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ABSTRACT 

In this study a new method for finding exact solution of the Cauchy problem 
subject to a discontinuous initial profile for the two dimensional scalar 
conservation laws is suggested. For this aim, first, some properties of the 
weak solution of the linearized equation are investigated. Taking these 
properties into consideration an auxiliary problem having some advantages 
over the main problem is introduced. The proposed auxiliary problems also 
permit us to develop effective different numerical algorithms for finding the 
solutions. Some computer experiments are carried out. 

Keywords: Scalar conservation laws, auxiliary problem, exact and 
numerical solution in a class of discontinuous functions 

ÖZET 

Bu çalışmada iki boyutlu skaler korunum kuralları için yazılmış süreksiz 
başlangıç koşullu Cauchy probleminin gerçek çözümünün bulunması için 
yeni bir yöntem önerilmiştir. Bu amaçla önce, lineerleştirilmiş denklemin 
zayıf çözümünün bazı özellikleri incelenmiş ve bu özellikler dikkate alınarak 
esas problemde bulunmayan ve bazı avantajlara sahip yardımcı problem dahil 
edilmiştir. Önerilen yardımcı problem göz önüne alınan problemin sayısal 
çözümünü bulmak için etkin sayısal algoritmalar yazmaya da geniş imkan 
sağlamaktadır. 

Anahtar Kelimeler: Skaler korunum yasaları, yardımcı problem, süreksiz 
fonksiyonlar sınıfında gerçek ve sayısal çözümler 
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1. INTRODUCTION 

It is known that investigation of many problems in sciences and 
engineering, particularly in fluid dynamics, requires to study the 
nonlinear hyperbolic equations of conservation laws. It is typical in 
such problems that their solutions admit the points of discontinuity 
whose locations are unknown beforehand. Therefore, even in one 
dimensional case they pose a special challenge for theoretical and 
numerical analysis. 

The mathematical theory of the Cauchy problem for one 
dimensional nonlinear hyperbolic equation is studied in [4], [8], 
[9], [13], [21], [25]. Profound results for the mathematical theory of 
the initial boundary value problem for scalar conservation laws in 
several space dimensions can be found in [1], [3], [6], [7]. Most 
hyperbolic equations (or systems) of conservation laws in physics 
are nonlinear and solving them analytically is often difficult, 
sometimes impossible. 

There are many sensitive numerical methods for the solving 
of the Cauchy problem of nonlinear hyperbolic equations [2], [8], 
[10], [12] and etc. Very relevant results to the basis of the main 
themes are found [5], [6], [11], [22], [23], [24]. 

In this study the original method for finding the exact and 
numerical solution of the Cauchy problem for the two dimensional 
scalar equation 

X y , t )
 | dF1(u(x,y,t)) | dF2{u{x,y,t)) = Q 

dt dx dy 

is suggested. The conditions which the functions Fi (u),(i = 1,2) 
must satisfy will be expressed in section 3, later. For this aim, the 
special auxiliary problem having some advantages over the main 
problem is introduced. The suggested auxiliary problem permits us 
in some cases to construct the exact solution of the investigated 
problem in a class of discontinuous functions, and to develop 
sensitive algorithms for obtaining the numerical solution of the 
main problem. The principle application of the proposed method is 
schematically shown in Figure 1a. 
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Q(a,y) — P (x,y) 

t I 

M(a,b) - — N(b,x) 

Figure 1: a) Schematic representation of the suggested method; b) Domain D xy 

The Cauchy problem for equation (1), when 
F ( u ) = F ( u ) = F(u) has been studied in [17], [18] analytically as 
well as numerically. In order to study in full detail at first the case 
F ( u ) = Au and F (u) = Bu is considered. Here A and B are 
given real constants. 

2. THE LINEAR EQUATION AND SOME PROPERTIES OF 
THE EXACT SOLUTION 

Let R = R2 x[0, T) be Euclidean space of the points (x, y, t), 
where (x ,y) e R2, t e[0,T) and T is a given constant. In R3

+ we 
consider the following Cauchy problem 

du( x, y, t )+A du( x, y, t) | ^ du( x, y, t) = Q 

dt dx 

u( x, y,0) = uo( x, y). 

dy 
(2) 

(3) 

Here, u (x, y) is any given measurable and bounded continuous 
function having both positive and negative slopes. The problem (2), 
(3) later on will be called as the main problem. We support that 
A ^ B and let D„, be the domain defined as follows 

Dy = { ( ^ ) , a < £ < x, b <V< y} c R2, t e RT
+ . By dDy we 

denote the boundary of the domain D . , figure 1b 

It is easily shown that the function 

u(x, y, t) = u0 (x - At, y - Bt) (4) 
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is the exact solution of the main problem, and such solution is 
called a soft solution of the problem (2), (3). 

