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Abstract − The demand for third-party logistics (3PL) providers becomes an increasingly important issue for cor-
porations seeking improved customer service and cost reduction. Currently, there is no way to select the appropriate
method for selecting 3PL. Therefore, this paper develops a new extended multi-objective optimization ratio analysis
plus full multiplicative form (MULTIMOORA) method under double hierarchy linguistic single-valued neutrosophic
sets (DHLSVNSs). For this, we first develop a new mathematical tool, i.e., DHLSVNSs, by studying single-valued neu-
trosophic set (SVN) and double hierarchy linguistic term set (DHLTSs), which is very effective for solving uncertainty
in decision-making problems. A list of Einstein aggregation operators and their fundamental aspects for DHLSVNSs
are presented based on Einstein’s norms, as aggregation operators play an essential role in decision-making. A step-
by-step algorithm of the Extended DHLSVN-MULTIMOORA approach is designed to tackle ambiguous and uncertain
data during decision-making problems. The algorithm developed for the suggested technique is illustrated with a
numerical example relevant to 3PL. A comparison of the proposed methods with various existing methodologies is
carried out to demonstrate the superiority of the suggested algorithms.

Keywords: Double hierarchy linguistic single-valued neutroshopic set, multimoora technique, multi criteria group de-

cision making problems (MCGDM), aggregation operators, third-party logistics provider

1. Introduction

Logistics plays an important role in establishing an industry’s supply chain. However, with the mar-
ket becoming increasingly global, industries now see logistics as a critical area where they may reduce
costs and raise the standard of their customer service [1]. Logistics outsourcing, often known as third-
party logistics (3PL), is a growing trend in the global business sector [2]. According to [3,4], suppliers
can provide enterprises with the necessary services, including professional logistics and transporta-
tion, warehousing, logistics information systems, product return services, and inventory management.
As a result, 3PL plays an important part in the logistical activities between the outsourced firm,
the marketplace, and the customers. The key advantages of logistics alliances are that they allow
the outsourced firm to focus on its core competencies, increase efficiency, improve service, eliminate
transportation costs, restructure supply chains, and build market credibility [5–7].
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Consequently, selecting a suitable 3PL provider who can meet various requirements is critical for
an enterprise’s growth and competency [8–10]. In the provider selection process, the outsourcing
firm frequently faces difficulties working with many logistics suppliers. Analysts are faced with a
challenging task in selecting suitable suppliers. To address this challenge, Multi-Attribute Group
Decision Making (MAGDM) is a process that plays an important role in selecting the best solution.
There are two key goals in this method. While the primary goal is to create an environment in
which the value of some basic criteria can be easily assessed, the second goal is to analyze data
that is often unclear or ambiguous. To manage these related data, researchers developed the Fuzzy
Set (FS) [11] theory, which provides information for managing the imprecision and inaccuracy of
information by assigning membership degrees to each element of a fixed set. However, this idea has
limitations due to the lack of non-membership; therefore, Atanassov [12] extended FS by including non-
membership and developing a new theory called intuitionistic fuzzy set (IFS). Many scholars have used
this theory to solve various DM problems. However, it has been suggested that they cannot handle
the ambiguous and contradictory information that occurs in reality. Therefore, Smarandache [13]
developed a new theory of neutrosophic sets (NS), which describes uncertain data by considering
three mutually independent functions, namely true, uncertain, and false lying in

]
0−, 1+[

.

NS theory can represent unclear data better than FS, IFS, and uncertainty speculation because it
is consistent with human instinct judgments and feelings. The NS theory deals with indeterminate
information, but it isn’t easy to enforce in practical situations. Thus Wang et al. [14] developed a
special type of NS, namely a single-valued neutrosophic set (SVNS), to handle real-world problems
easily. SVNS is a helpful tool for representing situations with incomplete, uncertain, and inconsistent
information. Some scholars have studied SVNS and defined various aggregation operators (AO) for
SVNS. Aggregating data from several sources into a single AO is important. As a result, Li et
al. [15] introduced the innovative concept of generalized simplified neutrosophic Einstein AOs. For
SVNSs, Liu [16] proposed AOs based on the Archimedean t-norm and t-conorm and applied them to
decision-making problems. Ji et al. [17] concentrated on the Frank operations of SVNNs and created
the SVN prioritized Bonferroni mean (SVNFNPBM) operator according to the Frank aggregation
function. Nancy and Garg [18] established SVNN operations as Frank-weighted aggregation operators
and suggested a decision-making framework. Biswas et al. [19, 20] utilized the TOPSIS method for
decision-making problems under the SVN environment. Considering the neutrosophic set, Zhang et
al. [21] developed the general cloud method and other related ideas, such as backward cloud generators,
two aggregation operators, and NNC distance measure. Lu and Ye [22] introduced hybrid weighted
arithmetic and geometric aggregation functions under SVN information and used these operators
to build decision-making challenges. Baser and Uluçay [23] defined an effective Q-neutrosophic soft
sets and Its Application in Decision Making. Baser and Uluçay [24] also defined the applications of
neutrosophic soft set decision-making problems. Reseacher [25] designed a TOPSIS-Based Entropy
Measure for N-Valued Neutrosophic Trapezoidal Numbers. Uluçay et al. [26] defined a prioritized
aggregation operators for the Evaluation of renewable energy sources.

Later, Uluçay and Deli [27] invented a novel vikor method for generalized trapezoidal hesitant fuzzy
numbers. Uluçay et al. [28] proposed a N-valued neutrosophic trapezoidal numbers with similarity
measures. The knowledge evaluated in the neutrosophic environment is quantitative and is represented
numerically. However, in practice, most unclear or ambiguous data examined by the decision-maker
(DMs) have qualitative aspects, for example, extremely poor, poor, fair, slightly good, very good,
outstanding. The linguistic variable [29] is essential to access information and process qualitative
data in these situations. Therefore, Li et al. [30] considered three membership degrees, such as truth,
indeterminacy, and falsity, in the form of linguistic variables and developed the linguistic neutrosophic
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sets (LNS). Since LNS is particularly suitable for representing more complex linguistic information
predicted by humans. Later, Gou et al. [31,32] extended the LTS and developed a new theory, namely
double hierarchy linguistic term set (DHLTS), for more robust modeling of expert expressions. In
most real-world problems, getting the correct reflection of attributes is very difficult for DMs. Besides
that, most DMs find it more suitable to conduct qualitative evaluations of attributes. DHLTS conveys
appropriate data more conveniently in complex expressions than single LTSs. DHLTS consists of two
components, the first and second hierarchy linguistic term sets, allowing more flexibility in describing
uncertainty and ambiguity. Many researchers successfully applied this concept [33].

Saleem et al. [34] proposed double hierarchy hesitant linguistic Einstein aggregation operators to solve
real word problems. Multi-attribute group decision-making (MAGDM) is a procedure in which a
panel of decision experts assesses the most advantageous alternative that supports certain features.
To solve the MAGDM problem, Brauers and Zavadskas developed MOORA and MULTIMOORA
techniques [35]. The traditional MOORA technique uses precise data to assess the preferred alternative
based on the relative significance of many criteria. Later, Brauers and Zavadskas [36] invented the
MULTIMOORA technique by considering crisp set theory, which is based on three approaches: (1)
ratio system approach, (2) reference point approach, and (3) full multiplicative form approach. The
MULTIMOORA technique is one of the most important techniques for handling real-world problems
more significantly. Thus, Brauers et al. [37] extended the MULTIMOORA method fuzzy set. In
the context of FSs, Hafezalkotob et al. [38] perform a summary of the MULTIMOORA approach.
Alkan et al. [39] used the fuzzy MULTIMOORA approach to rank renewable energy sources. Liang et
al. [40] investigated the MULTIMOORA approach in picking mining methods. Fattahi and Khalilzadeh
expanded the MULTIMOORA approach for risk evaluation in a fuzzy environment [41]. Based on the
objective weighting technique, Dahooie [42] enhanced the fuzzy MULTIMOORA technique. Zhang
et al. [43] integrated the suggested intuitionistic fuzzy MULTIMOORA method and applied it to
energy storage technologies selection. To assess solid waste management strategies, Garg and Rani
[44] presented a MULTIMOORA method involving aggregation operators under IFS. Later, Chen
et al. [45] extended the MULTIMOORA method to linguistic evaluations. Zhang [46] considered
the MULTIMOORA method to solve decision-making problems in a linguistic intuitionistic fuzzy
environment. Ding and Zhong [15] introduced the MULTIMOORA approach using two-dimensional
uncertain linguistic variables (TDULVs). Balezentis and Balezentis [47] suggested a 2-tuple linguistic
fuzzy MULTIMOORA technique. Wei [48] proposed the 2-tuple linguistic intuitionistic FSs (2TLIFSs).
Akram et al. [49] recently created the 2TLPF-MULTIMOORA technique.

