
> BEYKENT UNIVERSITY JOURNAL OF SCIENCE AND ENGINEERING
Volume 5(1-2), 2012, 131-144

ANALAZING USE of PROGRAMMING LANGUAGE for
FINITE ELEMENT MODELING of
ELECTROMAGNETICS

Berna SULU*, Turhan KARAGULER**
*Beykent University, Institute of Science and Engineering Postgraduate
Student, bernaslu@gmail.com

**Beykent University, Department of Energy Systems Engineering,
Ayazaga Maslak Campus, 34396, Maslak-Istanbul, Turkey
turank@beykent.edu.tr

ABRACTS

The problems of electromagnetism are modeled by means of various numerical
methods. Among them Finite Element Method (FE) is considered as a
superior one despite its rather complex coding requirements. As programming
environment, until recently FORTRAN and C/C++ have been the usual choice
but now MATLAB and even JAVA are becoming alternative options. This
paper briefly discusses some programming issues and outlines superiorities
and weakness of the development environments regarding FE modeling of
electromagnetics over an example problem.

Keyword: Finite elements modelling, Numerical Electromagnetism

ÖZET

Elektromanyetizma Problemlerinin Sonlu Elemanlar Yöntemiyle
Modellenmesinde Programlama Dillerinin Analizi; Elektromanyetik problemler
bir çok farklı sayısal yöntemler yardımıyla modellenmektedir. Bu yöntemler
arasında, kod yapısının ve algoritmasının görece karmaşıklığına karşın Sonlu
Elemanlar Yöntemi (FE) diğerlerine göre daha popülerdir. Yakın zamana
kadar Sonlu Eleman modellemesinde, FORTRAN ve C/C++ programlama
dil seçeneği olarak yaygın olarak tercih edilmesine karşın son yıllarda
MATLAB ve JAVA dilleri de bu dillere alternatif olarak ortaya çıkmaktadır.
Bu çalışmada, Sonlu Elemanlar Yöntemiyle modellemede karşılaşılabilecek
programlama konuları tartışılarak bir örnek problem üzerinden bazı dillerin
karşılaştırılması yapılmıştır.

Anahtar Kelimeler: Sonlu Elemanlar Modellemesi, Sayısal
Elektromanyetizma

131

mailto:bernaslu@gmail.com
mailto:turank@beykent.edu.tr

Berna SULU, Turhan KARAGÜLER

1 INTRODUCTION

Today the finite element method (FE) is highly popular
numerical technique employed in modeling scientific and
engineering problems. Regarding the field of electrical engineering,
FE is mostly applied to electromagnetism and related areas.

The common way of using the FE technique is through pre-
developed software packages. This is simply because coding FE is
a real task and requires extensive programming ability. On the
other hand, using a software package can be restrictive and may not
address the specific problems of interest. Due to this fact, one
might consider to write the FE program from the scratch. In this
case, the choice of programming environment becomes significant.
This paper will attempt to emphasize on the programming issue by
means of introducing an example problem and steps of FE
procedure which is coded in both conventional programming (C
Language) and script programming (MATLAB) environments.
Additionally, recent FE coding applications with popular Java
environment are discussed.

1.1 Brief History

The root of Finite Element Method (FE) is mostly associated
with Courant's work published in 1943 in which he introduced
piecewise-linear approximation on triangles called as "elements" to
solve a 2D potential problem [1]. These elements in fact are non-
overlapping small regions obtained through division of solution
domain into sub-domains. However the real take off the method
had to wait for development of digital computers. From the mid 50s
to early 60s only few FE papers covering mainly structural analysis
were published [2-3]. The impact of Zienkiewicz's book in which
the FE method was explained in details and applied to various field
problems was quite extensive such that all other disciplines apart
from building engineering also started adopting the technique to
their own fields [4].

2 FE AND ELECTROMAGNETiCS

The introduction of FE Method to electrical engineering
problems was about a decade later than to early civil and
mechanical engineering applications. The Silvester's works on

132

Analyzing Use of Programming Languages for Finite Element Modeling of Electromagnetics

modeling hollow waveguide and potential problems are widely
considered as the first real FE application to electromagnetics [5,
6]. These papers were immediately followed by several new ones
covering magnetostatics, dielectric waveguides, and other well
known boundary value problems of electromagnetics. Today it is
possible to find FE modeling on almost any kind of
electromagnetic application. Although the early models were
mainly in the area of high frequency applications, the method later
was found more in low frequency and DC applications.

