
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume XX (x) (XXXX), 1 – 19

DOI : 10.15672/hujms.xx

Research Article

The minimal f g-statistical convergence and
Cauchy degree of a sequence

Tamim Aziz, Sanjoy Ghosal∗
Department of Mathematics, University of North Bengal, Raja Rammohunpur, Darjeeling-734013,

West Bengal, India

Abstract
In this paper, we introduce and characterize the rough fg-statistical limit set, minimal fg-
statistical convergence degree, and minimal fg-statistical Cauchy degree of a sequence in
an arbitrary normed space. We clarify these concepts for normed spaces of any dimension
and explore their properties and relationships. Our findings offer a new perspective that
differs from some established results.
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1. Introduction
The concept of statistical convergence was separately introduced by Fast [12] and Stein-

haus [32] in the year 1951. Following some outstanding works by Fridy [13] and Šalát [31],
several generalizations and applications of this concept have been examined over a variety
of spaces. Recently, in the year 2015, Balcerzak et al. [8] modified the natural density of
subsets of N by introducing the density of the weight g : N → [0, ∞), where g(n) → ∞
and n/g(n) ↛ 0 which they referred to as g-density. Additionally, for a given such weight
g, they created the associated ideals Zg with g-density zero sets of N and thoroughly
investigated the characteristics of such ideals.

Now, we delineate the concept of density of weight of subsets of N.

Definition 1.1 ([8]). Let A be a subset of N and g : N → [0, ∞), where g(n) → ∞ and
n/g(n) ↛ 0. Then the density of the weight g of A is given by

dg(A) = lim
n→∞

|A ∩ [1, n]|
g(n)

, provided that the limit exists

and |A ∩ [1, n]| denotes the cardinality of the set {k ∈ A : 1 ≤ k ≤ n}.

At this stage, "ideals", a significant class of set theoretical objects, come into considera-
tion. A family I ⊂ P(N) is called an ideal [21] on N if it satisfies the following conditions:
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• ϕ ∈ I,
• if A, B ∈ I then A ∪ B ∈ I,
• if A ⊂ B and B ∈ I then A ∈ I.

Let G = {g : N → [0, ∞) : g(n) → ∞ and n/g(n) ↛ 0}, then for each g ∈ G, the set
Zg = {A ⊂ N : dg(A) = 0} forms an ideal of subsets of N. We will write Zg = Z when g is
the identity function.
Let us recall an important result that is relevant to this literature.
Theorem 1.2. [8, Theorem 2.7] There exists a family G0 ⊂ G of cardinality c such that
Zg is incomparable with Z for every f ∈ G0, and Zf and Zg are incomparable for any
distinct f, g ∈ G0.

Following the idea of Balcerzak et al. [8], in the year 2018, Bose et al. [9] extended
the idea of weighted density of [8] to weighted f -density of subsets of N (where f is an
unbounded modulus function) which parallelly broadens the notion of f -density [1]. We
now recall the definition of a modulus function: A non-negative function f defined on
[0, ∞) is called modulus function if (i) f(x) = 0 if and only if x = 0; (ii) f is sub-additive,
i.e., f(x + y) ≤ f(x) + f(y), for any x, y ≥ 0; (iii) f is increasing, and (iv) f is right
continuous at 0. A modulus function is continuous everywhere on [0, ∞) thanks to the
properties (1)-(4). Some well-known examples of modulus functions are x

1+x , log(1 + x),
and xp for p ∈ (0, 1].

Let us now recall the notion of f -density of weight g of subsets of N as proposed by
Bose et al. [9].
Definition 1.3 ([9]). Let f be an unbounded modulus function and g ∈ G. Then for a
subset A of N the f -density of weight g (or, fg-density ) of A is denoted by df

g (A) and is
given by

df
g (A) = lim

n→∞
f(|A ∩ [1, n]|)

f(g(n))
provided the above limit exists.

Clearly, df
g simply coincides with dg if f is the identity function, and the f -density

is obtained if f(n) = g(n) except for finitely many n ∈ N. For an unbounded modulus
function f and for each g ∈ G, Bose et al. [9] constructed the ideal Zg(f) generated by
the density function df

g , i.e., Zg(f) = {A ⊂ N : df
g (A) = 0} which generalizes the notion

of the weighted density ideal Zg.
Let us recall some results from [9] concerning the ideals Zg(f) that are relevant to this

literature.
Theorem 1.4. [9, Proposition 2.6] For any modulus function f and g ∈ G,Zg(f) ⊂ Zg.

Theorem 1.5. [9, Proposition 3.1] For any modulus function f and g ∈ G, the ideal
Zg(f) is a P -ideal. In fact Zg(f) is equal to Exh(φ), where φ is a lower semicontinuous
sub-measure on N given by

φ(A) = sup
n∈N

f(|A ∩ [1, n]|)
f(g(n))

for A ⊂ N.

Bose et al. [9] also observed that Zg(f) is a density ideal and hence is an Fσδ P -ideal.
The subsequent theorem demonstrates that there is a set A ⊂ N such that df (A) = 0
(where df stands for f -density) but df

g (A) ̸= 0.

Theorem 1.6. [9, Proposition 3.3] Let f be an unbounded modulus function and let g ∈ G
be such that f(n)/f(g(n)) → ∞. Then there exists a set A ⊂ N such that the sequence
(f(|A ∩ [1, n])/f(g(n))) is bounded but not convergent to 0.
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In the other direction, a non-trivial and interesting generalization of classical conver-
gence is rough convergence which was first pioneered by Phu [27] over finite dimensional
normed linear spaces and obtained several results associated with the rough limit set
LIM rxi of a sequence {xn}. Then, Phu [28] extended this concept over infinite dimen-
sional normed spaces and obtained some generalized results. Finally, he established a
connection between rough convergence sequences and rough Cauchy sequences using the
notion of Jung constant of a normed space.

We now recall the concept of rough convergence of a normed space-valued sequence in
a formal manner.

Definition 1.7 ([27, 28]). Let r be a non-negative real number. A sequence {xn} in a
normed space (X, ∥ · ∥) is said to be r-convergent or rough convergent to x∗ w.r.t the
degree of roughness r, denoted by xn

r−→ x∗ provided that
for any ε > 0, there exists nε ∈ N : n ≥ nε ⇒ ||xn − x∗|| ≤ r + ε.

The non-negative real number r stands for the degree of roughness and the collection
LIM rxi =

{
x∗ ∈ X : xn

r−→ x∗
}

is called the r-limit set of the sequence {xn}.

Phu [27] proposed the concept of rough Cauchy sequences as an extension of Cauchy
sequences over normed spaces in the following way:

Definition 1.8 ([27, 28]). Let ρ be a non-negative real number. A sequence x = {xn}
in a normed space X is said to be rough Cauchy sequence w.r.t the Cauchy degree ρ or
ρ-Cauchy sequence,

if for any ε > 0, there exists kε ∈ N : n, m ≥ kε ⇒ ||xn − xm|| ≤ ρ + ε.

For a comprehensive overview of established results on rough convergence, and reference
therein, visit [2, 4–6,11,16–18,22,25,27–30].

Let us present our main definition of rough g-weighted f -statistical convergence (briefly,
rough fg-statistical convergence).