Definition 1. The function u(x, y, t ) satisfying the initial condition 
(3) is called a weak solution of the problem (2), (3) if the following 
integral relation 

| | { u(x, y, t)[< (x, y, t) + A<px (x, y, t) + B<y (x, y, t)] }dxdydt 

+ J[(x, y ,0)u (x, y)dxdy = 0 (5) 

r2 RT 

holds for every test functions ( ( x , y, t) defined in R+ and 

differentiable in the upper half plane and vanishes for yjx2 + y2 +1 
sufficiently large. 

Theorem 1. If the u(x, y, t) is a continuous weak solution of the 
main problem, then the function u(x, y, t) = u0 (x - At, y - Bt) is a 
soft solution of the main problem. 

The proofs of the Theorem 1 and Theorem 2 are developed 
similarly as in [12]. 

Proof According to the definition of a weak solution we have 

| J{u(x, y, t)[v (x, y, t) + Avx (x, y, t) + Bvy (x, y, t)] }dxdydt 
R2 RT 

+ J[(x, y,0) u0 (x, y) dxdy = 0 (6) 

for every smooth function v(x, y,t) which vanishes for 

•Jx2 + y2 +1 sufficiently large. 

Applying the following transformation of variables 

£ = x - At, rj = y - Bt, r = t, 

(7) 

(6) can be expressed as 

2 R 

2 R 
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J J { u ( £ , r , r ) v T ( £ , j , r ) } d £ d r + J v ( £ , r , 0 ) U 0 ( £ , r ) d £ d j = 0 
R 2 r T 

or 

J J J u(£, r, r)vr (£, r , r) dj+v(£, r ,0)u(£, r,0) I d£ = 0 
r 2 t 0 J 

for every smooth v( x, y, t ) with appropriate support. If we define 

F (£,r) = J u ( £ ,r , r ) vr ( £ , r , r ) d r 

0 

then the previous relation can be rewritten as 

J F (£,r)+u(£,r ,0)v(£,r ,0)] = 0. 
R 2 

This implies that F(£,r) + u(£,j,0)v(£,j,0) = 0 for, if there were 
and domain ,£2 , ] x [ j ] where this is different from zero. 
Then we have 

J [ F (£ , r )+u(£ , r ,0)v (£ , r ,0)]d£dj > 0, 
R 2 

which is a contradiction. We conclude that 

J u(£, j , r)v r (£, r , r) dr + v(£, r,0)u(£, j ,0) = 0. 

Since, J v T ( £ , r , r ) d r = -v (£ , j ,0 ) , then 

and we get 

J vr (£, j , r)u(£, j ,0) d r = -v(£, j ,0)u (£, j,0), 

J [ u ( £ J, r ) - u ( ^ j ) ] v r ( £ j, r ) d r = 0 . 

From the continuity of u we conclude that 

u(£,j,r) = u (£ , j ) = u (x - At, y - Bt). 

2 R 

T R + 

T R + 

T R + 

T R + 
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Theorem 2. If u0 (x - At, y - Bt) is integrable, then the function 
u(x, y, t) defined by the formula (4) is a weak solution of the main 
problem. 

Proof Let v be a smooth function which vanishes for yjx2 + y2 +1 
sufficiently large. Consider the expression 

J Ju 0 (x - At, y - Bt){ vt (x, y, t) + Avx (x, y, t) + Bvy (x, y, t) ]dxdydt 
R2 RT

+ 

+ J v(x, y,0)u0 (x, y) dxdy.] (8) 
R2 

Taking account into consideration the (7), we have 

J J u 0 ( l ; , r ¡ ) v T ( % , r , r ) d % d r ¡ d T + J v ( x , y , 0 ) u 0 ( x , y ) d x d y . 
R2 rT 

During the integration with respect to T , since v = 0 for 
sufficiently large T , the sum of these integrals vanishes. Hence, the 
function u(x, y, y) = u0 (x - At, y - Bt) is a weak solution of the 
main problem. 