In light of the above literature, it is analyzed that there is no application and detail about the combined
study of SVNSs and DHLTSs for handling the uncertainty and fuzziness under the MULTIMOORA
technique. So, Inspired by the above discussion in this study, we define a new theory, namely double hi-
erarchy linguistic single-valued neutrosophic sets (DHLSVNSs), to evaluate decision-making problems
more accurately. The main motivations for this work are as follows:

i. To develop a novel notion of double hierarchy linguistic single-valued neutrosophic sets
(DHLSVNSs) by extending the SVNs to DHLTSs. DHLSVNSs is a more generalized version that
effectively resolves ambiguity in decision-making problems. They are adaptable tools that allow DMs
to provide assessments in the form of DHLSVNSs.

ii. To define new operational laws for DHLSVNSs based on Einstein t-norm and t-conorms.

iii. To develop a list of Einstein aggregation operators and discuss the related properties.

iv. To create an extended MULTIMOORA technique for solving decision-making problems. Because
the MULTIMOORA approach has several standout qualities, including shorter computation times,
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more thorough mathematical calculations, simplicity, and consistency of outcomes. It comprises of
three MOORA techniques utilize full multiplicative form, reference point, and ratio analysis. It uses
aggregation algorithms to incorporate the subordinate ranks of the alternatives and more correctly
reflect the results.

v. In order to show the applicability and dependability, we applied the provided methodology, a
numerical case study selecting a third party logistic service provider.

vi. To demonstrate the stability and validity of our developed work, we compare our proposed tech-
nique to previous methods.

From literature the existence idea are very helpful to solve decision making problems, but this ideas
only handle the decision making problems qualitatively. Therefore, the novelty of this paper is to
developed a novel idea for solving decision making qualitatively. The main focus of this study is to
find the best third party logistic service provider that can assist in real-life problems. This research
study has contributed to the analysis of MCGDM under ambiguity in the following manner:

i. We design a new operation for DHLSVNSs to handle the decision issues more accurately.

ii. Einstein t-norm and t-conorm have great significance as they incorporate the properties of several
others. Therefore, to aggregate the DM process, we define the aggregation operators and basic oper-
ation of DHLSVNSs based on the Einstein t-norm . We introduce a variety of aggregation operators
such as the Einstein weighted averaging and geometric aggregation operator and thier basic properties.

iii. A new DHLSVN-Multimoora method is developed to handle complex decision making problems
under DHLSVNSs.

iv. A novel distance measure and score function is proposed for finding the the ranking and distance
between tow different double hierarchy linguistic neutrosophic numbers.

The summary of this article is as follows: The basic concepts related to SVNSs, LTSs and DHLTSs are
given in Section 2. Section 3 includes the novel notion of DHLSVNSs and score function, which can
help the DM process. Section 4 includes the distance measures and Einstein aggregation operators of
DHLSVNSs. Section 5 presents a step-wise algorithm for Extended MULTIMOORA method under
a double hierarchy linguistic single-valued neutrosophic context. Section 6 describes a numerical
application related to third-party logistic selection. Section 7 compares the proposed method with
existing techniques to demonstrate its applicability. Section 8 concludes this article. The list of
abbreviations and symbols are given in Table 1.

Table 1. List of abbreviations and symbols
Description Abbreviation

Truth membership degree µ(a)

Indeterminacy membership degree η(a)

Falsity membership degree ν(a)

Linguistic single-valued neutrosophic number LSVNNs

Linguistic truth membership degree Lג
µ(a)

Linguistic Indeterminacy membership degree Lג
η (a)

Linguistic Falsity membership degree Lג
ν (a)
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Table 1. (Continued) List of abbreviations and symbols
Description Abbreviation

Single-valued neutrosophic set SVNS

Neutrosophic set NS

First hierarchy linguistic term FHLT

Second hierarchy linguistic term SHLT

Double hierarchy linguistic term sets DHLTSs

Double hierarchy linguistic single-valued neutrosophic set DHLSVNS

Double hierarchy linguistic single-valued neutrosophic numbers DHLSVNNs

Double hierarchy linguistic single-valued neutrosophic Einstein weighted averaging DHLSVNEWA

Double hierarchy linguistic single-valued neutrosophic Einstein arithmetic DHLSVNEA

Double hierarchy linguistic single-valued neutrosophic Einstein weighted geometric DHLSVNEWG

Double hierarchy linguistic single-valued neutrosophic Einstein geometric DHLSVNEG

2. Preliminaries

This section provides some basic notions to be required in the following sections.

Definition 2.1. [13] Let X ̸= ϕ. The structure N = {a, ⟨µ(a), η(a), ν(a)|a ∈ X⟩} is called neutro-
sophic set (NS), where for each a ∈ X, µ(a), η(a), ν(a) : X −→

]
0−, 1+[

is the truth, indeterminacy
and falsity membership degree respectively, with conditions 0− ≤ (µ(a)) + (η(a)) + (ν(a)) ≤ 3+.

Definition 2.2. [14] For a non empty set X. The single-valued neutrosophic set (SVNS) is math-
ematically denoted by V = {a, ⟨µ(a), η(a), ν(a)|a ∈ X⟩}, where a ∈ X, µ(a), η(a), ν(a) : X −→ [0, 1]
represents the truth, indeterminacy and falsity membership degree respectively subject to the condi-
tions 0 ≤ (µ(a)) + (η(a)) + (ν(a)) ≤ 3,

Definition 2.3. [50] Let ג = γג} |γ = 0, 1, · · · , τ} , is the linguistic term with odd cardinality and
τ,0]ג ] = γג} 0ג| ≤ γג ≤ τג , γ ∈ [0, τ ]} is the continuous linguistic term set. Then the structure ג =
{a, Lג

µ(a), Lג
η (a), Lג

ν (a)|a ∈ X} is known as linguistic single-valued neutrosophic number (LSVNNs)
, where for each a ∈ X, Lג

µ(a), Lג
η (a), Lג

ν (a) ∈ τ,0]ג ] represent the truth, indeterminacy and falsity
linguistic degree respectively, such that 0 ≤ µ(a) + η(a) + ν(a) ≤ 3τ . The tripled ,µג⟩ ,ηג ⟨νג is said
to LSVNNs and denoted by ג = ,µג⟩ ,ηג .⟨νג If ,µג ,ηג νג ∈ ,ג then tripled ,µג⟩ ,ηג ⟨νג are the original
LSVNNs.

Definition 2.4. [31] Let ג = γג} |γ = −τ, · · · , −1, 0, 1, · · · , τ} be the first (FHLT) and ℸ = {ℸφ|φ =
−δ, · · · , −1, 0, 1, · · · , δ} be the second hierarchy linguistic term (SHLT) sets, then the double hierarchy
linguistic term sets is symbolically denoted by

ℸג =
{
γ⟨ℸφ⟩|θג = −τ, · · · , −1, 0, 1, · · · , τ ; φ = −δ, · · · , −1, 0, 1, · · · , δ

}
where γג is the first hierarchy and ℸφ represent the second hierarchy linguistic terms, respectively.
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3. Formation of Double Hierarchy Linguistic Single-Valued Neutrosophic Sets

This section explores the novel notion of double hierarchy linguistic single-valued neutrosophic sets on
the base of [31,32].

Definition 3.1. Let ג =
{〈

Lג
µ(a), Lג

η (a), Lג
ν (a)|µ, η, ν = 0, 1, · · · , τ

〉}
be the first hierarchy linguistic

single-valued neutrosophic sets and

ℸ =
{〈

ℸL
w(a),ℸL

x (a),ℸL
y (a)|w, x, y = 0, 1, · · · , δ

〉}
be the second hierarchy linguistic single-valued neutrosophic sets, then the double hierarchy linguistic
single-valued neutrosophic sets (DHLSVNSs) is defined as:

ℸג =
{〈

Lג

µ⟨ℸL
w⟩, Lג

η⟨ℸL
x ⟩, Lג

ν⟨ℸL
y ⟩

〉
|µ, η, ν ∈ [0, τ ] ; w, x, y ∈ [0, δ]

}
(3.1)

Where Lג
µ , Lג

η , Lג
ν ∈ ג represents the truth, indeterminacy and falsity degree of first hierarchy linguistic

term sets and ℸL
w,ℸL

x ,ℸL
y ∈ ℸ is the truth, indeterminacy and falsity degree of second hierarchy

linguistic term sets, such that 0 ≤ µ+η +ν ≤ 3τ and 0 ≤ w+x+y ≤ 3δ. Simply it can be represented
as

ℸג =
〈
,µ⟨ℸw⟩ג ,η⟨ℸx⟩ג ν⟨ℸx⟩ג

〉
Definition 3.2. Let ℸiג =

〈
,µi⟨ℸwi⟩ג ,ηi⟨ℸxi⟩ג νi⟨ℸyi⟩ג

〉
(i ∈ N) be a DHLSVNSs. Then mathematically

the score are denoted and defined by

SC =
((

2 + )ג µi
τ )−( ηi

τ )−( vi
τ )

)
+

(
2 + )ג wi

δ )−( xi
δ )−( yi

δ )
))

/2 ∈ [0, 1] (3.2)

4. Einstein Operation

Since the inception of fuzzy set theory, the set theoretical operators have played an essential role. A
variety of special operators have been incorporated in the general notions of the t-norms and t-conorms,
which meet the needs of the conjunction and disjunction operators, accordingly. There are numerous
t-norms and t-conorms types that can be employed to execute the corresponding intersections and
unions. The Einstein product and Einstein sum are examples of t-norms and t-conorms, which are
defined as follows.