In general FE method involves 4 main stages which are
deriving governing equation, discretizing the model region into
elements, assembling of all the elements and building the matrixes
and solving the system of equations.

The first stage of FE modeling is to obtain the governing
equation. Since following Maxwell Equations together with the
constitutive equations define electromagnetic phenomena
completely, the governing equation can be obtained by using these
equations.

CurlE + — (1)
Dt

Curl H = J +
DD (2)
Dt

d i v B = O (3)

divD = ¿d (4)
In these equations, electric field (E) with displacement vector

(D), and magnetic field (B) with magnetic induction (H) are related
with constitutive equations such that the medium properties are
taken into consideration. Additionally the expression of Ohm's law
in which the current density vector (J) and electric field are related
by conductivity (o) completes full set of electromagnetic equations.

B = vH (5)

D = sE (6)

J = o E (7)

133

Berna SULU, Turhan KARAGÜLER

It is quite common that in FE modeling, the Electric Scalar
Potential (V) and the Magnetic Vector Potential (A) are employed
in the governing equations instead of E and B respectively. This is
mainly because the potential functions mostly lead to fewer
unknowns in the final set of system equations and easier handling
of the boundary conditions.

E = gradV

B = curl A

(8)

(9)

In the frame of this work, 2D representation of a capacitor
connected to a DC source is chosen as the test problem (see figüre
1).

Fig. 1 Test problem

In order to let the problem be simple, the 2D model is
assumed as linear and source charge free. The governing equation
which is well known Laplace Equation can be easily obtained from
the Maxwell Equation (4), the constitutive equation (6) and the
definition of Scalar Electric Potential (8).

ô ôV ô ôV n — s — + — s— = 0
ôx ôx ôy ôy

(10)

For the FE solution, as well as the governing equation,
certain boundary conditions should be considered too. These
conditions can be either interior or outer type. The interior
conditions arises from the fact that the model may have several
regions with different properties such as air, dielectric, conducting
etc.

134

Analyzing Use of Programming Languages for Finite Element Modeling of Electromagnetics

The following equations related with tangential and normal
components of Electric Field will be sufficient to take the boundary
conditions into account at the interface.

Et1 = Et2 , S1En1 = £2 En2
 (1 1)

However the outer conditions are defined only on the external
boundaries and required to complete the set of equations.
Depending on the nature of a problem, on the boundary, either a
variable can be set to a fixed value (Dirichlet Type) or its
derivatives can be specified (Neumann Type). In the test model,
the Dirichlet boundaries do exist as the conductors have fixed
potentials of V0 and 0 .

It is common that FE Method is applied to a governing
equation by means of either variational methods or weighted
residual methods. In the variational method, a variational
expression called functional would be introduced. The method
seeks the minimum of this functional which represents the
governing equation under the boundary conditions. Thus
minimizing the functional with respect to unknown variable will
result with the approximate solution. The variational procedure is
also named as Ritz method and mostly used in the early FE
applications [7]. However finding a functional for certain problems
is not always as easy as Laplace problem which uses potential
energy directly to be minimized. Furthermore the variational
methods do not deal with the physical equation directly, instead,
use the corresponding functional. Contrarily, weighted residual
methods are applied directly to the physical equation and
comparatively simpler to understand and implement therefore
lately majority of FE works are carried out by the weighted residual
methods. The Galerkin method which is one form of these
weighted residual methods is the one mostly used in
electromagnetism [8]. Due to this fact, in this work, the governing
equation which is a differential one is converted to the numerical
equations by applying the weighted residual method from
Galerkin's point of view. This procedure of conversion is briefly
explained in the following sub section. Although variational and
weighted residual methods have different paths to discretize the
governing equation, both methods usually end up with the same set
of equations to solve.

135

Berna SULU, Turhan KARAGÜLER

2.1 Application of Galerkin Method

Unlike analytical methods, numerical methods produce
approximate solutions which are different from the exact solution.
This difference between exact and approximate solutions is a
residual R(x,y). The residual form of the governing Laplace
equation can be obtained by replacing V with the approximate Va.

d dV d dV
£ + — £—^ = R(x, y)

dx dx dy dy (11)

The weighted residual methods in general attempt to force the
weighted integral of this residual over the entire domain to be zero.

£ WR(x, y)dS=0 (12)

In the above equation, W is known as a weighting function.