Integrating the equation (2) on the domain with respect 

to x , y and using the Green's formula we get 
s x y 

— U t) + | Audy - Budx = 0 
St' h a n a b xy 

or 

a x y 

q j j 7 , t ) d^d7 + Aj[u(x, 7, t) - u(a, 7, t)] d7 
a b 

x 

- B J\u 
a 

The last equation can be rewritten as 
x y y 

B j [w(£ y, t) - u(g, b, t )]dğ = 0. 

S j j t ) d%dv + Aju(x,7, t) dv 
St , a b 

R 2 

b 
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- BJ u(£, y, t )dg = p(a, y, t) X, b, t). 
a 

(9) 

y x 

Here, p(a, y, t) = u(a, 77, t)d77, X, b, t) = B Ju(£, b, t)d£. 

The problem finding the solution of the equation (9) subject to (3) 
will be called as first auxiliary problem. 

We introduce the following operator 

3(0 = ^ dxdy 
(10) 

and the function defined as 
x y 

v(X, y, t) = J Ju(£, 77, t)d&v + Q (a, y, t) - % (X, b, t), (11) 

where %(X, b, t) and ^ ( a , y, t) are the integrals of y/(X, b, t) and 
p(a, y, t) with respect to t, respectively. It is easily shown, that the 
function p(a, y, t) X, b, t) e ker3. Indeed, 

3 [ p ( a , y, t) - IY( X, b, t)] = 3 AJ u(a,7, t )d7 + BJ u(%, b, t )d% = 0. 

For the sake of simplicity, we denote H (a, b, X, y, t) 
= p(a, y, t) - \Y( X, b, t) and it is obvious that 3 H (a, b, X, y, t) = 0. 

Taking into consideration (11), the equation (9) takes the 
form 

d v ( X y , t )+A S v ( x 1 y , t ) + B d v ( X y , t )
 = Q (12) 

dt dx dy 

The initial condition for the equation (12) is 

v( X, y,0) = Vo(x, y), (13) 

here the function v0(x, y) is any solution of the equation 

b a 

X 

b a 
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From (11) we have 

= X. y). (14) 

oxdy 

d 2v( x. y. t)_ 
dxdy = u(x. y. t). (15) 

Indeed, if we differentiate the relation (12) at first with respect to x 
, then with respect to y we prove validity of (15). 

The problem (12), (13) will be called second auxiliary 
problem. The second auxiliary problem has the following 
advantages: 

• The differentiability property of the function v(x, y, t) with 
respect to X and y is two orders higher than u(x, y, t) 

• The function u(x, y, t) may be discontinuous. 

• By obtaining the solution u(x, y, t) of the problem (12), 
(13), we does not use the derivatives uX, u , ut, which does not 
already exist, usually. 

It is obvious that the solution of the auxiliary problem is not 
unique. The following theorem is valid: 

Theorem 3. If the function v(x, y, t) is soft solution of the 
auxiliary problem (12), (13), then the function u(x, y, t) defined by 
(15) is a weak solution of the main problem. 

Proof Let the function p(x, y, t) is a test function and we consider 
the following expression 

r I d v d v d v I 
0 = | 3 p ( x , y, t)<— + A— + B— \dxdydt. 

¿3 [ S t d x d y J 

After some simple manipulation we get 

r , J d 3 v , d 3 v n d 3 v | . . . 
I p(x, y, t K + A + B \dxdydt = 0. 

¿3 [ d t d x dy J 
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Applying integration by part to the last equality with respect to t, 
x, y respectively have 

JV( x y>t ) i 
Su(x,y,t) .Su(x,y,t) i BSu(x,y,t) 

• + A 1 

St dx 
+ B-

Sy 
\dxdydt = 0. 

This completes the proof. 

3. TWO DIMENSIONAL SCALAR CONSERVATION LAW 

In this section the two dimensional scalar equation which describes 
a certain conservation law as 

du^ SF1 (u) | SF2 (u) = o 

St Sx Sy 
(16) 

is considered. We assume that the equation is subjected to the 
initial condition (3). 

Relatively F (u) and F (u) we assume that 
(i) F (u) and F (u) are continuous differentiable functions, 
(ii) F (u ) > 0, (i = 1,2) for u > 0, 
(iii) F'(u) has an alternative signs, t.e. the Fi (u), (i = 1,2) 

functions have the concave and convex parts. 

