, =2sup, and 7 <7'. Hence the solution of the problem

I (u)
a

(2.10), (2.11) 1s the entropy solution.

4. FINITE DIFFERENCES SCHEMES IN A CLASS OF

DISCONTINUOUS FUNCTIONS

In this section, using the above introduced auxiliary problem
we develop a numerical method to solve the problems (1.1), (2.1),
and (3.1)-(3.3) and investigate some properties of the numerical
solutions.

4.1. The Finite Differences Scheme for the Cauchy Problem

In order to construct the finite differences method, at first the
domain of definition of the problem is covered by the following
grid

@,, ={x. 1) | x =iht, =kr,i=0+1,42, k=012, ;h>0,7>0}
where, & and 7 are steps of the grid for x and ¢ wvariables,
respectively.

The problem (2.7), (2.8) is approximated by the finite
differences scheme at any point (i,k) of the grid o, as follows

168



Entropy Solution of a First Order Hyperbolic Type Equations with a Non-Convex State
Function in a Class Of Discontinuous Functions

V.. =V
Vi,k+1 = Vi,k - TF(%} 4.1)

Vio = vo(x). (42)

A function v,(x,) 1s any solution of the following finite
differences equation

(Vo)s = uo(x,). (4.3)
It is easy to prove that

V..=V
U,-)kﬂ — ik+1 h i—1,k+1 . (44)

Here, the grid functions U, , and V, represent approximate values

of the functions u(x,f) and v(x,7) at point (i,k) respectively.

In order to prove (4.4), firstly we write the equation (4.1) at a
point (i—1,k), then subtract it from (1.1) and divide by 4. By

taking (4.4) into consideration, it is seen that U,, satisfies the
following nonlinear system of algebraic equations

U',k+1 = Ui,k _%(F(U',k)_F(Ui—l,k))' 4.5)

7 7

Initial condition for (4.5) is

U, , = uy(x,). (4.6)

7

Theorem 3. The expression
E(t,)= hZUi,k
is independent of time, thatis 2> U, ., =hD U,,.

Proof. Multiplying (4.5) to # and summing with respect to i,
we get

T[hZUi,k+1 - hZUi,k] =0.
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This means that E,(7,) is independent of k. This completes
the proof.

Definition 6. The quantity E, (0) defined by

E(0)=hY U,

is called the critical value for the grid function V.
Definition 7. The mesh function defined by
Vo Vie <5(0),
Vi =
£ 0), V= £(0)

is called the extended solution of the problem (4.1), (4.2).

From Theorem 1, we have
ext __ ext
Ui,k - (V:k )z»

and this expression is called the extended numerical solution of the
main problem.

As it can be seen from (4.1), (4.2), the suggested algorithms
are very effective and economical from a computational point of
view.

The finite differences analogy of the (2.14) is

i k
YU, =7y [FU,,)-FU,)L (4.7)
j=1 v=1
here ¢ is such number for that the » = (i —g)h is valid. Let us p is
any positive integer, and consider

V., -V, k y
P %{TZ[F(UW) ~FUN-1FU,) - FU, )] =

l{fzk:[F U, ) - FU)I< lIT[F (U(x—a,t)—F(u(x,t))dt < % (4.8)
p v=1 p 0

k
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where a=(—p)h and E,= Emaxu F(u). Therefore, the
P

numerical solution of the problem (4.1), (4.2) satisfies the entropy
condition too.

Additionally, considering (2.10), we rewrite (2.7) as

% + F(u(x,1)=0.

Then, by applying for example, the Runge-Kutta method to
the equations above, we can write a higher-order finite differences
scheme for the main problem with respectto 7 .

4.2. The Finite Differences Scheme for the Boundary Initial
Value Problem

The finite differences analogy for (3.6)-(3.8) is

V., -V
Vi,k+1 = Vi,k - TF(%} (4.9)
Vo= vo(X,), (4.10)
V.. =V
Lk OF - OF —u,(t,). 4.11)

It is easily show that the equality (4.4) is fulfilled for the
problem (4.9)-(4.11). As above the extended solution for the
problem (4.9)-(4.11) is writed in the form

Vi Vi <E(@),
vext('x> Z‘) = (4 12)
Lyt Ve > B (1),

here E,(1,)= TZI:ZI[F (14,(0)) — F'(u(x,0))]. Using the Theorem 1
we can find the extended numerical solution of the main problem
(3.1)-(3.3).

We can write analogies estimate to (4.8) for the solution of
the problem (4.9)-(4.11), i.e, for the in question solution entropy
condition is satifies.
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In order to find as a matter of fact the numerical solution of
the problem (3.1)-(3.3), we will use the second kind auxiliary
problem which is equivalent to (3.1)-(3.3). But then, the point in
question auxiliary problem (3.6)-(3.8) is convenient tool as
theoretical investigations of by proof of convergence of the
numerical solution to the exact solution of the main problem, and
by study of a some theoretical property of the solution.