In general, in the FE model, the solution domain is divided
in small regions called elements. These elements, for instance in
2D, can be triangles or quadrilaterals. For the sake of simplicity,
the first order triangles are used in discritizing the model assuming
that the potential varies linearly within a triangle. While the corners
of a triangle are named as the nodes or degree of freedom and
assembly of the triangles (elements) is named as the mesh, FE
method tries to find potential values for these nodes and later for
each element by using the approximation below:

va NV (13)

where Ni, and Vi are known geometry dependent shape
functions and unknown potentials for each node respectively. The
Galerkin procedure specifies the weighting function W as the shape
function N. Thus equation (12) can be rewritten for k. element as

3

NR(x, y)dS=0 (14)

This equation above can be extended to all the elements in
the mesh.

i = 1

i=1

136

Analyzing Use of Programming Languages for Finite Element Modeling of Electromagnetics

At this stage, another fundamental step of FE procedure
which is assembly of elements should be implemented. While
having K as the number of nodes in the model, assembling of
elements at the common nodes between adjoin elements leads to K
number of equations and unknowns. In order to simplify and
automate the assembling elements, a special node numbering
scheme is used [4].

The last step to the solution is to solve the system of
equations which are normally obtained in a matrix form as
[5]*[V] = [b]

. The solution [V] can be found by either applying a direct
method such as Gauss elimination or an iterative method such as
conjugate gradient method. Since the FE equations involve only
nodal variables belonging to the same element, it is apparent that
FE methods yield sparse stiffness matrix 5] . In order to exploit this
sparseness, usually iterative methods are employed. However in
this work, the number of unknowns of 2D model is rather low
therefore Gauss elimination is opted out due to its simplicity.

All these fundamental steps and application of boundary
conditions are well evaluated and detailed in references [9, 10].
3 Programming Aspect

Regarding FE implementation, despite there has been so
much published work on numerical application and algorithm sides
of the method, not much has been said on the programming side.
This is reasonable as not many options were available in the early
years of the method.

The evaluation of FE programming has been very much
inline with the evaluation of hardware and programming languages
in general. Naturally, the early coding language for FE method was
purely FORTRAN as it was probably the only language designed
and developed for scientific and engineering related programming
practices. This dominance went on until mid 70s when C was born
and started becoming also a familiar language. The main
superiority of C over FORTRAN was the speed thus performance.
This is provided partly by introduction of pointers enabling direct
access to the memory space and avoiding time consuming address
conversion. It is well known fact that FE codes particularly during
pre-processing and post- processing stages require extensive use of

137

Berna SULU, Turhan KARAGÜLER

memory and CPU time so that C language got wide attention
among FE programmers. Furthermore, initially C was created as
the development language of UNIX operating system and then later
became almost the default language for most new operating
systems. This lets C take full advantage of operating systems and
hardware and produce machine independent and portable programs.
Despite all these superior points of C, for FE programming, a big
shift from FORTRAN to C did not materialize until mid 80's.

Conceptually both FORTRAN and C belong to the family of
procedural languages. Therefore from computing point of view, FE
programming model kept its original form until object oriented
programming being introduced [11]. Forte and co-worker's paper is
possible one of the earliest work on object-oriented FE application
in which basic FE related classes such as elements, nodes, matrices,
etc. are developed and used [12]. Most of the object oriented FE
programs are written in C++ which is derived from C with object
oriented features such as encapsulation, inheritance and
polymorphism. These features allow producing more reliable and
reusable FE codes. These codes are also more practical to manage
and modify. Classes which comprise data and functions are the
fundamental pieces of C++ and object oriented programming
languages in general. Objects created from classes with new
powerful functionalities replace data variables used in structural
programming. C++ programmers mostly do not write the code
from scratch but rather take advantage of the rich existing classes
and templates in the C++ standard library. A book written by
Mackie details how object oriented approach to FE programming
fundamentally differs from conventional structural language
approach [13]. Today almost all the FE programmers consider
object oriented approach undoubtedly the first choice if only the
classes are properly designed and supported with graphical user
interface facilities. However still a few developers claim that new
version FORTRAN 90 should be considered and as it is superior
over C++ regarding execution time efficiency [14].