Definition 1.9. Suppose r ≥ 0, g ∈ G and f is an unbounded modulus function. Then the
sequence {xn} in a normed space X is said to be rough g-weighted f -statistically conver-
gent to x∗, w.r.t the degree of roughness r, (briefly, r−fg-statistically convergent) denoted
by xn

fgst−−→
r

x∗, provided that the set {k ∈ N : ∥xk − x∗∥ ≥ r + ε} has fg-density zero, for

every positive ε. For the sequence {xn}, we denote fgst-LIM rxi=
{

x∗ ∈ X : xn
fgst−−→

r
x∗

}
as the rough fg-statistical limit set with degree of roughness r. A sequence {xn} is referred
to as rough fg-statistically convergent if there exists r ≥ 0 such that fgst-LIM rxi ̸= ∅.

Note 1.10. Observe that the definition of fg-statistical convergence [10] is obtained if
we set r = 0 in the above definition. From Theorem 1.2 and Theorem 1.4, it follows
that fg-statistical convergence and statistical convergence [12,13,31–33] are incomparable
in general. Also from Theorem 1.6, we conclude that fg-statistical convergence is quite
different from f -statistical convergence [1,23]. Since for any A ⊆ N, we have f(|A∩[1,n]|)

f(n) =
f(|A∩[1,n]|)

f(g(n))
f(g(n))

f(n) , it follows that fg-statistical convergence implies f -statistical convergence
if the sequence {f(g(n))/f(n)}n∈N is bounded above. Furthermore, if there exist m, M > 0
such that m ≤ f(g(n))/f(n) ≤ M for all n ∈ N, then fg-statistical convergence coincides
with f -statistical convergence. For recent works along those lines, visit [3, 7].

As we proceed on to the primary objective of this article, it is noteworthy that the rough
limit point set at the minimal degree of roughness has not received much attention in the
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literature on rough convergence. The rough limit set LIM rxi and the rough statistical
limit set st-LIM rxi of a sequence x = {xn} in normed spaces with the minimal convergent
degree r̃(x) were initially described over normed spaces in [22,27,28]. The primary goal of
this article is to investigate the minimal fg-statistical convergence degree and fg-statistical
Cauchy degree of a sequence x = {xn} over any dimensional normed spaces using the
ideas of Chebyshev radius and diameter of the fg-statistical cluster point set Γfg

x of x.
Furthermore, in infinite dimensional settings, we provide a number of noteworthy examples
demonstrating that some of the previously mentioned results are do not hold true. In this
article, we establish what follows:

(i) fgst-LIM rxi is an Fσδ (hence a Borel) subset X (Theorem 2.1);
(ii) fgst-LIM rxi is strictly convex, provided that X is uniformly convex (Theorem 2.6)

and the uniform convexity condition on X cannot be relaxed in general (Example
2.7);

(iii) For any {xn} lies in some totally bounded subset of X and y+σBX ⊆ fgst-LIM rxi,

then r ≥ σ and y ∈ fgst-LIM r−σxi (Theorem 2.8). Moreover int(fgst-LIM r̃(x)xi) =
∅ (Corollary 2.9);

(iv) int(fgst-LIM r̃(x)xi) = ∅, provided that X is uniformly convex in some direction
z ∈ SX , where r̃(x) denotes the minimal fg-statistical convergence degree of x =
{xn} (Theorem 2.11);

(v) If r > r̃(x), then int(fgst-LIM rxi) ̸= ∅ (Corollary 2.13 );
(vi) fgst-LIM r̃(x)xi ̸= ∅, for reflexive normed spaces X (Theorem 2.17). In non-

reflexive normed spaces the result may not hold (Example 2.18);
We also analyze some results concerning minimal fg-statistical Cauchy and minimal fg-
statistical convergence degree of the sequence x = {xn} which contained in a compact
subset of X, respectively in terms of the diameter DX(Γfg

x ) and Chebyshev radius rX(Γfg

x )
of the fg-statistical cluster point set Γfg

x of x. Furthermore, we give some relationship
between the set of rough fg-statistical limit points and the set of fg-statistical cluster
points of x.

(vii) fgst-LIM rxi =
⋂

γ∈Γfg
x

(γ + rBX) (Theorem 3.7);
(viii) DX(Γfg

x ) is the minimal fg-statistical Cauchy degree and rX(Γfg

x ) is the minimal
fg-statistical convergence degree of x (Theorem 4.1, 4.2 ). In general, it is not
possible to loosen the compactness constraint (Example 4.3);

(ix) If x is ρ − fg-statistically Cauchy, then x is r − fg-statistically convergence for
every r ≥ J(X)ρ

2 , where J(X) denotes the Jung constant of X (Theorem 4.4) and
the constraint that the sequence is contained in a compact set cannot be relaxed
in general (Example 4.5).

Additionally, it is shown that:
(x) For any fg-nonthin subsequence of x which lies in some compact subset of X, we

have Γfg

x ̸= ∅ (Theorem 3.4) and the compactness restriction is generally unrelax-
able (Example 3.5);

(xi) A sequence {xn} is fg-statistically Cauchy if and only if for each ε > 0 and each
fg-nonthin set Ω ⊆ N, there exists m(ε) ∈ Ω such that df

g ({k ∈ N : ∥xk − xm(ε)∥ >
ε}) = 0 (Theorem 3.9).

We conclude by exhibiting a relationship between the rough fg-statistically convergent se-
quences and rough fg-statistically Cauchy sequences that says without the compactness re-
striction on the ρ−fg-statistically Cauchy sequence x, J(X)ρ is the minimal fg-statistical
convergence degree (Theorem 4.6).
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2. Characterization of the rough f g-statistical limit set f gst-LIM rxi

We now present a characterization of the limit set fgst-LIM rxi corresponding to a
sequence {xn} which infers that it is a Borel set.

Theorem 2.1. Suppose r ≥ 0, and {xn} is a sequence in a normed space X. Then the
limit set fgst-LIM rxi is an Fσδ subset X.

Proof. For r, i ∈ N, we consider the open set

Ur,i =
{

x∗ ∈ X : ∥xr − x∗∥ > r + 1
i

}
.

Then from the definition of rough fg-statistical convergence, we have

fgst-LIM rxi =
{

x∗ ∈ X : (∀i ∈ N) df
g ({r ∈ N : x∗ ∈ Ur,i}) = 0

}
=

∞⋂
i=1

{
x∗ ∈ X : df

g ({r ∈ N : x∗ ∈ Ur,i}) = 0
}

=
∞⋂

i=1

{
x∗ ∈ X : lim

l→∞

f(|{r ∈ N : x∗ ∈ Ur,i} ∩ [1, l]|)
f(g(l))

= 0
}

=
∞⋂

i=1

{
x∗ ∈ X : (∀j ∈ N) (∃k ∈ N) such that f(|{r ∈ N : x∗ ∈ Ur,i} ∩ [1, l]|)

f(g(l))
≤ 1

j
, ∀l ≥ k

}

=
∞⋂

i=1

∞⋂
j=1

∞⋃
k=1

∞⋂
l=k

{
x∗ ∈ X : f(|{r ∈ N : x∗ ∈ Ur,i} ∩ [1, l]|)

f(g(l))
≤ 1

j

}

Now, for j, l ∈ N, consider the family

Fl,j = {F ⊆ [1, l] : f(|F |)
f(g(l))

>
1
j

}.