Definition 4.1. [51] Let a, b ∈ R. Then, the family of Einstein t-norms are mathematically defined
as

a ⊕e b = a + b

1 + ab
(4.1)

Definition 4.2. [51] Let a, b ∈ R. Then, the family of Einstein t-conorms are mathematically defined
as

a ⊗e b = ab

1 + (1 − a) (1 − b) (4.2)

for all a, b ∈ [0, 1]2 .
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We introduce the Einstein operations for DHLSVNSs and examine some of their desirable character-
istics.

Definition 4.3. Let ℸ1ג =
〈
,µ1⟨ℸw1⟩ג ,η1⟨ℸx1⟩ג ν1⟨ℸy1⟩ג

〉
and ℸ2ג =

〈
,µ2⟨ℸw2⟩ג ,η2⟨ℸx2⟩ג ν2⟨ℸy2⟩ג

〉
be

the two double hierarchy linguistic single-valued neutrosophic sets. Then, Einstein’s operational laws
for (DHLSVNSs) are as follows:

i.

ℸ1ג ⊕ ℸ2ג =



ג
τ

( µ1
τ + µ2

τ

1+ µ1
τ

µ2
τ

)〈
ℸ

δ

(
w1
δ

+ w2
δ

1+ w1
δ

w2
δ

)〉
 ,

ג
τ

(
η1
τ

η2
τ

1+(1− η1
τ )(1− η2

τ )

)〈
ℸ

δ

(
x1
δ

x2
δ

1+(1− x1
δ )(1− x2

δ )

)〉
 ,

ג
τ

(
ν1
τ

v2
τ

1+(1− ν1
τ )(1− v2

τ )

)〈
ℸ

δ

(
y
δ

y2
δ

1+(1− y
δ )(1− y2

δ )

)〉




(4.3)

ii.

ℸ1ג ⊗ ℸ2ג =



ג
τ

(
µ1
τ

µ2
τ

1+(1− µ1
τ )(1− µ2

τ )

)〈
ℸ

δ

(
w1
δ

w2
δ

1+(1− w1
δ )(1− w2

δ )

)〉
 ,

ג
τ

( η1
τ + η2

τ

1+ η1
τ

η2
τ

)〈
ℸ

δ

(
x1
δ

+ x2
δ

1+ x1
δ

x2
δ

)〉
 ,

ג
τ

( v1
τ + v2

τ

1+ v1
τ

v2
τ

)〈
ℸ

δ

(
y1
δ

+ y2
δ

1+ y1
δ

y2
δ

)〉




(4.4)
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iii.

k.גℸ1 =




ג

τ

(
(1+ µ1

τ )k
−(1− µ2

τ )k

(1+ µ1
τ )k

+(1− µ2
τ )k

)〈
ℸ

δ

(
(1+ w1

δ )k
−(1− w2

δ )k

(1+ w1
δ )k

+(1− w2
δ )k

)〉


,


ג

τ

(
2( η1

τ )k

(2− η1
τ )k

+( η1
τ )k

)〈
ℸ

δ

(
2( x1

δ )k

(2− x1
δ )k

+( x1
δ )k

)〉


,


ג

τ

(
2( v1

τ )k

(2− v1
τ )k

+( v1
τ )k

)〈
ℸ

δ

(
2( y1

δ )k

(2− y1
δ )k

+( y1
δ )k

)〉




(4.5)

iv.

kג
ℸ1 =




ג

τ

(
2( µ1

τ )k

(2− µ1
τ )k

+( µ1
τ )k

)〈
ℸ

δ

(
2( w1

δ )k

(2− w1
δ )k

+( w1
δ )k

)〉


,


ג

τ

(
(1+ η1

τ )k
−(1− η2

τ )k

(1+ η1
τ )k

+(1− η2
τ )k

)〈
ℸ

δ

(
(1+ x1

δ )k
−(1− x2

δ )k

(1+ x1
δ )k

+(1− x2
δ )k

)〉


,


ג

τ

(
(1+ v1

τ )k
−(1− v2

τ )k

(1+ v1
τ )k

+(1− v2
τ )k

)〈
ℸ

δ

(
(1+ y1

δ )k
−(1− y2

δ )k

(1+ y1
δ )k

+(1− y2
δ )k

)〉




(4.6)

4.1. Double Hierarchy Linguistic Single-Valued Neutrosophic Einstein Averaging
Aggregation Information

This section devoted a list of Einstein weighted averaging aggregation operators and Einstein averaging
aggregation operators for DHLSVNSs also describes its basic properties as follows:

Definition 4.4. Suppose we have a family ℸiג =
〈
,µi⟨ℸwi⟩ג ,ηi⟨ℸxi⟩ג νi⟨ℸyi⟩ג

〉
(i ∈ N) of single-valued

neutrosophic double hierarchy linguistic numbers (SVNDHLNs) and ω = (ω1, ω2, · · · , ωn)T represent
weight vectors of given family restricted to ωi > 0,

n∑
i=1

ωi = 1. Then based on above operational laws the

double hierarchy linguistic single-valued neutrosophic Einstein weighted averaging (DHLSVNEWA)
operator are defined as:
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DHLSV NEWA(גℸ1 , ℸ2ג , · · · , (ℸnג = ω1.גℸ1 ⊕ ω2.גℸ2 , · · · , ⊕ωn.גℸn

=




ג

τ


n∏

i=1
(1+ µi

τ )ωi −
n∏

i=1
(1− µi

τ )ωi

n∏
i=1

(1+ µi
τ )ωi +

n∏
i=1

(1− µi
τ )ωi

〈
ℸ

δ


n∏

i=1
(1+ µi

δ )ωi −
n∏

i=1
(1− µi

δ )ωi

n∏
i=1

(1+ µi
δ )ωi +

n∏
i=1

(1− µi
δ )ωi


〉


,


ג

τ

 2
n∏

i=1
( ηi

τ )ωi

(2− η1
τ )ωi +( η1

τ )ωi

〈
ℸ

δ

 2
n∏

i=1
( ηi

δ )ωi

(2− x1
δ )ωi +( x1

δ )ωi


〉


,


ג

τ

 2
n∏

i=1
( v1

τ )ωi

n∏
i=1

(2− v1
τ )ωi +

n∏
i=1

( v1
τ )ωi

〈
ℸ

δ

 2
n∏

i=1
( y1

δ )ωi

n∏
i=1

(2− y1
δ )ωi +

n∏
i=1

( y1
δ )ωi


〉





(4.7)

Theorem 4.5. Suppose we have a family ℸiג =
〈
,µi⟨ℸwi⟩ג ,ηi⟨ℸxi⟩ג νi⟨ℸyi⟩ג

〉
(i ∈ N) of double hierarchy

linguistic single-valued neutrosophic numbers and ω = (ω1, ω2, · · · , ωn)T represent weight vectors of
given family restricted to ωi > 0,

n∑
i=1

ωi = 1. Then, DHLSVNEWA operators satisfies the following
properties as:

i. (Idempotency) Suppose for all ℸi(iג ∈ N), is equal i.e ℸiג = ,ℸג then

DHLSV NEWA ℸ1ג) , ℸ2ג , · · · , (ℸnג = ℸג

ii. (Monotonicity) Consider ℸiג , ∗ג
ℸi

be two sets of DHLEs, ℸiג ≤ ∗ג
ℸi

for all i; then:

DHLSV NEWA ℸ1ג) , ℸ2ג , · · · , (ℸnג ≤ DHLSV NEWA
(
∗ג
ℸ1 , ∗ג

ℸ2 , · · · , ∗ג
ℸ3

)
iii. (Boundedness) Consider −ג

ℸ = min1≤i≤n ,{ℸiג} +ג
ℸ = max1≤i≤n .{ℸiג} Then,

−ג
ℸ ≤ DHLSV NEWA ℸ1ג) , ℸ2ג , · · · , (ℸnג ≤ +ג

ℸ
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Proof. Given that ℸiג = ℸג for each i, then