The solution of the problem (16), (3) obtained using the 
characteristics method is 

u ( x ^ t ) = uo(^ , r^) , (17) 

where £ = x - F'(u)t and TJ = y - F2'(u)t are the special coordinates 
moving with speed of F((u) and F[(u), respectively. From (17) we 
get 

Sun 

Su 
Sx ( 

1 + Su Fi ' ( u ) ^ + F2 (u) S u o 

S77 
t 

3 R + 
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du 
dy 

du 
~dt 

du0 

d^ 

1 + du du 
f » ^ + F » ^ 0 

dç d^ 

F(u) d u 0 + F » du0 

dç d77 
f 

1 + Fan) du0+Fî(u) d u 0 

dç d77 

As it is seen from this formulas, if — 0 < 0 , — 0 < 0 and 
d'q 

F '(u) > 0, (i = 1,2) (or d U o > 0 , d U o > 0 and F (u) < 0) at the 
dÇ d^ 

value 

t > T0 = 
1 

F_"(u) duo + F2"(u) 

the derivatives ux , u and ut are approaching to infinity. Therefore 
the classical solution of the problem (16), (3) does not exist. The 
weak solution of the problem (16), (3), we will be defined as 
follows. 

Definition 2. The function u(x, y, t) satisfying the initial condition 
(3) is called a weak solution of the problem (16), (3) if the 
following integral relation 

J J J { u(t + F (u)(x + F2 (u)( ]dxdydt 
R2 RT

+ 

+ J J u0 (x, y ) ( ( x, y,0) dxdy = 0 (18) 

holds for every test functions ( ( x , y, t) defined in R+ and 

differentiable in the upper half plane and vanishes for -J. 
sufficiently large. 

.x2 + y2 +1 

t 

t 

2 R 
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In order to find the weak solution of the problem (16),(3) in 
sense (18) we will introduce the auxiliary problem as above. 
Integrating the equation (16) on the region D we get 

0 = if< 
xy 

Su SF (u) SF2 (u) 
St S] 

\d£d] 

f J J u ( £ ] t ) ^ d r + J J SF1(u) SF2(u) 
• + 

S 
St 

D xy 

x y 

S£ Sr] , 
d£d] 

x y y 

J J u(£,], t )d£d r] + J\_F (u( x, ] , t))- F (u(a, ] , t ))]d] 
b a b 

+ J F 2 (u(£, y, t ) ) - F 2 (u(£, b, t ))]d£. 

The last equality can be rewritten as 

Q x y y x 

— J Ju(£, r, t)d£dr + J Fi (u(x, r, t))dr + J F2 (u(£, y, t))d£ 
b a 

= 0(a , y, t )+T(x , b, t). 

ab 

Here 
y x 

0(a , y, t) = J F (u(a,r, t))d], x, b, t) = JF2 (u(£, b, t))d£. It 
b a 

is clearly seen that 0 (a , y, t) + ¥ (x , b, t) e ker 3 . Indeed, 

3 { 0 ( a , y, t) + x, b, t)} = 3 J F (u(a, ], t ))d] + J F2 (u(£, b, t ))d£ 

_ SF (u(a, y, t)) S F (u(x, b, t)) _ 
• + - = 0. 

Sx Sy 

We denote by v( x, y, t) following expression 

D xy 

x 

a 

x 

b a 
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X y 

v( y, t) = J J u(Ç, r , t )dÇdr + H (a, b, X, y, t), (19) 
a b 

where Hx (a, b, x, y, t) e ker 3 . From (19) we have 

, d 2v( x, y, t) u(x,y,t) = v ' . 
dxdy 

Taking into consideration to (19) we get 

dv( x, y, t) 
dt 

+ M 
d 2v( x,r, t) 

dxd] 

X 

dr+J F2 
d 2v(Ç, y, t) 

dÇdy 
dÇ = 0 

or 
dv( x, y, t) 

dt 
+ J F ( u ( x , r , t ) ) d r + J F ( u ( Ç , y , t ) d = 0. (20) 

The initial condition for the (20) is 
v ( x, y , 0 ) = v0( x, y). (21) 

Here the function v0(x, y) is any differentiable solution of the 
equation (14). 