Therefore we have {
x∗ ∈ X : f(|{r ∈ N : x ∈ Ur,i} ∩ [1, l]|)

f(g(l))
≤ 1

j

}
= {x∗ ∈ X : (∀F ∈ Fl,j) (∃r ∈ F ) such that x /∈ Ur,i}

=
⋂

F ∈Fn,j

⋃
i∈F

X \ Ur,i.

Since F, Fn,j are finite sets and X \Ur,i is a closed set for any r, i ∈ N, we conclude that the
set

{
x∗ ∈ X : f(|{r∈N:x∈Ur,i}∩[1,l]|)

f(g(l)) ≤ 1
j

}
is closed in X. Thus we deduce that fgst-LIM rxi

is an Fσδ set. □

Definition 2.2. A sequence {xn} in a normed space is called fg-statistically bounded if
there exists M > 0 such that df

g ({n ∈ N : ∥xn∥ ≥ M}) = 0.

Next, we present a necessary and sufficient condition for a sequence to be rough fg-
statistical convergent.

Proposition 2.3. A sequence {xn} in a normed space X is rough fg-statistically conver-
gent if and only if it is fg-statistically bounded.

Proof. First suppose that {xn} is fg-statistically bounded. Then there exists M > 0
such that df

g (A) = 0, where A = {n ∈ N : ∥xn∥ ≥ M}. Therefore 0 ∈ fgst-LIM rxi where
r := supn∈N\A ∥xn∥.
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Conversely, let us assume that there exists r ≥ 0 such that y ∈ fgst-LIM rxi. Therefore,
we have

df
g ({n ∈ N : ∥xn − y∥ ≥ r + ∥y∥ + 1}) = 0 ⇒ df

g ({n ∈ N : ∥xn∥ ≥ r + 1}) = 0.

This ensures that {xn} is fg-statistically bounded. □

Proposition 2.4. Suppose r, σ ≥ 0. Then for any {xn} in X, fgst-LIM rxi + σBX ⊆
fgst-LIM r+σxi.

Proof. Let us take y = u + v, where u ∈ fgst-LIM rxi and ∥v∥ ≤ σ. Then for each ε > 0,
we have

{n ∈ N : ∥xn − y∥ ≥ r + σ + ε} ⊆ {n ∈ N : ∥xn − u∥ ≥ r + ε}.

Since u ∈ fgst-LIM rxi, it follows that df
g ({n ∈ N : ∥xn − y∥ ≥ r + σ + ε}) = 0.

Consequently, we have y ∈ fgst-LIM r+σxi. □

Before moving forward, let us recall an important result concerning uniform convex
normed spaces, which will be employed in Theorem 2.6.

Theorem 2.5. [28, Lemma 2.3] X is uniformly convex if and only if for each r > 0, and
all ε ∈ (0, 2r] there exists δ(ε) > 0 such that, for arbitrary sequences {z0n} and {z1n} in
X,

lim sup
n→∞

∥z0n∥ ≤ r, lim sup
n→∞

∥z1n∥ ≤ r, ∥z0n − z1n∥ ≥ ε, n = 1, 2, ...

implies lim supn→∞
1
2∥z0n + z1n∥ ≤ r − δ(ε).

The subsequent result reveals that in uniformly convex normed spaces, fgst-LIM rxi is
strictly convex.

Theorem 2.6. If X is a uniformly convex normed space, then for any sequence {xn} in
X the limit set fgst-LIM rxi is strictly convex.

Proof. To show fgst-LIM rxi is strictly convex, it is enough to prove that for any two
distinct elements y1, y2 ∈ fgst-LIM rxi implies ŷ = 1

2(y1 + y2) ∈ int(fgst-LIM rxi). Since
y1, y2 ∈ fgst-LIM rxi, there exists A = {n1 < n2 < n3 < ...} ⊆ N with df

g (N \ A) = 0 such
that

lim sup
k→∞

∥u1,nk
∥ ≤ r and lim sup

k→∞
∥u2,nk

∥ ≤ r,

where u1,k = y1 − xk and u2,k = y2 − xk, for each k ∈ N.
Since ∥u1,nk

− u2,nk
∥ = ∥y1 − y2∥ = ε0 > 0 (say). Then there exists δ(ε0) > 0 such that

lim sup
k→∞

∥1
2

(y1 + y2) − xnk
∥ = lim sup

k→∞

1
2

∥u1,nk
− u2,nk

∥ ≤ r − δ. (2.1)

From the definition of lim sup, it follows that for each ε > 0 there exists m0 ∈ N such that
for all k > m0, we have

∥1
2

(y1 + y2) − xnk
∥ < r − δ + ε.

Thus A \ {n1, n2, ..., nm0} ⊆ B, where B = {k ∈ N : ∥1
2(y1 + y2) − xk∥ < r − δ + ε}. Let

us choose ζ such that 0 < ζ < δ and then pick arbitrary y ∈ B(ŷ, ζ). Now for each k ∈ B,
we have

∥xk − y∥ ≤ ∥ŷ − xk∥ + ∥y − ŷ∥ ≤ r − δ + ε + ζ < r + ε.

This gives {k ∈ N : ∥xk − y∥ > r + ε} ⊆ N \ B. Since df
g (N \ B) = df

g (N \ A) = 0, we get
that B(ŷ, ζ) ⊆ fgst-LIM rxi. Hence we deduce that fgst-LIM rxi is strictly convex. □

The uniform convexity condition cannot generally be relaxed from the previous Theorem
2.6. We emphasize our claim with an example.
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Example 2.7. Consider the sequence {en} in the normed space ℓ∞(R), where en repre-

sents the sequence (0, ..., 0,

nthplace︷︸︸︷
1 , 0, ...). Let us choose f(x) = log(1 + x), x ∈ [0, ∞) and

g(n) = 3
√

n, n ∈ N. If we set r = 1, then it is evident that {en : n ∈ N} ⊆ fgst-LIM rei.
We intend to show that for any fixed r, s ∈ N, e∗ = 1

2(er + es) is not an interior point of
fgst-LIM rei. So for any ζ > 0, we define y∗ = {yn} ∈ ℓ∞(R) such that

yn :=
{

1
2 , if n ∈ {r, s},

− ζ
2 , otherwise.

Since for each n > max{r, s}, we have ∥en − y∗∥∞ = 1 + ζ
2 , therefore it follows that

df
g ({n ∈ N : ∥en − y∗∥∞ > 1 + ζ

4}) ̸= 0, but y∗ ∈ Bζ(e∗). Since ζ > 0 was arbitrary, we
conclude that e∗ /∈ int(fgst-LIM rei). Consequently, fgst-LIM rei is not strictly convex.

Our next result displays that for a sequence with totally bounded-range, if the associated
rough fg-statistical limit set includes an interior point, that interior point resides within
a certain fg-statistical limit set with a smaller degree of roughness.

Theorem 2.8. If {xn} lies in a totally bounded subset of X and y+σBX ⊆ fgst-LIM rxi,
then r ≥ σ and y ∈ fgst-LIM r−σxi.