DHLSV NEWA(גℸ1 , ℸ2ג , · · · , (ℸnג = ω1.גℸ1 ⊕ ω2.גℸ2 , · · · , ⊕ωn.גℸn

=




ג

τ


n∏

i=1
(1+ µi

τ )ωi −
n∏

i=1
(1− µi

τ )ωi

n∏
i=1

(1+ µi
τ )ωi +

n∏
i=1

(1− µi
τ )ωi

〈
ℸ

δ


n∏

i=1
(1+ µi

δ )ωi −
n∏

i=1
(1− µi

δ )ωi

n∏
i=1

(1+ µi
δ )ωi +

n∏
i=1

(1− µi
δ )ωi


〉


,


ג

τ

 2
n∏

i=1
( ηi

τ )ωi

(2− η1
τ )ωi +( η1

τ )ωi

〈
ℸ

δ

 2
n∏

i=1
( ηi

δ )ωi

(2− x1
δ )ωi +( x1

δ )ωi


〉


,


ג

τ

 2
n∏

i=1
( v1

τ )ωi

n∏
i=1

(2− v1
τ )ωi +

n∏
i=1

( v1
τ )ωi

〈
ℸ

δ

 2
n∏

i=1
( y1

δ )ωi

n∏
i=1

(2− y1
δ )ωi +

n∏
i=1

( y1
δ )ωi


〉




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=





ג

τ

(1+ µi
τ )

n∑
i=1−(1− µi

τ )

n∑
i=1

(1+ µi
τ )

n∑
i=1+(1− µi

τ )

n∑
i=1


〈

ℸ

δ

(1+ µi
δ )

n∑
i=1−(1− µi

δ )

n∑
i=1

(1+ µi
δ )

n∑
i=1+(1− µi

δ )

n∑
i=1



〉



,



ג

τ

 2( ηi
τ )

n∑
i=1

(2− η1
τ )

n∑
i=1+( η1

τ )

n∑
i=1


〈

ℸ

δ

 2( ηi
δ )

n∑
i=1

(2− x1
δ )

n∑
i=1+( x1

δ )

n∑
i=1



〉



,



ג

τ

 2( v1
τ )

n∑
i=1

(2− v1
τ )

n∑
i=1+( v1

τ )

n∑
i=1


〈

ℸ

δ

 2( y1
δ )

n∑
i=1

(2− y1
δ )

n∑
i=1+( y1

δ )

n∑
i=1



〉





=
〈
,µ⟨ℸw⟩ג ,η⟨ℸx⟩ג ν⟨ℸy⟩ג

〉
= ℸג

Proof. Since ℸiג ≤ ∗ג
ℸi

then, ωiגℸi ≤ ωiג∗
ℸi

, accordingly we deduce that ⊕n
i=1ωi.גℸi ≤ ⊕n

i=1ωiג∗
ℸi

.

Hence, DHLSV NEWA(גℸ1 , ℸ2ג , · · · , (ℸnג = ⊕n
i=1ωiגℸi and DHLSV NEWA(ג∗

ℸ1
, ∗ג

ℸ2
, · · · , ∗ג

ℸn
) =

⊕n
i=1ωiג∗

ℸi
, we can generate

DHLSV NEWA(גℸ1 , ℸ2ג , · · · , (ℸnג ≤ DHLSV NEWA(ג∗
ℸ1 , ∗ג

ℸ2 , · · · , ∗ג
ℸn

)

Proof. Since −ג
ℸ = min1≤i≤n {ℸiג} and +ג

ℸ = max1≤i≤n ,{ℸiג} then according to the monotonicity
properties

DHLSV NEWA(ג−
ℸ1

, −ג
ℸ2

, · · · , −ג
ℸn

) ≤ DHLSV NEWA ℸ1ג) , ℸ2ג , · · · , (ℸnג ≤ DHLSV NEWA(ג+
ℸ1

, +ג
ℸ2

, · · · , +ג
ℸn

)
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Furthermore, by mean of idempotency properties, we have

DHLSV NEWA(ג−
ℸ1

, −ג
ℸ2

, · · · , −ג
ℸn

) = −ג
ℸ1

, DHLSV NEWA(ג+
ℸ1

, +ג
ℸ2

, · · · , +ג
ℸn

) = +ג
ℸ

Accordingly, we can deduce that

−ג
ℸ ≤ DHLSV NEWA ℸ1ג) , ℸ2ג , · · · , (ℸnג ≤ +ג

ℸ

Definition 4.6. Suppose we have a family ℸiג =
〈
,µi⟨ℸwi⟩ג ,ηi⟨ℸxi⟩ג νi⟨ℸyi⟩ג

〉
(i ∈ N) of double hierar-

chy linguistic single-valued neutrosophic numbers, then the double hierarchy linguistic single-valued
neutrosophic Einstein arithmetic (DHLSVNEA) mean operators are as follows:

SV NDHLEA(גℸ1 , ℸ2ג , · · · , (ℸnג = ℸ1ג ⊕ ℸ2ג , · · · , ℸnג⊕

=




ג

τ


n∏

i=1
(1+ µi

τ )−
n∏

i=1
(1− µi

τ )
n∏

i=1
(1+ µi

τ )+
n∏

i=1
(1− µi

τ )

〈
ℸ

δ


n∏

i=1
(1+ µi

δ )−
n∏

i=1
(1− µi

δ )
n∏

i=1
(1+ µi

δ )+
n∏

i=1
(1− µi

δ )


〉


,


ג

τ

 2
n∏

i=1
( ηi

τ )
(2− η1

τ )+( η1
τ )

〈
ℸ

δ

 2
n∏

i=1
( ηi

δ )
(2− x1

δ )+( x1
δ )


〉


,


ג

τ

 2
n∏

i=1
( v1

τ )
n∏

i=1
(2− v1

τ )+
n∏

i=1
( v1

τ )

〈
ℸ

δ

 2
n∏

i=1
( y1

δ )
n∏

i=1
(2− y1

δ )+
n∏

i=1
( y1

δ )


〉





(4.8)

Theorem 4.7. Suppose we have a family ℸiג =
〈
,µi⟨ℸwi⟩ג ,ηi⟨ℸxi⟩ג νi⟨ℸyi⟩ג

〉
(i ∈ N) of double hierarchy

linguistic single-valued neutrosophic numbers. Then, DHLSVNEA operators satisfies the following
properties as:

i. (Idempotency) Suppose for all i ∈ N, ℸiג = .ℸג Then,

DHLSV NEA ℸ1ג) , ℸ2ג , · · · , (ℸnג = ℸג
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ii. (Boundedness) Consider −ג
ℸ = min1≤i≤n {ℸiג} and +ג

ℸ = max1≤i≤n .{ℸiג} Then,

−ג
ℸ ≤ DHLSV NEA ℸ1ג) , ℸ2ג , · · · , (ℸnג ≤ +ג

ℸ

iii. (Monotonicity) Consider ℸiג , ∗ג
ℸi

be two sets of DHLEs, ℸiג ≤ ∗ג
ℸi

for all i, then,

DHLSV NEA ℸ1ג) , ℸ2ג , · · · , (ℸnג ≤ DHLSV NEA
(
∗ג
ℸ1 , ∗ג

ℸ2 , · · · , ∗ג
ℸ3

)
Proof. It is clear from Theorem 4.5.

4.2. Double Hierarchy Linguistic Single-Valued Neutrosophic Einstein Geometric
Aggregation Information

This section devoted a list of Einstein geometric aggregation operators such as double hierarchy lin-
guistic single-valued neutrosophic Einstein Weighted geometric (DHLSVNEWG) and double hierarchy
linguistic single-valued neutrosophic Einstein geometric (DHLSVNEG) operators also describes its ba-
sic properties as follows:

Definition 4.8. Suppose we have a family ℸiג =
〈
,µi⟨ℸwi⟩ג ,ηi⟨ℸxi⟩ג νi⟨ℸyi⟩ג

〉
(i ∈ N) of double hierar-

chy linguistic single-valued neutrosophic numbers (DHLSVNNs), then the double hierarchy linguistic
single-valued neutrosophic Einstein geometric (DHLSVNEG) mean operators are as follows:

DHLSV NEG(גℸ1 , ℸ2ג , · · · , (ℸnג = (ℸ1ג) ⊗ (ℸ2ג) , · · · , ⊗ (ℸnג)


ג

τ

 2
n∏

i=1

( µi
τ

)
(

2−
µi
τ

)k
+

( µi
τ

)
〈

ℸ

δ

 2
n∏

i=1

( wi
δ

)
(

2−
wi
δ

)
+

( wi
δ

)