The auxiliary problem (20), (3) has following advantages: 
(i) In this case the functions u(x, y, t), F(u(x, y, t)) and 

F (u(x, y, t)) can be discontinuous too, 
(ii) the order of differentiability of the function v(x, y, t) 

more than the order of differentiability of the function u(x, y, t) , 
(iii) the derivatives ux , u and ut in algorithm for obtaining 

of the solution of the problem (16) and (3) does not occur, as these 
derivatives does not exist. 

The following theorem is valid. 

Theorem 4. If the function v(x, y, t) is solution of the auxiliary 
problem (20), (3), then the function u(x, y, t) expressed by 
u(x, y, t) = 3v(x, y, t) is a weak solution of the main problem (16) 
and (3). 

b a 

X 

b a 
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4. FINITE DIFFERENCES SCHEMES IN A CLASS OF 
DISCONTINUOUS FUNCTIONS 

In this section, we intended to develop the numerical method for 
finding the solution of the problem (2), (3), and investigate some 
properties of it. For this aim, we will use the auxiliary problem (9), 
(3). As it is stated above, in the nonlinear case the solution of the 
main problem has discontinuous points, whose locations are 
unknown beforehand. The properties found in the exact solution 
does not permit us the application of classical numerical methods to 
this problem directly. In this case we will use the problem (20), (3). 
By using the advantages of the suggested auxiliary problem, a new 
numerical algorithm will be proposed. In order to demonstrate the 
effectiveness of the proposed method in this study we will consider 
only linear case. In [14], [15], [16] the suggested numerical method 
was studied for an one dimensional nonlinear scalar equation. 

The offered method will be developed to find the numerical 
solution of the Cauchy problem for the equation (1) in following 
study. 

4.1 The Finite Differences Scheme for Cauchy Problem 

By investigating a numerical solution of the Cauchy problem for 
the equation (1) we will use the ideas and notations presupposed in 
familiar books [19] and [20]. 

In order to construct the numerical algorithm, the domain of 
definition of the problem (2), (3) is covered by the following grid 

®h,h2 = { ( x , , yj, tk X xi = K yj = JK tk = k r , 

i = 0,1,2,...; J = 0,1,2,...; k = 0,1,2,...; h >0, h > 0 , r >0}, 

where, h , h2 and r are steps of the grid with respect to x , y and 
t , respectively. 

In order to approximate of the equation (9) by the finite differences, 
the integrals leaving in (9) are approximated as follows 

x 

a 

(22) 

39 



Mahir RESULOV, Kenan SENTURK 

Y J 

J u ( t ) d V = h2 /U
hM,k , 

M=1 

and 
X Y ı J 

J J u(Ç,v, t )dÇd1 = \h2 / / U 2 / J / ^ v , j U , k ' 

v = 1 ^ = 1 

(23) 

(24) 

Taking into consideration (22)-(24) the equation (9) at any point 
(i, j,k) of the grid ^, r is approximated as follows 

j-1 i-1 

U, i,J k+1 (1 - f A + f BU J,k - f A//U,Mkk + f B/U 
h h M=1 h 2 

v , j ,k 

i -1 J - 1 . J-1 

S S ( U v ^ k + 1 - Uv,M ) + f A / U o , A k - f B / U V , n, k , ( 2 5 ) 
h

1 ^=1
 h 

v=1 ^=1 «2 v=1 

(i = 0,1,2, ....N; j = 0,1,2,...,M, k = 0,1, 2,...,). 

The initial condition for (25) is 

U,„0 = ^(-X,y-), (i = 0,1,2,....N; j = 0,1,2,...,M). (26) 

Now, we approximate the problem (12), (13) by the finite 
differences. For this aim, we introduce the following notations 

U(xt, yj, tk ) = Ui,j, U(x, y,, tk+1) = Ûhj, 

A U j = ( U „ -Ui-1., X A y U u = ( U u " j 

= ( A U , - t f y U u = ^ - ^ j ). 

In this notations the problem (12), (13) is approximated by the 
finite differences scheme as follows 

T T V = v - A— A-V - B— A-V , 
ı , j i , j h x l , J h y l , J 

V = V(0) 
V i , J , 0 V i , J • 

(27) 

(28) 

Here, the function Vi
 (°) is any continuous solution of the equation 

V S = u0(x t, yj) , (29) 

b 

b a 

|/=1 
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and the grid functions U . and VUj represent approximate values 
of the functions u(x, y, t) and v(x, y, t) at point (i, j, k) 
respectively. 