Proof. The inequality r ≥ σ follows directly from the fact that diam(fgst-LIM rxi) ≤ 2r.
Since translation of a totally bounded set is totally bounded, we can find a totally bounded
set T such that {xn − y : n ∈ N} ⊆ T. Then for each ε > 0, there exists m ∈ N and

c1, c2, ..., cm ∈ X \ {0}, such that T ⊆
m⋃

i=1

(
ci + ε

3
BX

)
. Let us define

C :=
{

− σci

∥ci∥
: i = 1, 2, ..., m

}
⊆ σ + BX .

Since y + σBX ⊆ fgst-LIM rxi, then for any z ∈ C we have df
g (N \ Dz,ε) = 0, where

Dz,ε = {n ∈ N : ∥xn − y − z∥ < r + ε/3}. Therefore Dε =
⋂

z∈C

Dz,ε satisfies df
g (N \ Dε) = 0,

since C is finite.
Let us take arbitrary n ∈ Dε. So there exists i ∈ {1, 2, ..., m} such that ∥xn −y−ci∥ ≤ ε/3.
Therefore, we have

σ + ∥ci∥ = ∥ci + σci

∥ci∥
∥

≤ supz∈C ∥ci − z∥
≤ supz∈C (∥xn − y − z∥ + ∥xn − y − ci∥)
≤ r + 2ε/3.

⇒ ∥ci∥ ≤ r − σ + 2ε/3.

This gives
∥xn − y∥ ≤ ∥xn − y − ci∥ + ∥ci∥ ≤ r − σ + ε.

Thus we have {n ∈ N : ∥xn−y∥ > r−σ+ε} ⊆ N\Dε. Consequently, y ∈ fgst-LIM r−σxi.
□

Given the aforementioned Theorem 2.8, it is reasonable to wonder what the minimum
value of the degree of roughness ‘r’ can be in order to maintain the non-empty status of
the rough fg-statistical limit set. This observation leads us to introduce the concept of
minimal fg-statistical convergence degree of sequence. Given a sequence x = {xn} taking
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values in a normed space X, the minimal fg-statistical convergence degree r̃(x) (briefly,
r̃) is defined as follows:

r̃(x) := inf{r ∈ R+ : fgst-LIM rxi ̸= ∅}. (2.2)
At this point, we include some noteworthy findings regarding the minimal fg-statistical

convergence degree.

Corollary 2.9. If {xn} is contained in a totally bounded subset of X, then fgst-LIM r̃xi

has empty interior.

Proof. Assume, on the contrary, that there exists y ∈ X and σ > 0 such that
y + σBX ⊆ fgst-LIM r̃xi.

Therefore, Theorem 2.8 ensures that there exists r < r̃ such that fgst-LIM rxi ̸= ∅, which
contradicts the minimality of r̃. □

Let us now recall from [21] that an ideal I is a P-ideal if for every sequence {An}n∈N
of sets in I there is a single set A∞ in I such that An ⊆∗ A∞ (i.e., An \ A∞ is finite)
for all n ∈ N. In ([21, Theorem 3.2]) it was also proved that for any P-ideal I on N, a
sequence {xn} is I convergent to x if and only if there exists A ⊆ N with N \ A ∈ I such
that lim

n∈A
xn = x.

In view of the above result and Theorem 1.5, it is easy to realize that if xn
fgst−−→

r
x∗,

then there exists A ⊆ N with df
g (N \ A) = 0 such that lim sup

n∈A
∥xn − x∗∥ ≤ r.

At this point, let us recall a well-known concept in the geometry of normed spaces called
"uniform convexity" which is based on the geometric condition that if two members of the
unit ball are far apart, then their midpoint is well inside the unit ball.

Definition 2.10 ([15]). Let X be normed space and ε > 0 be arbitrary.
(a) X is said to be uniformly convex in the direction z(̸= 0) if there exists a δz > 0 such
that if ∥x∥ = ∥y∥ = 1, x − y ∈ span({z}), and ∥x − y∥ ≥ ε, then 1

2∥x + y∥ < 1 − δz.
(b) X is said to be uniformly convex in every direction if for any non-zero z in X, there
exists a δ > 0 such that if ∥x∥ = ∥y∥ = 1, x − y ∈ span({z}), and ∥x − y∥ ≥ ε, then
1
2∥x + y∥ < 1 − δ.

According to [15], if X is uniformly convex in some direction z ∈ SX if and only if
whenever {xn}, {yn} are sequences in X with xn − yn ∈ span({z}) for each n, ∥xn∥ →
1, ∥yn∥ → 1 and ∥xn + yn∥ → 2, then ∥xn − yn∥ → 0.

Theorem 2.11. If X is uniformly convex in some direction z ∈ SX then for every x =
{xn} in X, int(fgst-LIM r̃(x)xi) = ∅.

Proof. Assume, on the contrary, that y ∈ int(fgst-LIM r̃(x)xi). Then there exists a > 0
such that y + aBX ⊆ fgst-LIM r̃(x)xi. Now for each k ∈ N, we consider the sets

Ak :=
{

n ∈ N : ∥xn − y − az∥ ≤ r̃ + 1
k

}
Bk :=

{
n ∈ N : ∥xn − y + az∥ ≤ r̃ + 1

k

}
Ck :=

{
n ∈ N : ∥xn − y∥ > r̃ − 1

k

}
.

Now, observe that df
g (N \ Ak) = 0, df

g (N \ Bk) = 0. Also from the minimality of r̃, we
get df

g (Ck) ̸= 0. Consequently, df
g (Ak ∩ Bk ∩ Ck) ̸= 0. Now choose a sequence of positive

integers {nk}k∈N such that nk ∈ Ak ∩ Bk ∩ Ck, i.e.,

∥xnk
− y − az∥ ≤ r̃ + 1

k
, ∥xnk

− y + az∥ ≤ r̃ + 1
k

and ∥xnk
− y∥ > r̃ − 1

k
.
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Let us fix αk =
xnk

− y − az

r̃ + 1/k
and βk =

xnk
− y + az

r̃ + 1/k
. Therefore we have

∥αk∥ ≤ 1, ∥βk∥ ≤ 1 and 1 − 2
r̃k + 1

≤
∥∥∥∥αk + βk

2

∥∥∥∥ ≤ 1.

This shows that
∥∥∥αk+βk

2

∥∥∥ → 1 as k → ∞ but ∥αk − βk∥ = 2ak
1+kr̃ ↛ 0 as k → ∞ which

contradicts the uniform convexity of X in the direction z ∈ SX . Hence we deduce that
fgst-LIM r̃(x)xi has no interior point. □
Corollary 2.12. Suppose X is uniformly convex in some direction z ∈ SX , and y is an
interior point of fgst-LIM rxi, then there exists r′ ∈ (0, r) such that y ∈ fgst-LIM r′

xi.

Proof. If no such r′ exists, then for each k ∈ N, we have
df

g (Ak ∩ Bk ∩ Ck) ̸= 0
where

Ak :=
{

n ∈ N : ∥xn − y − az∥ ≤ r + 1
k

}
Bk :=

{
n ∈ N : ∥xn − y + az∥ ≤ r + 1

k

}
Ck :=

{
n ∈ N : ∥xn − y∥ > r − 1

k

}
.