〉


,


ג

τ


n∏

i=1

(
1+

ηi
τ

)
−

n∏
i=1

(
1−

ηi
τ

)
n∏

i=1

(
1+

ηi
τ

)
+

n∏
i=1

(
1−

ηi
τ

)
〈

ℸ

δ


n∏

i=1

(
1+

xi
δ

)
−

n∏
i=1

(
1−

xi
δ

)
n∏

i=1

(
1+

xi
δ

)
+

n∏
i=1

(
1−

xi
δ

)


〉


,


ג

τ


n∏

i=1

(
1+

vi
τ

)
−

n∏
i=1

(
1−

vi
τ

)
n∏

i=1

(
1+

vi
τ

)
+

n∏
i=1

(
1−

vi
τ

)
〈

ℸ

δ


n∏

i=1

(
1+

yi
δ

)
−

n∏
i=1

(
1−

yi
δ

)
n∏

i=1

(
1+

yi
δ

)
+

n∏
i=1

(
1−

yi
δ

)


〉





(4.9)
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Theorem 4.9. Suppose we have a family ℸiג =
〈
,µi⟨ℸwi⟩ג ,ηi⟨ℸxi⟩ג νi⟨ℸyi⟩ג

〉
(i ∈ N) of double hierarchy

linguistic single-valued neutrosophic numbers. Then DHLSVNEG satisfies the following properties as:

i. (Idempotency) Suppose for all i ∈ N, ℸiג = .ℸג Then,

DHLSV NEG ℸ1ג) , ℸ2ג , · · · , (ℸnג = ℸג

ii. (Boundedness) Consider −ג
ℸ = min1≤i≤n ,{ℸiג} +ג

ℸ = max1≤i≤n .{ℸiג} Then,

−ג
ℸ ≤ DHLSV NEG ℸ1ג) , ℸ2ג , · · · , (ℸnג ≤ +ג

ℸ

iii. (Monotonicity) Consider ℸiג , ∗ג
ℸi

be two sets of DHLEs, ℸiג ≤ ∗ג
ℸi

for all i, then

DHLSV NEG ℸ1ג) , ℸ2ג , · · · , (ℸnג ≤ DHLSV NEG
(
∗ג
ℸ1 , ∗ג

ℸ2 , · · · , ∗ג
ℸ3

)
Proof. It is clear from Theorem 4.5.

Definition 4.10. Suppose we have a family ℸiג =
〈
,µi⟨ℸwi⟩ג ,ηi⟨ℸxi⟩ג νi⟨ℸyi⟩ג

〉
(i ∈ N) of double

hierarchy linguistic single-valued neutrosophic numbers and ω = (ω1, ω2, · · · , ωn)T represent weight
vectors of given family restricted to ωi > 0,

n∑
i=1

ωi = 1. Then based on above operational laws the

double hierarchy linguistic single-valued neutrosophic Einstein weighted geometric (DHLSVNEWG)
operator are defined by

DHLSV NEWG(גℸ1 , ℸ2ג , · · · , (ℸnג = ω1(ℸ1ג) ⊗ ω2(ℸ2ג) , · · · , ⊗ ωn(ℸnג)


ג

τ

 2
n∏

i=1

( µi
τ

)ωi(
2−

µi
τ

)ωi +
( µi

τ

)ωi

〈
ℸ

δ

 2
n∏

i=1

( wi
δ

)ωi(
2−

wi
δ

)ωi +
( wi

δ

)ωi


〉


,


ג

τ


n∏

i=1

(
1+

ηi
τ

)ωi −
n∏

i=1

(
1−

ηi
τ

)ωi

n∏
i=1

(
1+

ηi
τ

)ωi +
n∏

i=1

(
1−

ηi
τ

)ωi

〈
ℸ

δ


n∏

i=1

(
1+

xi
δ

)ωi −
n∏

i=1

(
1−

xi
δ

)ωi

n∏
i=1

(
1+

xi
δ

)ωi +
n∏

i=1

(
1−

xi
δ

)ωi


〉


,


ג

τ


n∏

i=1

(
1+

vi
τ

)ωi −
n∏

i=1

(
1−

vi
τ

)ωi

n∏
i=1

(
1+

vi
τ

)ωi +
n∏

i=1

(
1−

vi
τ

)ωi

〈
ℸ

δ


n∏

i=1

(
1+

yi
δ

)ωi −
n∏

i=1

(
1−

yi
δ

)ωi

n∏
i=1

(
1+

yi
δ

)ωi +
n∏

i=1

(
1−

yi
δ

)ωi


〉





(4.10)
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Theorem 4.11. Suppose we have a family ℸiג =
〈
,µi⟨ℸwi⟩ג ,ηi⟨ℸxi⟩ג νi⟨ℸyi⟩ג

〉
(i ∈ N) of double hierar-

chy linguistic single-valued neutrosophic numbers (DHLSVNNs) and ω = (ω1, ω2, · · · , ωn)T represent
weight vectors of given family restricted to ωi > 0,

n∑
i=1

ωi = 1. Then DHLSVNEWG operator satisfies
the following properties as:

i. (Idempotency) Suppose for all i ∈ N, ℸiג = .ℸג Then,

DHLSV NEWG ℸ1ג) , ℸ2ג , · · · , (ℸnג = ℸג

ii. (Boundedness) Consider −ג
ℸ = min1≤i≤n ,{ℸiג} +ג

ℸ = max1≤i≤n .{ℸiג} Then,

−ג
ℸ ≤ DHLSV NEWG ℸ1ג) , ℸ2ג , · · · , (ℸnג ≤ +ג

ℸ

iii. (Monotonicity) Consider ℸiג , ∗ג
ℸi

be two sets of DHLEs, ℸiג ≤ ∗ג
ℸi

for all i, then

DHLSV NEWG ℸ1ג) , ℸ2ג , · · · , (ℸnג ≤ DHLSV NEWG
(
∗ג
ℸ1 , ∗ג

ℸ2 , · · · , ∗ג
ℸ3

)
Proof. It is clear from Theorem 4.5.

Definition 4.12. Let ℸ1ג =
〈
,µ1⟨ℸw1⟩ג ,η1⟨ℸx1⟩ג ν1⟨ℸy1⟩ג

〉
and ℸ2ג =

〈
,µ2⟨ℸw2⟩ג ,η2⟨ℸx2⟩ג ν2⟨ℸy2⟩ג

〉
be

the two double hierarchy linguistic single-valued neutrosophic numbers (DHLSVNNs). Then, for any
∆ > 0, the distance of two DHLSVNNs ℸ1ג and ℸ2ג is mathematically defined by

d ℸ1ג) , (ℸ2ג = 1
6


)ג∣∣∣ µ1

τ ) − )ג µ1
τ )

∣∣∣∆ +
∣∣∣ℸ( w1

δ ) − ℸ( w2
δ )

∣∣∣∆ +
)ג∣∣∣ η1

τ ) − )ג η2
τ )

∣∣∣∆∣∣∣ℸ( x1
δ ) − ℸ( x1

δ )
∣∣∣∆ +

)ג∣∣∣ ν1
τ ) − )ג ν2

τ )
∣∣∣∆ +

∣∣∣ℸ( y1
τ ) − ℸ( y1

τ )
∣∣∣∆


1
∆

5. Extended DHLSVN-MULTIMOORA Technique

In this section, we present an extended version of the MULTIMOORA approach to handle MAGDM
in the DHLSVN environment and evaluate the best choice in decision making. The DHLSVN-
MULTIMOORA method consists of three methods: the double hierarchy single-valued neutrosophic
ratio system (DHLSVNRS) approach, the double hierarchy linguistic single-valued neutrosophic ref-
erence point (DHLSVNRP) approach and the double hierarchy linguistic single-valued neutrosophic
full multiplicative form (DHLSVNFMF) approach. The first four steps are the same in all three ap-
proaches. A decision matrix describes the values of alternatives supporting specific criteria in the
MAGDM issue under an DHLSVNS context.

Suppose two sets A = {A1, A2, · · · , Am} and B = {B1, B2, · · · , Bn} represent m no of alternatives
and n no of criteria respectively. Let ω = {ω1, ω2, · · · , ωn} be the unknown weight vectors such
that

∑n
j=1 ωj = 1 assign to corresponding criteria by a set DM = {DM1, DM2, · · · , DMg} of decision

makers. Our goal is to select the superior alternative among the possible alternatives that meet specific
criteria using the extended DHLSVN-MULIMOORA approach, which is classified in the following
section.

Step 1. Construction of DHLSVN decision matrix

Each DM examines the criteria for selecting alternatives. Decision makers (DMs) analyse the capa-
bilities of alternatives that meet specific criteria and allocate the DHLSVNNs to each alternative that
meets those criteria in the form of LT number. The DHLSVNNs decision matrix offered by g no of
DMs is as follows:
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Q = [Qp
ij ]m×n =

A1

A2
...
Am



B1 B2 · · · Bn

Qp
11 Qp

12 · · · Qp
1n

Qp
21 Qp

22 · · · Qp
2n

...
... . . . ...