Note 1. It should be noted that A-U = A-U . In order to prove this 
property, we consider 

A xyU - A x U , j " A x U j i = ( U , j - U - i j h P u - i ) 

= U , j U - l ) - ( U i - , j - U i - , j i ) = AyxU. 

It is easy to prove that, if the grid function V,j is the solution the 

problem (27), (28), then the grid function U;,j defined by 

1 
U i j h h 

is the solution of the problem 

•A-V • xy i,j (30) 

T T 
U',j = U i , j - ^ t A U - 5 — KyUiJ , ( 3 1 ) 

U j 0 = Uo(x, y ) . (32) 

In order to prove this claim, let us consider the relation 

Uu = ZZAXyVj = ZZl^j - V-w)- fcj-1 - W i
 )J 

I J 

= z z 
i j 

f 

I J 

T T 
V - A—A-V - ^ A - V . 

i , J h x i , J h y i J 

V 

T T 

2 y 
Y 

y' i - 1 , j 
y 

f T T 
V . , - A T A - V . , - B - ^ A - V , 

V i , j - 1 h x i , j - 1 h y i , J - 1 y 

T T 
V - A—A-V - B — A - V V i-1,j-1 A

 h
 A x V i - 1 , J - 1 B , A y V i -1 , J -1 

v h 2 y 
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• H S V u - V - U ) - V J - 1 - V - i j - 1 ) ] 
' J 

A^[(AV,, - A V U ) - ( A V , j - ! - A V - i j - i ) ] 

B - [ ( A - V , - A ^ - u ) - ( A V , ; - i - V W i ) ] 

T T 

= - A - m j - B - K - U i j . 

It is proved the correctness of our claim. 

5. NUMERICAL EXPERIMENTS 
In this section, in order to demonstrate the suggested method we 
will carry out some numerical experiments using the suggested 
method. At first, we will find the exact solution of the auxiliary 
problem (12), (13), and using the formula (15) the exact solution of 
the main problem. Next, we will compare these with the solution of 
the main problem obtained by classical methods. 

Figure 2: The graph of the function u0 (x, - ) ; a) u > U ; b) U < U 

For the sake of simplicity the initial function of the main 
problem u0 (x, - ) we will take the following form 

U, - 2 < x < 0 
uo( x y) = < ,0 < y < 1 (33) 

0 < x < 2 
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where U a n d U are given real constants. In this case, the function 
vo (x, y) according to (14) is defined as 

vo ( x y ) = < 

Uxy, - 2 < x < 0 

0 < y < 1. 
u2xy, 0 < x < 2 

Figure 3: The graph of the function v0 (x, y ) ; a) u > U ; b) U < U 

The graphs of the initial functions u0 (x, y) and v (x, y) are shown 
in Figure 2 and Figure 3, respectively. 
The exact solution of the problem (12), (13) obtained by the 
characteristics method is 

U (x - At)(y - Bt), - 2 < x < 0 
v( x, y, t ) = < 0 < y < 1. 

U (x - At)(y - Bt), 0 < x < 2 

Figure 4: The graphs of the function v ( x , y , t ) , A = 0.5, B = 1.0, T = 1.0; 

a) U > U2 , b) U < U 
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The graphs of v(x, y, t) at time T = 1.0 are given in Figure 4. The 
solution of the problem (2), (3) obtained by the formula (15) is 
demonstrated in Figure 5. On an equal footing the graphs of the 
exact solution obtained by the formula (4) is given in Figure 6, at 
value T = 0.6. 

Figure 5: The graphs of the function u(x, t, t) = 3 v ( x , y, t) , A = 0.5, 

B = 1.0, T = 1.0 ; a) U > U , b) U < U 

Figure 6: The time evaluation of u(x, y, t) at the value T = 0 .6 a) U > U 

; b) u < U 

6. CONCLUSION 
In this study an original method for finding the exact and numerical 
solutions of the Cauchy problem for the first order 2-D nonlinear 
partial equations in a class of discontinuous functions is proposed. 
The properties of the exact solution of the linearized equation are 
also studied. 
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The special auxiliary problem whose solution is more 
smoother than the solution of the main problem is introduced, 
which makes possible to develop efficient and sensitive algorithms 
that describe all physical properties of the investigated problem 
accurately. 
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