Now proceeding similarly as Theorem 2.11, we arrive at a contradiction that X is not
uniformly convex in the direction z ∈ SX . Thus we conclude that y ∈ fgst-LIM r′

xi, for
some r′ ∈ (0, r). □
Corollary 2.13. For any {xn} in X, fgst-LIM rxi has non-empty interior whenever
r > r̃.

Proof. Since r− r−r̃
2 > r̃, therefore, by Equation 2.2, we obtain that fgst-LIM (r− r−r̃

2 )xi ̸=
∅. Now Proposition 2.4 ensures that

fgst-LIM (r− r−r̃
2 )xi + r − r̃

2
σB(0, 1) ⊆ fgst-LIM rxi.

Thus we conclude that int(fgst-LIM rxi) ̸= ∅. □
Proposition 2.14. For any sequence {xn} in a normed space X, we have

fgst-LIM rxi =
⋂
s>r

fgst-LIM sxi.

Proof. From the definition of rough fg-statistical convergence it follows that fgst-LIM rxi ⊆
fgst-LIM sxi, whenever r < s. Therefore we have

fgst-LIM rxi ⊆
⋂
s>r

fgst-LIM sxi.

Now suppose y ∈ X \ fgst-LIM rxi. Then there exists ε0 > 0 such that
df

g ({k ∈ N : tk∥xk − y∥ > r + ε0}) ̸= 0.

Let s be such that r < s < r + ε0, i.e., ε := r + ε0 − s > 0.
Therefore, it is evident that

df
g ({k ∈ N : tk∥xk − y∥ > s + ε}) ̸= 0.

This shows that y /∈ fgst-LIM sxi. Consequently,
⋂
s>r

fgst-LIM sxi ⊆ fgst-LIM rxi. Hence

we deduce that fgst-LIM rxi =
⋂
s>r

fgst-LIM sxi. □

The following corollary is evident from Proposition 2.14. So we present it without proof.
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Corollary 2.15. For any sequence {xn} in a normed space X, we have

fgst-LIM rxi =
⋂

n∈N
fgst-LIM (r+ 1

n
)xi for all r ≥ 0.

Note 2.16. It is easy to realize that, for each {xn} in X, fgst-LIM rxi is closed, bounded,
and convex subset of X.

The subsequent result shows that in a reflexive normed space X, the limit set fgst-LIM rxi

with minimal fg-statistical convergent degree r̃ includes at least one element.

Theorem 2.17. For any sequence {xn} in a reflexive normed space X, fgst-LIM r̃xi ̸= ∅.

Proof. We define
Cn := fgst-LIM (r̃+ 1

n
)xi.

Evidently, for each n ∈ N, we have Cn ̸= ∅. Now, the definition of rough fg-statistical
convergence ensures that Cn ⊇ Cn+1. Thus {Cn} is a sequence of nonempty closed bounded
convex subsets of X such that Cn ⊇ Cn+1 for each n. Therefore, we obtain that

fgst-LIM r̃xi =
⋂

n∈N
Cn ̸= ∅.

This completes the proof. □
In non-reflexive normed spaces, the preceding Theorem 2.17 may not lead to the result.

The subsequent example demonstrates this fact.

Example 2.18. Consider the non-reflexive normed space (C[0, 1], ∥.∥), where ∥x∥ =∫ 1
0 |x(t)|dt.

Assume that the modulus is f(x) =
√

x, x ∈ [0, ∞), and the weight g ∈ G is g = 4
√

n, n ∈ N.

Since limn∈N

√
n1/5√
n1/4 = 0, it follows that df

g (A) = 0, where A = {n5 : n ∈ N}.

The sequence {xn} in C[0, 1] is now set up as follows:

xn(t) =
{

yn(t), if n ∈ A,

zn(t), if n ∈ N \ A.

The sequences {yn}, {zn} ∈ C[0, 1] are defined, respectively, as follows:

yn(t) = 4nt2, where t ∈ [0, 1] and n ∈ N.

Also, for each n ∈ N,

zn(t) =


0, if 0 ≤ t ≤ 1

2 ,

n(t − 1
2), if 1

2 < t < 1
2 + 1

n ,

1, if 1
2 + 1

n ≤ t ≤ 1.

Since {xn}n∈N\A has no sub-sequential limits and Zg(f) is a P -ideal, fgst-LIM0xi = ∅.
Note that for each r > 0, we can write

∥xm − xn∥ < r, whenever m, n ≥
[1

r

]
+ 1 and m, n /∈ A.

Let ε > 0 be given. Let us set pr =
[

1
r

]
+ 1. Then we have

{k ∈ N : ∥xk(t) − xpr (t)∥ > r + ε} ⊆ A \ {1, 2, ..., [1/r]}.

This ensures that df
g ({k ∈ N : ∥xk(t) − xpr (t)∥ > r + ε}) = 0 i.e., xpr ∈ fgst-LIM rxi.

Consequently, fgst-LIM rxi ̸= ∅ for every r > 0. Thereon r̃ = 0 but fgst-LIM0xi = ∅.

Corollary 2.19. If X is uniformly convex, then fgst-LIM r̃xi includes at most one ele-
ment.
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Proof. Since uniform convexity implies uniform convexity in every direction, Theorem
2.11 ensures that fgst-LIM r̃xi has no interior point. Now according to Theorem 2.6, it
follows that fgst-LIM r̃xi is strictly convex. Therefore, it cannot contain more than one
element, otherwise int(fgst-LIM r̃xi) would be non-empty. □

3. f g-statistical cluster points and f g-statistically Cauchy sequences
Here, we present the concepts of fg-statistical Cauchy sequences and fg-statistical clus-

ter point sets. The set of fg-statistical cluster points of a compact-range sequence in
normed spaces is classified in a few ways. Furthermore, we use the notion of fg-nonthin
subsets of N to give a characterization of fg-statistically Cauchy sequences.

Definition 3.1. Let x = {xn} be a sequence in a normed space X, and let xΩ = {xn}n∈Ω
be any fg-nonthin subsequence of x, i.e., df

g (Ω) ̸= 0. Then γ ∈ X is an fg-statistical cluster
point of xΩ, if for each ε > 0, df

g ({k ∈ Ω : ∥xk − γ∥ < ε}) ̸= 0. The set Γfg

xΩ denotes the
assortment of fg-statistical cluster points of xΩ (visit [14, 19, 20, 26] for references related
to statistical cluster point and statistical limit point).

Note 3.2. It is easy to verify that the set of fg-statistical cluster points Γfg

x of a sequence
x in a normed space X forms a closed set.

In the next result, we give an association between the fg-statistical cluster point of a
sequence and its ordinary limit points.

Theorem 3.3. If the fg-nonthin subsequence xΩ = {xn}n∈Ω of a sequence x = {xn} lies
in a compact subset of X, then there exists a sequence y = {yn} in X such that LyΩ = Γfg

xΩ

and df
g ({k ∈ Ω : xk = yk}) ̸= 0, where LyΩ denotes the set of ordinary limit points of

{yn}n∈Ω.