Qp
m1 Qp

m2 · · · Qp
mn


where each entry of the individual decision matrix is of the form Qp

ij =
〈
hג

µij⟨ℸwij ⟩, hג
ηij⟨ℸxij ⟩, hג

νij⟨ℸyij ⟩

〉
,

(i ∈ {1, 2, · · · , m}) (j ∈ {1, 2, · · · , n}) and (p ∈ {1, 2, · · · , g}) .

Step 2. Normalization of DHLSVN decision matrix

If there are cost criteria in MAGDM problems, they must be normalized. The the following equation
converts non-economical criteria to beneficial criteria:

N c =


hג

µij⟨ℸwij ⟩, hג
ηij⟨ℸxij ⟩, hג

νij⟨ℸyij ⟩, for benefit

hג
νij⟨ℸyij ⟩, hג

ηij⟨ℸxij ⟩, hג
µij⟨ℸwij ⟩, for cost

Step 3. Construction of aggregated DHLSVN decision matrix

In the decision-making process, the aggregated DHLSVN decision matrix is created to determine the
group decision of DMs by aggregating the individual judgement of DMs. By applying the double hier-
archy linguistic single-valued neutrosophic Einstein weighted aggregation operator (4.7), and construct
the double hierarchy linguistic single-valued neutrosophic aggregated matrix as follows:

Q = [Qij ]m×n =

A1

A2
...
Am



B1 B2 · · · Bn

Q11 Q12 · · · Q1n

Q21 Q22 · · · Q2n

...
... . . . ...

Qm1 Qm2 · · · Qmn


Step 4. DHLSVN weighted aggregated decision matrix (DHLSVNWA)

By applying the weight vector of criteria and Definition 4.3, calculate the double hierarchy linguistic
single-valued neutrosophic weighted aggregated decision matrix as follows:

ℜ = [rij ]m×n =

A1

A2
...
Am



C1 C2 · · · Cn

r11 r12 · · · r1n

r21 r22 · · · r2n

...
... . . . ...

rm1 rm2 · · · rmn


Step 5. DHLSVN Ratio system approach (DHLSVNRSP)

i. Calculate the Ratio Y +
i by using the double hierarchy linguistic single-valued neutrosophic Einstein

arithmetic mean operators defined in (4.8).

ii. Calculate score value of Y +
i by Definition 3.2, of score function denoted by Sc(Y +

i ).

iii. Arrange the score of Y +
i in increasing order. The maximum score of Y +

i will be the best alterna-
tives.



Qadir et al. / JAUIST / 5(2) (2024) 88-113 104

Step 6. DHLSVN reference point approach (DHLSVNRP)

i. Again calculate the score of each entries of weighted aggregated decision matrix by using Definition
3.2.

ii. Calculate the reference point (Q∗
j ) of alternatives is as follows:

Q∗
j = max

j
(sc[Qij ]m×n)

iii. Calculate distance from each alternatives to reference point and weighted aggregated decision
matrix by Definition 4.12.

iv. Rank the alternatives.

The conclusions are evaluated based on the values determined from the reference point. In this
approach, we rank the alternatives based on maximum distance maxj

(
d

(
Qij , Q∗

j

))
in decreasing order

and the best alternative has the lowest value that is mini

(
maxj

(
d

(
Qij , Q∗

j

)))
.

Step 7. DHLSVN full multiplicative approach

i. Utilizing (4.9), the defintion of double hierarchy linguistic single-valued neutrosophic Einstein geo-
metric mean operator to calculate A+

i .

ii. Calculate score of A+
i by Definition 3.2.

iii. The alternatives are ranked based on score value of A+
i in descending order. The alternative

having maximum score value is the best results.

Step 8. Final Ranking

The final results of alternatives are determined from the ranking of the above three approaches.
According to the ranking of all three approaches, alternatives are arranged in descending order, and
select the best alternative. The graphical flowchart of the above-proposed method is provided in
Figure 1.

Figure 1. Graphical framework of proposed method
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6. Application of Proposed Method

As with the expansion of the airport and the increase in air cargo business, the existing 3PL providers
have been unable to meet the needs of the airport’s transportation. This section provides a practical
example concerning the selection of 3PL providers for the airport’s transportation to validate the
applicability and practicality of the developed methodology.

Therefore, we consider an illustrative case study in which an airport company wants to evaluate
and select four (alternatives) potential 3PL providers, denoted as {A1, A2, A3, A4} represent different
airline companies. The four companies are passenger and cargo airlines, accounting for a major share
of the air logistics market. For the selection of For 3PL providers, most research has focused on time
rate, total assets, customer satisfaction, and personalized service. The definition of the most critical
criteria of 3PL provider selection is shown as:

B1: Total assets. All assets owned by a logistics enterprise
B2: Time rate. Logistics delivery on time rate
B3: Customer satisfaction. Matching degree of customer expectation and customer experience
B4: Personalized service. Diversification degree in logistics products and services

On the based of above four defined criteria Bj(j ∈ {1, 2, 3, 4}), we have four 3PL providers as alter-
natives Ai(i ∈ {1, 2, 3, 4}) from which we will select the best 3PL. The following evaluation steps can
solve the process of 3PL provider selection.

6.1. Evaluation Steps

In the process of the four 3PL provider selections, let the group of three expert DM1, DM2 and DM3

are invited having weight vector ωi = {0.4, 0.5, 0.1} to evaluate four alternatives based on the above
criteria. The step-wise extended MULTIMOORA method within DHLSVNSs for selecting 3PL is as
under:

Step 1. Construction of DHLSVN decision matrix

Construct the decision maker evaluation matrix in the from of DHLSVNSs , so the linguistic term set
are denoted by ג = 0ג} = medium, 1ג = low, 2ג = sightly low, 3ג = very low, 4ג = high , 5ג = slightly

high, 6ג = very high} and ℸ = {ℸ0 = right,ℸ1 = only right,ℸ2 = much,ℸ3 = very much,ℸ4 = little

,ℸ5 = just little ,ℸ6 = extermely little} are defined on the basis of following set as follows in Table
2-4

Table 2. Decision maker evaluation matrix DM1
Ai B1 B2 B3 B4

A1
〈
,⟨ℸ1⟩1ג ,⟨ℸ4⟩3ג ⟨ℸ1⟩2ג

〉 〈
,⟨ℸ2⟩4ג ,⟨ℸ1⟩2ג ⟨ℸ3⟩0ג

〉 〈
,⟨ℸ1⟩6ג ,⟨ℸ1⟩2ג ⟨ℸ2⟩0ג

〉 〈
,⟨ℸ3⟩1ג ,⟨ℸ4⟩5ג ⟨ℸ0⟩3ג

〉
A2

〈
,⟨ℸ3⟩6ג ,⟨ℸ4⟩6ג ⟨ℸ2⟩6ג

〉 〈
,⟨ℸ3⟩5ג ,⟨ℸ2⟩3ג ⟨ℸ2⟩1ג

〉 〈
,⟨ℸ3⟩2ג ,⟨ℸ2⟩4ג ⟨ℸ1⟩3ג

〉 〈
,⟨ℸ4⟩3ג ,⟨ℸ3⟩1ג ⟨ℸ2⟩2ג

〉
A3

〈
,⟨ℸ2⟩4ג ,⟨ℸ1⟩2ג ⟨ℸ3⟩2ג

〉 〈
,⟨ℸ4⟩2ג ,⟨ℸ1⟩4ג ⟨ℸ1⟩2ג

〉 〈
,⟨ℸ0⟩3ג ,⟨ℸ0⟩2ג ⟨ℸ4⟩1ג

〉 〈
,⟨ℸ3⟩4ג ,⟨ℸ1⟩2ג ⟨ℸ0⟩1ג

〉
A4

〈
,⟨ℸ4⟩6ג ,⟨ℸ0⟩0ג ⟨ℸ1⟩2ג

〉 〈
,⟨ℸ2⟩4ג ,⟨ℸ3⟩5ג ⟨ℸ0⟩1ג

〉 〈
,⟨ℸ4⟩5ג ,⟨ℸ1⟩2ג ⟨ℸ3⟩1ג

〉 〈
,⟨ℸ2⟩0ג ,⟨ℸ4⟩3ג ⟨ℸ2⟩0ג

〉
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Table 3. Decision maker evaluation matrix DM2
Ai B1 B2 B3 B4