Java is also an object oriented language, simpler than C++
and possesses some extra capabilities such as built-in data
structures and functions for designing graphical user interfaces and
communicating with other devices over a network. New Java
versions contain highly developed 2D and 3D graphical packages

138

Analyzing Use of Programming Languages for Finite Element Modeling of Electromagnetics

which make graphical programs be developed easily. Moreover
standard Java has a mechanism of garbage collection for preventing
memory leaks thus automatic release of memory back to the
operating system. Another important point about Java is that Java
platform was initially designed to achieve the total independency
from hardware by means of developing Java Virtual Machine
(JVM). The essential aim of introducing JVM is to make Java the
default programming platform for the web. Because of this, the
programs in Java are first compiled to obtain only java specific
bytecodes which are later interpreted by the JVM to get ready for
the execution. Java bytecodes also provide strong checking on the
code for safe and secure programs. All these important gains by
Java are achieved at the expense of speed. Unlike compiled code
which includes a series of microprocessor instructions, an
interpreter must first translate the java bytecodes into the
equivalent processor instructions therefore leading to obviously
slower running operations. This is possible the main reason that FE
programmers have not considered Java as a developing tool until a
few years ago. Recent introduction of Just-in-Time compiler
designed as the integral part of JVM significantly increased the
running speed of applications and applets by taking the bytecodes
and compiling them into the native code. The works for FE
modeling using Java started appearing in conferences and journals.
Nikiskhov's papers are significant for achieving FE programming
with Java. One of his publications outlines all the details of object
oriented design of FE in Java [15], and the second claims that the
performance of Java is in comparable range with C language
therefore should be considered seriously for FE modeling [16].

3.1 Script Language Versus Conventional Language

In the previous section, programming languages in a groups
of structural (FORTRAN, C) and object oriented (C++, Java) are
compared for FE modeling. However there are also script
languages such as PERL, MATLAB, Python, Ruby, etc which have
relatively limited resources and are mainly used in areas like
utilization, text processing, report writing, etc. Among these
languages MATLAB (also MAPLE and Mathematica) is
considered as scientific computing environment and provides more
than simple tasks of scripting languages therefore is a real option
for FE programming practices.

139

Berna SULU, Turhan KARAGÜLER

MATLAB is extremely powerful in matrix and vector
intensive operations and 2D and 3D graphical visualization which
all together form the backbone of FE modeling. As a language, it is
simple, effective and flexible therefore becoming a popular tool for
developing FE applications. In reference [17], it is shown that how
a short MATLAB FE program, less than 50 lines, can bring out
graphical solution of different type engineering problems. Mesh
generation which is also an essential part of FE modeling can be
achieved by using MATLAB too. Regarding the matter, the work
of Persson and Strang in [18] explains how to use well known
distmesh2D and distmesh3D functions which are based on
Deleaunay triangulation algorithms.

There is also some weakness of MATLAB comparing with
conventional languages. Firstly, MATLAB like all other script and
interpreted languages performs slower. Secondly, to run
MATLAB programs, usually it is required that MATLAB to be
installed on the machine thus the portability on any other machine
is a problem. Thirdly, developing interactive GUI's with MATLAB
is not an easy. MATLAB's commonly used GUIED tool may be
sufficient for simple FE applications but may not so for the cases in
which user friendly interfaces are required.

4 RESULTS AND DISCUSSIONS

In order to make a comparison between a conventional
language and script language, the simple test problem described
earlier is modeled and coded both in C language and in MATLAB.
For the programs, the steps of standard FE procedure are followed
in the same manner as described in earlier section.

140

Analyzing Use of Programming Languages for Finite Element Modeling of Electromagnetics

V = 100

/
y /

/

17

18

^^/

25

26

27

28
/

/
/

/ /

/
/

/ /

49

. 50

V = 0

Fig.2 FE mesh of test problem

As seen from fig.2, a 2D mesh of the test problem with 50
elements, and 36 nodes is designed. The thick lines indicate the
Dirichlet type fixed potential boundaries which represent
conductors. In between conductors, air and a dielectric region with
sr=5 specified by elements 17, 18, 25,26,27,28 exist. The length of
conductors and the gap between them are unrealistically taken as
10 units just for clarity. Both programs use a data file for input
which comprises node numbers and region number for each
element, coordinates of each node, the node numbers on the
dirichlet boundaries and their fixed potential values, etc. As
expected, the results from both programs are almost identical. For
instance at node 10 which is upper left corner of dielectric region,
the potential value is 71.4533, the magnitude of electric field in
element 17 (dielectric) is 5.4002, and just outside the dielectric, in
element 16, is 9.4433.The colored potential distribution is
displayed in figure 3.