Proof. If Γfg

xΩ = LxΩ , then we are done. So we assume that Γfg

xΩ is a proper subset
of LxΩ . Then for each η ∈ LxΩ \ Γfg

xΩ there is an open ball Bη having center at η such
that df

g ({k ∈ Ω : xk ∈ Bη}) = 0. It is obvious that {Bη : η ∈ LxΩ \ Γfg

xΩ} is an open
cover for LxΩ \ Γfg

xΩ . Since LxΩ \ Γfg

xΩ is included in a compact set and a metric space,
compactness implies separability and subspace of a separable space is separable and hence
Lindelöf. Consequently, a countable subcover is generated by {Bη : η ∈ LxΩ \Γfg

xΩ}, say it is
{Bηi : i ∈ N}. Note that each open ball Bηi contains a convergent fg-thin subsequence of
xΩ. Since for each i ∈ N, df

g ({k ∈ Ω : xk ∈ Bηi}) = 0, and Zg(f) is a P -ideal, it follows that
there exists a set K(⊊ N) such that df

g (K) = 0 and for each i ∈ N, {k ∈ Ω : xk ∈ Bζi
}\K

is finite. Suppose Ω \ K = {j(1) < j(2) < ... < j(n) < ...}, and construct the sequence
y = {yn} as follows:

yk =


xj(k), for k ∈ K,

xk, for k ∈ Ω \ K,

x1, otherwise.

Since {n ∈ Ω : xn ̸= yn} ⊆ Ω ∩ K, i.e., df
g ({n ∈ Ω : xn ̸= yn}) = 0, we conclude that

Γfg

xΩ = Γfg

yΩ . Observe that {yn}n∈K is an fg-thin subsequence of y since df
g (K) = 0. We

intend to show that {yn}n∈K has no ordinary limit points. Assume, on the contrary,
that {yn}n∈K = {xj(k)}k∈K has a convergent subsequence which converges to p ∈ X.

Since df
g (K) = 0 and {j(k)}k∈N is increasing, we conclude that df

g ({j(k) : k ∈ K}) = 0.

Therefore, we get that p ∈ LxΩ \ Γfg

xΩ . Then there exists i0 ∈ N such that p ∈ Bζi0
, i.e., the

infinite set {j(k) ∈ Ω : xj(k) ∈ Bζi0
} is included in Ω \ K. As a result, {j(k) ∈ Ω : xj(k) ∈

Bζi0
}\K is infinite, which leads to a contradiction. Likewise, we conclude that {yn}n∈Ω\K

has no convergent fg-thin subsequences. Therefore, any convergent subsequence of yΩ
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must be fg-nonthin, i.e., LyΩ ⊆ Γfg

yΩ . Consequently, LyΩ = Γfg

yΩ . Thus we deduce that
LyΩ = Γfg

xΩ .
□

Our next step is to present a sufficient condition for a sequence to have fg-statistical
cluster points.

Corollary 3.4. For any fg-nonthin subsequence of a sequence x = {xn} that is contained
in a compact subset of X, then Γfg

x ̸= ∅.

Proof. Suppose the fg-nonthin subsequence xΩ = {xn}n∈Ω of x is contained in a compact
subset of X. Now Theorem 3.3 ensures the existence of a sequence y = {yn} in X such
that LyΩ = Γfg

xΩ and df
g ({k ∈ Ω : xk = yk}) ̸= 0. Since xΩ = {xn}n∈Ω lies in a compact

set and the set {k ∈ Ω : xk = yk} is infinite, we have LyΩ ̸= ∅. Hence we conclude that
Γfg

x ⊇ Γfg

xΩ ̸= ∅. □

The compactness condition in the above theorem cannot generally be relaxed; even a
bounded sequence in a normed space need not always possess an fg-statistical cluster
point. The following example substantiates our claim.

Example 3.5. Suppose ℓ∞(R) denotes the infinite dimensional normed space consisting of
bounded sequences {xn} of real numbers endowed with sup norm, i.e., ∥(x1, x2, ...)∥∞ :=
sup
k∈N

|xk|. Consider the sequence e = {en} in the normed space where en represents the

sequence (0, ..., 0,

nth place︷︸︸︷
1 , 0, ...). We choose the modulus function f(x) =

√
x, x ∈ [0, ∞)

and g(n) = log(1 + n2), n ∈ N. Then we obtain Γfg

e = ∅.

Corollary 3.6. For any sequence x = {xn} that is included in a compact subset of X,
there exists a sequence y = {yn} in X such that Ly = Γfg

x and df
g ({k ∈ N : xk ̸= yk}) = 0.

Next, we give a relationship between rough fg-statistical limit points and fg-statistical
cluster points of a sequence.

Theorem 3.7. For any sequence x = {xn} in a compact subset of a normed space X, we
have

fgst-LIM rxi =
⋂

γ∈Γfg
x

(γ + rBX).

Proof. Since x is contained in a compact set, Corollary 3.4 ensures that Γfg

x ̸= ∅. Firstly,
we claim that fgst-LIM rxi ⊆

⋂
γ∈Γfg

x

(γ + rBX). Assume, on the contrary, that there exist

γ ∈ Γfg

x and x∗ ∈fgst-LIM rxi such that ∥x∗ − γ∥ > r. Let us set ε0 = ∥x∗−γ∥−r
3 > 0.

Then for each γ ∈ Γfg

x , we have

df
g ({k ∈ N : ∥xk − γ∥ ≤ ε0}) ̸= 0.

Therefore, it follows immediately that

{k ∈ N : ∥xk − γ∥ ≤ ε0} ⊆ {k ∈ N : ∥xk − x∗∥ ≥ r + ε0}.

Consequently, we have df
g ({k ∈ N : ∥xk − x∗∥ ≥ r + ε0}) ̸= 0 which is a contradiction,

since x∗ ∈ fgst-LIM rxi. Thus we obtain

fgst-LIM rxi ⊆
⋂

γ∈Γf
x

(γ + rBX).
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Secondly, we take y ∈
⋂

γ∈Γfg
x

(γ +rBX). Now, let y /∈fgst-LIM rxi. Then there exists ε0 > 0

such that
df

g (K) ̸= 0 where K = {k ∈ N : ∥xk − y∥ ≥ r + ε0}.

From Corollary 3.6, it follows that there exists a sequence y = {yn} such that Ly = Γfg

x and
df

g (A) = 0, where A = {k ∈ N : xk ̸= yk}. Therefore, it follows that df
g (K ∩ (N \ A)) ̸= 0;

otherwise df
g (K) = 0. Now for each i ∈ K ∩ (N \ A), we have ∥yi − y∥ ≥ r + ε0. Evidently,

{yn}n∈K∩(N\A) lies in a compact set and this ensures the existence of a γ′ ∈ Ly such
that ∥y − γ′∥ ≥ r + ε0 > r, which is a contradiction. As a consequence, we obtain⋂
γ∈Γfg

x

(γ + rBX) = fgst-LIM rxi. □

Let us now propose the concept of rough fg-statistically Cauchy sequences, which ex-
tends the notion statistical Cauchy sequences.

Definition 3.8. A sequence {xn} in a normed space (X, ∥.∥) is said to be rough fg-
statistically Cauchy with degree of roughness ρ ≥ 0 (or, shortly ρ−fg-statistically Cauchy)
if for each ε > 0, there exists n(ε) ∈ N such that {n ∈ N : ∥xn − xn(ε)∥ > ρ + ε} has
fg-density zero.

The sequence {xn} becomes fg-statistically Cauchy if we let ρ = 0 in the above def-
inition. The following theorem establishes a conncetion between fg-statistical Cauchy
sequences and fg-nonthin subsets of N.