A1
〈
,⟨ℸ3⟩0ג ,⟨ℸ2⟩4ג ⟨ℸ2⟩3ג

〉 〈
,⟨ℸ1⟩1ג ,⟨ℸ2⟩3ג ⟨ℸ2⟩0ג

〉 〈
,⟨ℸ1⟩2ג ,⟨ℸ3⟩2ג ⟨ℸ3⟩0ג

〉 〈
,⟨ℸ2⟩1ג ,⟨ℸ3⟩4ג ⟨ℸ0⟩1ג

〉
A2

〈
,⟨ℸ1⟩0ג ,⟨ℸ2⟩0ג ⟨ℸ2⟩0ג

〉 〈
,⟨ℸ2⟩1ג ,⟨ℸ1⟩2ג ⟨ℸ3⟩4ג

〉 〈
,⟨ℸ3⟩1ג ,⟨ℸ1⟩2ג ⟨ℸ3⟩1ג

〉 〈
,⟨ℸ3⟩2ג ,⟨ℸ2⟩1ג ⟨ℸ4⟩3ג

〉
A3

〈
,⟨ℸ1⟩3ג ,⟨ℸ2⟩2ג ⟨ℸ4⟩1ג

〉 〈
,⟨ℸ3⟩2ג ,⟨ℸ4⟩3ג ⟨ℸ2⟩2ג

〉 〈
,⟨ℸ2⟩1ג ,⟨ℸ1⟩3ג ⟨ℸ1⟩2ג

〉 〈
,⟨ℸ3⟩0ג ,⟨ℸ6⟩1ג ⟨ℸ1⟩5ג

〉
A4

〈
,⟨ℸ1⟩5ג ,⟨ℸ0⟩3ג ⟨ℸ4⟩3ג

〉 〈
,⟨ℸ0⟩1ג ,⟨ℸ1⟩2ג ⟨ℸ4⟩2ג

〉 〈
,⟨ℸ2⟩2ג ,⟨ℸ1⟩3ג ⟨ℸ3⟩1ג

〉 〈
,⟨ℸ2⟩1ג ,⟨ℸ2⟩3ג ⟨ℸ1⟩4ג

〉

Table 4. Decision maker evaluation matrix DM3
Ai B1 B2 B3 B4

A1
〈
,⟨ℸ1⟩2ג ,⟨ℸ2⟩2ג ⟨ℸ3⟩4ג

〉 〈
,⟨ℸ1⟩0ג ,⟨ℸ5⟩1ג ⟨ℸ1⟩2ג

〉 〈
,⟨ℸ0⟩1ג ,⟨ℸ2⟩2ג ⟨ℸ2⟩3ג

〉 〈
,⟨ℸ2⟩0ג ,⟨ℸ2⟩3ג ⟨ℸ2⟩1ג

〉
A2

〈
,⟨ℸ4⟩3ג ,⟨ℸ3⟩1ג ⟨ℸ2⟩2ג

〉 〈
,⟨ℸ2⟩2ג ,⟨ℸ2⟩3ג ⟨ℸ2⟩1ג

〉 〈
,⟨ℸ0⟩3ג ,⟨ℸ0⟩4ג ⟨ℸ1⟩2ג

〉 〈
,⟨ℸ1⟩3ג ,⟨ℸ1⟩4ג ⟨ℸ0⟩3ג

〉
A3

〈
,⟨ℸ3⟩2ג ,⟨ℸ2⟩3ג ⟨ℸ1⟩1ג

〉 〈
,⟨ℸ3⟩3ג ,⟨ℸ3⟩2ג ⟨ℸ2⟩3ג

〉 〈
,⟨ℸ1⟩2ג ,⟨ℸ1⟩3ג ⟨ℸ0⟩2ג

〉 〈
,⟨ℸ3⟩2ג ,⟨ℸ2⟩6ג ⟨ℸ0⟩2ג

〉
A4

〈
,⟨ℸ3⟩1ג ,⟨ℸ1⟩4ג ⟨ℸ2⟩3ג

〉 〈
,⟨ℸ4⟩3ג ,⟨ℸ1⟩4ג ⟨ℸ2⟩1ג

〉 〈
,⟨ℸ4⟩4ג ,⟨ℸ0⟩2ג ⟨ℸ0⟩1ג

〉 〈
,⟨ℸ1⟩3ג ,⟨ℸ3⟩4ג ⟨ℸ1⟩4ג

〉

Step 2. Normalization of DHLSVN decision matrix

In this example all the criteria benefits; hence, here we skip the the normalization DHLSVN matrix.

Step 3. Construction of aggregated DHLSVN decision matrix

The aggregated DHLSVN decision matrix is constructed by using double hierarchy linguistic single-
valued neutrosophic Einstein weighted averaging aggregation operator (4.7), and weight vector ωi =
{0.4, 0.5, 0.1} of decision maker in Table 5.

Table 5. Aggregated DHLSVN decision matrix
Ai B1 B2 B3 B4

A1
〈
,⟨ℸ2.06⟩1.10ג ,⟨ℸ2.68⟩3.35ג ⟨ℸ1.59⟩2.64ג

〉 〈
,⟨ℸ1.41⟩2.31ג ,⟨ℸ1.70⟩2.31ג ⟨ℸ2.21⟩0.00ג

〉 〈
,⟨ℸ0.90⟩6.00ג ,⟨ℸ1.90⟩2.00ג ⟨ℸ2.46⟩0.00ג

〉 〈
,⟨ℸ2.42⟩0.90ג ,⟨ℸ3.25⟩4.27ג ⟨ℸ0.00⟩1.59ג

〉
A2

〈
,⟨ℸ2.19⟩6.00ג ,⟨ℸ2.79⟩0.00ג ⟨ℸ2.00⟩0.00ג

〉 〈
,⟨ℸ2.42⟩3.21ג ,⟨ℸ1.42⟩2.46ג ⟨ℸ2.46⟩2.10ג

〉 〈
,⟨ℸ2.74⟩1.62ג ,⟨ℸ0.00⟩2.88ג ⟨ℸ1.77⟩1.70ג

〉 〈
,⟨ℸ3.27⟩2.52ג ,⟨ℸ2.21⟩1.16ג ⟨ℸ0.00⟩2.56ג

〉
A3

〈
,⟨ℸ1.62⟩3.35ג ,⟨ℸ1.52⟩2.08ג ⟨3.16⟩1.32ג

〉 〈
,⟨ℸ3.43⟩2.10ג ,⟨ℸ2.34⟩3.25ג ⟨ℸ1.52⟩2.08ג

〉 〈
,⟨ℸ1.12⟩1.95ג ,⟨ℸ0.00⟩2.56ג ⟨ℸ0.00⟩1.52ג

〉 〈
,⟨ℸ3.00⟩2.05ג ,⟨ℸ2.95⟩1.64ג ⟨ℸ0.00⟩2.59ג

〉
A4

〈
,⟨ℸ2.58⟩6.00ג ,⟨ℸ0.00⟩0.00ג ⟨ℸ2.24⟩2.56ג

〉 〈
,⟨ℸ1.29⟩2.58ג ,⟨ℸ1.59⟩3.20ג ⟨ℸ0.00⟩1.42ג

〉 〈
,⟨ℸ3.11⟩3.75ג ,⟨ℸ0.00⟩2.46ג ⟨ℸ0.00⟩1.00ג

〉 〈
,⟨ℸ1.90⟩0.82ג ,⟨ℸ2.79⟩3.09ג ⟨ℸ1.32⟩0.00ג

〉

Step 4. Construction of weighted aggregated DHLSVN decision matrix

By considering weight vectors of criteria (0.2,0.3,0.4,0.1), and Definition 4.3, the DHLSVN weighted
the aggregated matrix is determined in Table 6, as follows:

Table 6. DHLSVN weighted the aggregated matrix
Ai B1 B2 B3 B4

A1
〈
,⟨ℸ0.42⟩0.22ג ,⟨ℸ4.99⟩5.21ג ⟨ℸ4.57⟩4.98ג

〉 〈
,⟨ℸ0.43⟩0.72ג ,⟨ℸ3.97⟩4.32ג ⟨ℸ4.27⟩0.00ג

〉 〈
,⟨ℸ0.36⟩6.00ג ,⟨ℸ3.52⟩3.59ג ⟨ℸ3.91⟩0.00ג

〉 〈
,⟨ℸ0.25⟩0.09ג ,⟨ℸ5.59⟩5.74ג ⟨ℸ0.00⟩5.27ג

〉
A2

〈
,⟨ℸ0.46⟩6.00ג ,⟨ℸ5.03⟩0.00ג ⟨ℸ4.74⟩0.00ג

〉 〈
,⟨ℸ0.76⟩1.06ג ,⟨ℸ3.79⟩4.40ג ⟨ℸ4.40⟩4.21ג

〉 〈
,⟨ℸ1.17⟩0.66ג ,⟨ℸ0.00⟩4.17ג ⟨ℸ3.43⟩3.38ג

〉 〈
,⟨ℸ0.36⟩0.26ג ,⟨ℸ5.41⟩5.16ג ⟨ℸ0.00⟩5.47ג

〉
A3

〈
,⟨ℸ0.33⟩0.75ג ,⟨ℸ4.54⟩4.78ג ⟨ℸ5.15⟩4.44ג

〉 〈
,⟨ℸ1.15⟩0.65ג ,⟨ℸ4.34⟩4.78ג ⟨ℸ3.86⟩4.20ג

〉 〈
,⟨ℸ0.45⟩0.80ג ,⟨ℸ0.00⟩3.97ג ⟨ℸ0.00⟩3.24ג

〉 〈
,⟨ℸ0.32⟩0.21ג ,⟨ℸ5.54⟩5.28ג ⟨ℸ0.00⟩5.47ג

〉
A4

〈
,⟨ℸ0.55⟩6.00ג ,⟨ℸ0.00⟩0.00ג ⟨ℸ4.84⟩4.95ג

〉 〈
,⟨ℸ0.39⟩0.82ג ,⟨ℸ3.90⟩4.76ג ⟨ℸ0.00⟩3.79ג

〉 〈
,⟨ℸ1.35⟩1.71ג ,⟨ℸ0.00⟩3.91ג ⟨ℸ0.00⟩2.77ג

〉 〈
,⟨ℸ5.56⟩0.19ג ,⟨ℸ4.84⟩5.51ג ⟨ℸ5.20⟩0.00ג

〉

Step 5. Ratio System Approach of SVNDHL (SVNDHLRSP)

i. In ratio system approach the Y +
i are calculated by using the Definition 4.6 of double hierarchy

linguistic single-valued neutrosophic Einstein arithmetic (DHLSVNDEA) mean operators given in
Table 6.
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ii. According to definition the score calculate the score values of Y +
i given Table 7.

iii. According to score value Y +
i the alternatives are ranked in Table 7.

Table 7. Ranking of alternative based on ratio system approach
Ai Y +

i Score
(
Y +

i

)
Ranking

A1
〈
,⟨ℸ1.24⟩6.00ג ,⟨ℸ1.36⟩1.74ג ⟨ℸ0.00⟩0.00ג

〉
0.7814 3

A2
〈
,⟨ℸ2.37⟩6.00ג ,⟨ℸ0.00⟩0.00ג ⟨ℸ0.00⟩0.00ג

〉
0.8994 1

A3
〈
,⟨ℸ1.96⟩2.18ג ,⟨ℸ0.00⟩1.75ג ⟨ℸ0.00⟩1.077ג

〉
0.7030 4

A4
〈
,⟨ℸ2.26⟩6.00ג ,⟨ℸ0.00⟩0.00ג ⟨ℸ0.00⟩0.00ג

〉
0.8962 2

Step 6. DHLSVN reference point approach (DHLSVRP)

i. In this approach, the reference points (Q∗
j ) are calculated by evaluating the score of each entries of

DHLSVN weighted the aggregated matrix in Table 8.

Table 8. Reference points
B1 B2 B3 B4〈

,⟨ℸ0.46⟩6.00ג ,⟨ℸ5.03⟩0.00ג ⟨ℸ4.74⟩0.00ג
〉 〈

,⟨ℸ0.39⟩0.82ג ,⟨ℸ3.90⟩4.76ג ⟨ℸ0.00⟩3.79ג
〉 〈

,⟨ℸ1.35⟩1.71ג ,⟨ℸ0.00⟩3.91ג ⟨ℸ0.00⟩2.77ג
〉 〈

,⟨ℸ0.36⟩0.26ג ,⟨ℸ5.41⟩5.16ג ⟨ℸ0.00⟩5.47ג
〉

ii. The distance from each alternatives to reference point and weighted aggregated decision matrix
are calculated in Table 9.

Table 9. Distance of each alternatives and reference poin
d

(
Q1j , Q∗

j

)
d

(
Q2j , Q∗

j

)
d

(
Q3j , Q∗

j

)
d

(
Q4j , Q∗

j

)
maxj

(
d

(
Q1j , Q∗

j

))
Ranking

A1 0.450 0.242 0.439 0.034 0.450 4

A2 0.000 0.164 0.154 0.000 0.164 1

A3 0.430 0.157 0.065 0.009 0.430 3

A4 0.282 0.000 0.000 0.320 0.320 2

Step 7. DHLSVN full multiplicative approach

i. In this step the A+
i are computed by using the double hierarchy linguistic single-valued neutrosophic

Einstein geometric mean operator equation in Table in Table 9

ii. The score of full multiplicative A+
i and ranking of alternatives are computed in Table 10.

Table 10. Full multiplicative
Alternative A+

i Sc
(
A+

i

)
Ranking

A1
〈
,⟨ℸ1.24⟩6.00ג ,⟨ℸ5.97⟩5.98ג ⟨ℸ5.94⟩5.41ג

〉
0.220 3

A2
〈
,⟨ℸ2.37⟩6.00ג ,⟨ℸ5.87⟩5.82ג ⟨ℸ5.94⟩5.69ג

〉
0.251 2

A3
〈
,⟨ℸ1.96⟩2.18ג ,⟨ℸ5.86⟩5.98ג ⟨ℸ5.80⟩5.95ג

〉
0.126 4

A4
〈
,⟨ℸ2.64⟩6.00ג ,⟨ℸ4.68⟩5.84ג ⟨ℸ5.31⟩5.90ג

〉
0.291 1



Qadir et al. / JAUIST / 5(2) (2024) 88-113 108

Step 8. Final Ranking

The overall ranking of alternatives based on the above three approaches are given in Table 11.

Table 11. Overall ranking of alternatives
Alternative Ratio system Reference point Full multiplicative Ranking

A1 3 4 3 3

A2 1 1 2 1

A3 4 3 4 4

A4 2 2 1 2

The graphical ranking of alternatives based on Extended DHLSVN-MULTIMOORA Techniques are
given in Figure 2:

Figure 2. Graphically ranking of alternatives

7. Comparison Analysis

To verify the validity and significant effect of our developed strategy, we solve the problem by utilizing
other approaches, including linguistic neutrosophic number weighted averaging (LNNWA) operator
[50], TOPSIS method under linguistic neutrosophic number [52], generalized single valued neutrosophic
linguistic weighted averaging (GSVNLWA) operator [53] and Single-valued neutrosophic linguistic
TOPSIS [54]. The results are shown in Table 12.

Table 12. Comparative analysis
Existence Methods A1 A2 A3 A4

LNNWA [50] 0.75 0.77 0.76 0.80

LNN-TOPSIS [52] 0.11 0.52 0.34 0.55

GSVNLWA [53] 0.73 0.78 0.76 0.79

SVNL-Extended TOPSIS [54] 0.86 0.91 0.88 0.92

To demonstrate the effectiveness of the proposed technique, the proposed approaches are compared
with the existing operator LNNWA and LNN-TOPSIS in order to defend its dominance in DM prob-
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lems. To achieve this, we first transform DHLSVN to LNN by second term equal to zero for com-
parison with the existing theory. By taking the same example, applying the existing LNNWA and
LNN-TOPSIS method, the best result is A4, which is similar to our proposed method, which shows
the practicability of our proposed method.

To compare the proposed technique with the SVNL-TOPSIS and GSVNLWA operators we convert
the DHLSVN to single-valued neutrosophic linguistic number and apply the existing method to same
example the result are A4, same to that of our method. Hence the same results indicate that our
proposed method is an effective way to solve the decision-making problem.

8. Conclusion

In the current paper, the Extended DHLSVN-MULTIMOORA method consists of three parts: the
ratio system approach, the reference point approach, and the complete multiplicative approach, which
is developed to solve the MAGDM problem with vague information. DHLSVNSs is a more generalized
tool that incorporates first and second hierarchy linguistic term sets with three mutually independent
functions, namely true, uncertain, and false, to handle uncertain data more freely. Furthermore, the
suggested research offered a list of new operation rules and Einstein aggregation operators by utilizing
Einstein norms for DHLSVNSs to handle uncertainty in real-world decision-making problems. To
handle multi-criteria group decision-making problems (MAGDM) A step-wise algorithm is given that
is useful for DHLSVNSs. Finally, the proposed method is applied to third-party logistic service
providers and also compared with other existing methods to show their effectiveness and applicability.
The developed research has a variety of applications in real-world problems. In the future, many
different MCGDM based on DHLSVNSs can be extended to various research areas, such as decision-
making, medical diagnosis, pattern recognition, and image processing.

Author Contributions

All the authors equally contributed to this work. They all read and approved the final version of the
paper.

Conflicts of Interest

All the authors declare no conflict of interest.

Ethical Review and Approval

No approval from the Board of Ethics is required.

References

[1] J. Yan, P. E. Chaudhry, S. S. Chaudhry, A model of a decision support system based on case-based
reasoning for third-party logistics evaluation, Expert Systems 20 (4) (2003) 196–207.
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