141

Fig.3 Colored Potential Distribution

It is quite interesting that the programs producing the same
results differ hugely in length. Ignoring the comment and empty
lines, while C program is coded with 193 lines, the MATLAB
program is coded with only 57 lines. On the other hand, the
execution time for the C program is almost undetectable whereas
for the MATLAB program, 0.0375 CPU time is registered by using
cputime command. This is considerably high even for a very small
sized test problem. For MATLAB programming, the performance
can be a real issue for FE models having complex 3D geometries.
But at the same time easiness and effectiveness of graphical display
facilities of MATLAB, with only few lines of code, should be
taken into account. In order to achieve the same graphical display
with C, complex graphical library routines, such as openGL, need
to be integrated with the main FE program. This means that the
main computation effort may be spent on secondary issues rather
than the actual modeling and solving of the problem.

5 Conclusion

FE modeling is extensively used for solving electromagnetic
problems. There are few options available in programming of FE
discretization. In order to make a solid decision on choosing the
best developing environment, some computational issues should

142

Analyzing Use of Programming Languages for Finite Element Modeling of Electromagnetics

be considered together with the capabilities and specific features of
programming languages. Only an initial and introductory work is
carried out regarding comparison of structural and scripting
languages over a 2D FE test problem. As expected, the C program
runs faster however the MATLAB program was shorter and
effective. The work would be extended to the inclusion of object
oriented (C++) and web based (Java) platforms in comparison.
Further improvement can also be achieved by considering a more
complex 3D geometry as the mesh of test problem.

REFERENCES

[1] Courant RL. Variational methods for the solution of
problems of equilibrium and vibration. Bulletin of the American
Mathematical Society 1943; 49: 1-23.

[2] Turner MJ, Clough RW, Martin HC, Topp LC. Stiffness
and Deflection Analysis of Complex Structures. Journal of
Auronautical Science 1956; 23: 507-510.

[3] Clough RW. The Finite Element Method in Plane Stress
Analysis. Proceedings of 2nd ASCE Conference on Electronic
Computation. September 1960; Pittsburgh.

[4] Zienkiewicz OC. The Finite Element Method. 1967;
McGraw-Hill.

[5] Silvester P. Finite-element solution of homogeneous
waveguide problems. Alta Frequenza 1969; 38: 313-317.

[6] Silvester P. High-order polynomial triangular finite
elements for potential problems. International Journal for
Engineering Science 1969; 7: 849-861.

[7] Ritz W. Über eine neue methode zur losung gevissen variations
- probleme der mathematischen physic. J.Reine Angew. Math
1909; 135: 1-61.

[8] Galerkin BG. Series solution of some problems of elastic
Equilibrium of rods and plates. Vestn. Inzh. Tech 1915; 19: 897-
908.

[9] Jin J. The Finite Element Method in Electromagnetics. US:
John Wiley & Sons; 2002.

[10] Pedro J, Bastos A, Sadowski N. Electromagnetic Modeling by
Finite Element Methods. US: Marcel Dekker; 2003.

143

Berna SULU, Turhan KARAGÜLER

[11] Bathe KJ. Finite Element Procedure. NJ: Prentice-Hall; 1996
[12] Forte BWR, Foschi RO, Steimer SF. Object-oriented finite
element analysis. Computers and Structures 1990: 34; 355-374.

[13] Mackie RI. Object oriented methods and finite element
analysis. UK: Saxe-Coburk Publication; 2001.

[14] Akin JE, Singh M. Object Oriented Fortran 90 P- adaptive
finite element method. Advances in Engineering Software 2002:
33; 461-468.

[15] Nikishkov GP. Object oriented design of a finite element code
in Java. CMES-Computer Modeling in Engineering & Sciences
2006: 11(2); 81-90.

[16] Nikishkov GP, Nikishkov YG, Savchenko VV. Comparison of
C and Java in finite element computations. Computers and
Structures 2003: 81; 2401-2408.

[17] Alberty J, Carstensen C, Funken SA. Remarks around 50 lines
of Matlab: short finite element implementation. Numerical
Algorithms 1999: 20;117-137.

[18] Persson PO, Strang G. A simple mesh generator in Matlab.
SIAM Review 2004: 16; 329-345.

144