Theorem 3.9. Let Ω ⊆ N be such that df
g (Ω) ̸= 0. A sequence {xn} is fg-statistically

Cauchy if and only if for each ε > 0 there exists m(ε) ∈ Ω such that df
g ({k ∈ N :

∥xk − xm(ε)∥ > ε}) = 0.

Proof. Let us assume that {xn} is fg-statistically Cauchy sequence. Then for each ε > 0
there exists n(ε) ∈ N such that df

g (A(ε)) = 0, where A(ε) = {k ∈ N : ∥xk − xn(ε)∥ > ε
2}.

Therefore it follows that df
g (Ω ∩ (N \ A(ε))) ̸= 0, otherwise df

g (Ω) = 0. Now pick m(ε) ∈
Ω ∩ (N \ A(ε)) be arbitrary and consider the set B(ε) = {k ∈ N : ∥xk − xm(ε)∥ > ε}. Then
for each k ∈ B(ε) we have

∥xk − xn(ε)∥ ≥ ∥xk − xm(ε)∥ − ∥xn(ε) − xm(ε)∥ >
ε

2
,

i.e., B(ε) ⊆ A(ε). Consequently, we obtain df
g ({k ∈ N : ∥xk − xm(ε)∥ > ε}) = 0. □

4. Minimal f g-statistical convergence and Cauchy degree of a sequence
via f g-statistical cluster point set

In this section, we continue our investigation on minimal fg-statistical convergence as
well as minimal fg-statistical Cauchy degree of a sequence in terms of Chebyshev radius
and diameter of the fg-statistical cluster point set. The Chebyshev radius and the diam-
eter of the fg-ststistical cluster point set are, in fact, the minimal fg-statistical Cauchy
degree and the minimal fg-statistical convergence degree, respectively, under certain cir-
cumstances. Finally, the notion of Jung constant is employed to draw a relationship
between fg-statistical convergence and Cauchy degree of a sequence.

Before moving forward, let us recall the concepts of diametere, Chebyshev radius and
Jung constant. The diameter and Chebyshev radius of a bounded subset F of a normed
space X is given by

DX(F ) = sup
x,y∈F

∥x − y∥ and rX(F ) = inf
x∈X

sup
f∈F

∥x − f∥. (4.1)
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Also, the Jung constant [28, Equation 5.3] of a normed space X is defined by

J(X) = sup{2rX(F ) : F ⊆ X, DX(F ) ≤ 1} (4.2)

where DX(F ) is the diameter of the set F. Note that 1 ≤ J(X) ≤ 2, for any normed space
X. We direct readers to [24,27,28] for a more thorough investigation along those lines.

Theorem 4.1. For any sequence x = {xn} in a compact subset of X, DX(Γfg

x ) is the
mimimal fg-statistical Cauchy degree of x.

Proof. It is evident that Γfg

x is nonempty and compact since {xn} lies in a compact set.
We now show that for any ρ with 0 ≤ ρ < DX(Γfg

x ), {xn} cannot be ρ − fg-statistically
Cauchy.
Let us first set ε0 = D(Γfg

x )−ρ
3 . The definition of D(Γfg

x ) entails that there exist γ1, γ2 ∈ Γfg

x

such that
∥γ1 − γ2∥ > ρ + 2ε0.

Since γ1, γ2 ∈ Γfg

x , we have that the sets A and B are defined as:

A := {k ∈ N : ∥xk − γ1∥ <
ε0
2

} and B := {k ∈ N : ∥xk − γ2∥ <
ε0
2

}

have nonzero fg-density.
Now let us pick arbitrary k ∈ A. Then for each m ∈ B, we have

∥xk − xm∥ ≥ ∥γ1 − γ2∥ − ∥(xk − γ1) − (xm − γ2)∥
≥ ∥γ1 − γ2∥ − (∥xk − γ1∥ + ∥xm − γ2∥)

> ρ + 2ε0 − ε0
2

− ε0
2

= ρ + ε0.

Thus we have

{k ∈ N : ∥xk − xm∥ > ρ + ε0} ⊇ A

⇒ df
g ({k ∈ N : ∥xk − xm∥ > ρ + ε0}) ̸= 0, for each m ∈ B

⇒ df
g ({m ∈ N : df

g ({k ∈ N : ∥xk − xm∥ > ρ + ε0}) ≠ 0})(≥ df
g (B)) ̸= 0.

Consequently, {xn} is not ρ − fg-statistically Cauchy.

Let us now prove that {xn} is ρ − fg-statistically Cauchy for ρ = DX(Γfg

x ). If this does
not happen, then there exists ε0 > 0 and for each j ∈ N such that the set

Bj = {k ∈ N : ∥xk − xj∥ > DX(Γfg

x ) + ε0}

has nonzero fg-density.
Let ε > 0 be such that 2ε < ε0. Compactness of Γfg

x ensures that there exist γ1, γ2 ∈ Γfg

x

such that DX(Γfg

x ) = ∥γ1 − γ2∥. Let us define

U := {k ∈ N : xk /∈ Γfg

x + εBX}.

We claim that df
g (U) = 0. Assume, on the contrary, that {xn}n∈U is an fg-nonthin subse-

quence of x. Since x lies in a compact set, Corollary 3.6 ensures that there exists a sequence
y = {yn} in X such that Ly = Γfg

x and df
g ({k ∈ N : yk ̸= xk}) = 0. Therefore the set

B = {k ∈ N : yk = xk} ∩ U must be infinite; otherwise df
g (U) = 0. This shows that the

subsequence {yn}n∈B is also contained in a compact subset of X as well as in the closed set
X \ (Γfg

x +εBX). Consequently {yn}n∈B has a convergent subsequence converging to some
point in X \ (Γfg

x + εBX). Since γ ∈ Ly(= Γfg

x ), we have γ ∈ X \ (Γfg

x + εBX) ∩ Γfg

x (= ∅)
which is a contradiction. Hence we must have

df
g ({k ∈ N : xk /∈ Γfg

x + εBX}) = 0.



The minimal fg-statistical convergence and Cauchy degree of a sequence 15

Let us choose t ∈ N \ U, then there exists γ′ ∈ Γfg

x such that ∥xt − γ′∥ < ε. Also for any
k ∈ Bt, it follows that ∥xk − xt∥ > ∥γ1 − γ2∥ + ε0. Now for arbitrary γ ∈ Γfg

x we have,

∥xk − γ∥ ≥ ∥xk − xt∥ − ∥xt − γ∥
> ∥γ1 − γ2∥ + ε0 − ∥xt − γ′∥ − ∥γ − γ′∥
> ∥γ1 − γ2∥ + ε0 − ε − ∥γ1 − γ2∥ > ε.

This shows that xk /∈ Γfg

x + εBX i.e., Bt ⊆ U. Therefore we must have df
g (Bt) = 0, which

is a contradiction. This ensures that {xn} is DX(Γfg

x ) − fg-statistically Cauchy.
Now combining both the parts, we conclude that DX(Γf

x) is the minimal fg-statistical
Cauchy degree of {xn}n∈N. □

Theorem 4.2. For any sequence x = {xn} in a compact subset of X, rX(Γfg

x ) is the
minimal fg-statistical convergence degree.