Firstly, we approximate the integral included in (3.10) by
Lu(f,t)df =ndU,,. (4.13)
j=1

By taking into account, (4.13) for the equation (3.10) we will write
two kinds of difference schemes:

1) explicit scheme
T i—1
Uipa = Uy + L IF (@) —FU,0]- DU, n=U, ) (414)
j=1

The system of equations (4.14) is solved under condition
(4.6). This differences scheme is simple and to obtain the solution
U, ., from (4.14) does not present any difficulty. But this scheme

requires the severe constraints on the steps of grid.
In order to flee from this limitation we will write
2) implicit scheme

i—1

Ussr =Ups + S F @)~ FW, )= 2 U5 =) (415)

j=1

The differences scheme (4.15) is nonlinear with respect to

U For finding this solution we can be apply following scheme:

Jk+1

a) simple iteration
S+ T S < S
UzEkJrll) = Ui,k + Z[F(ul (Zkﬂ)) - F(szk)ﬂ)] - Z(Uﬁlzﬂ - Uj,k)' (4 16)
j=1

b) Newton iteration
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s+ 4 s+ S &
Uz( k+11) = U + Z[F(ul (Zk)) - F(Ui(,k 1))] B Z(U]( 12+1 j,k)' (4~ 17)
I

To obtain the solution we represent it in form
(s+1) _ 776 ()
Uz k+1 Uz k+1 + 5U1 Jk+1-

Substituting the last relation in (4.17) and linearizing it, we
have

(s) _— (s) (s) (S) (s)
5Uz k+l _Zé‘U] k+l _F (Uz k+1)5 i+l + Ui,k+1 - Ui,k+1) -

_F( ic)ﬂ) Z( a1 F(M(O Zk+1) (418)

It is obvious from (4.18) that this algorithm is economical
and efficient from a computational point of view and it permit us to

find the solution SU7, easily.
4.3. Consistency and Convergence

Now we will show that the difference scheme (4.5) is
monotone. For this, (4.5) let us rewrite in form

Uip = H(UH)k,U,.)kl

where  H(U,, U, )=Uy 42 (FWU, ) ~FW). 1 s
obviously that if
ngF'(U,.k)gl then il >0
h ’ ik

for (j=i—1,i). Hence, if the CFL condition is fulfilled, then the

difference scheme (4.5) is monotone. The definition of a monotone
scheme is actually equivalent to the following property;

if W, 2U,, foranyithen W, _,2U,, . (4.19)

Theorem 4. Let {U,,} be given set, if {U,, ,} is solution set
founded with a monotone scheme (4.5) then
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max U1} < max (U, }: [or min {U, 1} = m_m{U,-,k}j. (4.20)

Proof. Let W, = max,{U,,} for any i. From (4.5) we have
Woia=W,,. As W, =2U,, application of (4.19) gives
Wia=W,z2U,, and thefore max,{U,; }<max,{U,;}. The
second inequality in (4.20) follows similarly.

From (4.20) also follows

max{l, ;} Smax{lU, ;. } <. <max{U,,}.
l'l'l_il'l {Ui,k} = m_il'l {Ui,kfl} 2.2 1'1'1_i1'1 {Ui,O}'

It is easily shown that the differences schema (4.9) is

1

monotone, too. In deed, under the CFL condition >0 for any

ik

J»(j=i—L,) here,
V7,
HI(Vi—l,kaVi,k): Vii— TF[MJ

Let ¢, and o,, be the errors of the approximations by the

differences of the derivatives M and L}(x, )

. Then (2.7) can
ox

be written as

v, + 51.),C + F(V)—C + si)k)z 0
or

Vt—i—F(VJ—C):ﬂi)k, (4.21)
where 7, =6, + F'(v;)e,,.

Now we will show that the difference schema (4.21) is
consistent. It is known that the suitable characteristic of continuity
of the function f(x) on the any [a,b] is it a module continuity

@(3,f)=x(f)= sup | f()—Ff(x)].

[t—x|<S
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At first, we will show that £,, —0 and 6,, — 0 if the steps
of grid approach to zero. In deed, due to u(x,¢) is continuous
-

" - 8V(x17 k) _Vyc

’ ox
_ Ov(x,,1,) _ a"(xjatk)

ox ox

= (x,.1,) —u(x;,1,)
=x(u)— 0,

#
xi = (xi > xi+1)

and

Ot Ovnt) | vt
8 =Tzt —y, = -
’ ot ot ot
= F(u(x,1,)) ~ F(u(x,1) =

FIGE)u(x,, 1) = u(x,, 1)) = F'(i)z () — 0,
Zj < (Zkrtkﬂ)’ 1’7 < (u('xi:tk )7 M(.Xl-, Z;:)):
hence, 7, — 0.