Proof. Suppose 0 ≤ r < rX(Γfg

x ). Then from the definition of rX(Γf
x), it follows that for

any y ∈ X there exists γ ∈ Γfg

x such that ∥y − γ∥ > r. Now, Theorem 3.7 ensures that for
any y ∈ X such that y /∈ fgst-LIM rxi, i.e., fgst-LIM rxi = ∅. If r ≥ rX(Γfg

x ), then there
exists y ∈ X such that

∥y − γ∥ ≤ r for all γ ∈ Γfg

x .

⇒ y ∈
⋂

γ∈Γfg
x

(γ + rBX)

⇒ y ∈ fgst-LIM rxi (by Theorem 3.7).

Consequently, we have fgst-LIM rxi ̸= ∅ whenever r ≥ rX(Γfg

x ). Hence we conclude that
rX(Γfg

x ) is the minimal fg-statistical convergence degree of {xn}. □

Without the compactness condition, the conclusion of Theorem 4.1 and Theorem 4.2
may not hold. To highlight this fact, we provide the example below.

Example 4.3. Let f(x) = log(1 + x), x ∈ [0, ∞) be the modulus function and g ∈ G be
such that g(n) =

√
n + 1, n ∈ N. Now fix any A ⊆ N in such a way that both df

g (A) and
df

g (N \ A) are non-zero (note that existence of such A can always be assured by taking
A = 2N). Let us now define the sequence x = {xn} in ℓ∞(R) as follows:

xn :=
{

e1, if n ∈ A
en, otherwise.

where the sequence {en} is given in Example 2.7. It is evident that {xn} is not contained in
any compact subset of ℓ∞(R). Since df

g (A) ̸= 0, it follows that e1 ∈ Γfg

x . For any z ∈ ℓ∞(R)
with e1 ̸= z, we choose ε∗ = min{1

4 , ∥z − e1∥}. We now prove that df
g ({k ∈ N : ∥xk − z∥ <

ε∗}) = 0. Assume, on the contrary, that there exist t1, t2 ∈ N \ A with 1 < t1 < t2 such
that

∥xt1 − z∥ < ε∗ and ∥xt2 − z∥ < ε∗.

This leads to the contradiction that 1 = ∥xt1 − xt2∥ ≤ 1
2 . Consequently, we must have

Γfg

x = {e1}. So in this case rℓ∞(R)(Γfg

x ) = Dℓ∞(R)(Γfg

x ) = 0, but it is easy to observe that
the sequence is neither fg-statistically Cauchy nor fg-statistically convergence.

The two consecutive results connote the relationship between rough fg-statistically
convergence and rough fg-statistically Cauchy sequences via Jung constant.

Theorem 4.4. Suppose the sequence x = {xn} is in a compact subset of X. If {xn} is
ρ−fg-statistically Cauchy, then {xn} is r−fg-statistically convergence for every r ≥ J(X)ρ

2 .
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Proof. Since {xn} is a ρ − fg-statistically Cauchy sequence, Theorem 4.1 entails that
ρ ≥ DX(Γfg

x ). Note that we can write

rX(Γfg

x ) ≤ J(X)DX(Γfg

x )
2

(by definition of J(X)).

Then for any r ≥ J(X)ρ
2 , we have r ≥ J(X)DX(Γfg

x )
2 ≥ rX(Γfg

x ). Now, Theorem 4.2 ensures
that {xn} is r − fg-statistically convergence. □

In the above Theorem 4.4, the constraint that the sequence is contained in a compact
set cannot generally be relaxed. We now select an example to highlight our claim.

Example 4.5. Setting the weight function g ∈ G and the modulus function f are respec-
tively as follows:

g(n) = n, n ∈ N and f(x) = log(1 + x), x ∈ [0, ∞).

We now consider D ⊂ N be such that df
g (D) = 0 (note that such set exists by [9, Example

2.3 (Case 2)] ). Let us consider {xn} in (C[0, 1], ∥.∥) (where ∥x∥ =
∫ 1

0 |x(t)|dt) as follows:

xk(t) =
{

ak(t) if k ∈ D

bk(t) if k ∈ N \ D.

The sequences {an} and {bn} in C[0, 1] are defined in the following manner:

ak(t) = kt, and bk(t) =
{

k if 0 ≤ t ≤ 1
k2 ,

1√
t

if 1
k2 ≤ t ≤ 1,

for k ∈ N and t ∈ [0, 1].

From the construction, it follows that {xn}n∈N\D does not have any convergent subse-

quences since {xn}n∈N\D
∥.∥−−→ x gives

x(t) = 1√
t
, for 0 < t ≤ 1, which is a discontinuous function in [0, 1].

Thus the cluster point set of {xn} is empty. Consequently, {xn} is not contained in any
compact subset of X. Since Zg(f) is a P -ideal, it follows that {xn} is not fg-statistically
convergent to any continuous function in [0, 1]. Therefore, we must have fgst-LIM0xk =
∅.

Now, observe that ∥bm − bn∥ = 1
n − 1

m whenever m > n. Let ε > 0 be given. We set
n(ε) =

[
1
ε

]
+ 1. Therefore, we have

∥xk − xn(ε)∥ < ε whenever k >

[1
ε

]
+ 1 and k ∈ N \ D,

i.e., {k ∈ N : ∥xk − xn(ε)∥ ≥ ε} ⊆ D ∪ {1, 2, ...,
[

1
ε

]
+ 1}. Since df

g (D) = 0, it follows
that df

g ({k ∈ N : ∥xk − xn(ε)∥ ≥ ε}) = 0. This ensures that {xn} is ρ − fg-statistically
Cauchy with ρ = 0. However, the sequence {xn} is not r − fg-statistically convergent for
r = J(C[0,1])ρ

2 = 0.

Theorem 4.6. If {xn} is ρ−fg-statistically Cauchy in X, then {xn} is r−fg-statistically
convergent for every r > J(X)ρ.

Proof. Let us take any r > J(X)ρ and set ε = (r − J(X)ρ)/(2−1J(X) + 1) > 0. Since
{xn} is ρ − fg-statistically Cauchy, there exists mε ∈ N such that

df
g (A) = 0, where A = {k ∈ N : ∥xk − xmε∥ ≥ ρ + ε

2
}.
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Let us consider S = {xk : k ∈ N \ A}. Therefore it is evident that DX(S) < 2ρ + ε. Now
Equation 4.1 yields that there exists x∗ ∈ X such that

∥x − x∗∥ ≤ rX(S) + ε for all x ∈ S.

and also from Equation 4.2 we have

rX(S) ≤ J(X)DX(S)
2

.

Thus for all x ∈ S, we obtain

∥x − x∗∥ ≤ J(X)DX(S)
2

+ ε

<
J(X)(2ρ + ε)

2
+ ε

= J(X)ρ +
(1

2
J(X) + 1

)
ε

= J(X)ρ + r − J(X)ρ = r

Therefore, we must have

N \ A ⊆ {k ∈ N : ∥xk − x∗∥ < r}
⇒ {k ∈ N : ∥xk − x∗∥ ≥ r} ⊆ A

⇒ df
g ({k ∈ N : ∥xk − x∗∥ ≥ r}) = 0.

Hence we deduce that fgst-LIM rxi ̸= ∅. □
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