Subtracting (2.7) from this equality and writing w,, for

v, . =V, ¢, we have the following problem for w, .

W, + F'(LNl)W)—C =ik (4.22)

W0 = [ uo(£)dE - hiuo(xj) =w® =0(h) =0, (i=12,.)

Wy — Wy, = hey, =Oh) — 0.
According to Theorem 4,

Wi,k = Vi,k - V;,k - O, (4.23)
that is, the numerical solution ¥, of problem (3.7), (3.8) pointwise
approaches to the solution of the problem (2.7), (2.8).
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Now, let us multiple the (4.22) to w. and sum with respect to

i,k overgrid @,
(Ws, W, )L2(a)1_’h) +(wg, 1 (U)wy )L2(a)2_’h)
- (W)—C:Ui,k )Lz(a)T’h)‘

or
(Ri,k ” F,(ﬁ)Ri,k)Lz (wr,h )

= (wi,k7 RT)Lz (wr,h) t (Ri’k’ 771',1( )LZ (wf,h) S

(4.24)

Wil o R s il Wil
|| ik Ly(@, 3) RT Ly(@; ) ik Ly(@; ) U Ly (@, 4)

Here, the notations R, =u,, —U,, and (f, 8o, ,) is
differences analogy of the inner production of the functions f and
g, thatis (/,8)r, ,,=[ S(X)gx)dx

k T

From last inequality it is seen that u; . converges to U,, with
the weighted F7'(7) in the sense of Z,(w, ).

5. Numerical Experiments

We simulate the experiment which was done in the
Department of Phisyco-Chemistry of Porous Medium of the
Institute for the Study of Problem of Deep Oil and Gas Deposits, of
the Azerbaijan Academy of Sciences.

In this experiment, a cylindrical pipe filled with unfiltered
quartz sand is used as the porous medium. The length and cross
section of the pipe are given as /=12m, S=9.6-10"m",
respectively. The permeability coefficient, &, is 2.22zm”, and the
porosity (m) is 0.298. The transformer oil is used as the fluid

model of which the viscosity is 47.9sP, and the surface tension
between the water and the fluid is 37 uN/m . The pipe from one

end is attached to a water source whose gradient pressure Ap is
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0.03mPa . The amount of connate water in the model is specified
as (s,) 0.23. The duration of the experiment is 54 hours.

k k F
oW

A
0.91T Flu)
O.B?r
0.7‘L
O.GL
\ K, ()
05}
oa)
O,Aij k()
i |
0.1 1‘
O .
s(x,t
§ 9( 1)
— data1
\ data2
0.8 \\\ data3
0.7} Ty,

\ E 3

06} 1 2 ,

. . \ . X
O'50 0.4 b) 0.8 1.2

Figure 2: a) The graphs of the functions £, (s), &, (s), F'(s):

b) Time evaluation of the exact solution o(x,7) 1) 7' =10sec, 2)
7=15-10°sec, 3) T =2-10°sec
The relative phase permeabilities and the Buckley-Leverett
function are given, as follows
— 2 —
k(5)=02002=5 4 (= (0.5-000187) =2
0.16 0.14

F(s)= k8] (i) :
k., (s)+ Hik,(s)
The graphs of the functions £_(s), k,(s), F(s) are given in

Fig. 2a at room temperature of 20°.

177



Mahir RESULOV, Ethem Ilhan SAHIN

According [7], [23] this experiment is modeled bu the
following problem

+ w2 aF(s)

s(x,0)=s,=0.23, 5(0,r)=s,=0.77

The graphs of the numerical solutions obtained using the
algorithm (4.14) are given in Fig2b at values 7' =10’sec.

T=15-10°sec. and T'=2-10sec., respectively. As it is shown in
Fig.2b, the time of complete displacement of water is
approximately 54 hours. Judging from Fig.2b, it is possible to
claim that the results obtained from the theoretical problem and the
experimental model match quite well.

6. Conclusion

In this study an original method for obtaining the exact and
the numerical solutions of the initial and initial-boundary value
problems for one dimensional nonlinear partial differential
equations in a class of discontinuous functions is suggested. The
obtained results are as follows:

The exact solution of the initial value problem with a non-
convex state function is obtained when the initial profile is a
continuous.

An original method for finding the jump which appears in the
solution is developed and its time evaluation is studied.

It is shown that the solutions of the investigateg problems
satisfy the entropy condition in Oleinik sense.

Convergence of the numerical solution to the weak exact
solution of the main problem is proved.

The higher sensitive differences scheme whose solution
accurately expresses all the properties of the physical problem is
suggested

The numerical solution of the Bucley-Leverett problem,
which describes the macroscopic flow of the two phase fluid in a
porous medium is obtained.
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