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ABSTRACT

In this study a new method for finding exact solution of the Cauchy problem
subject to a discontinuous initial profile for the two dimensional scalar
conservation laws is suggested. For this aim, first, some properties of the
weak solution of the linearized equation are investigated. Taking these
properties into consideration an auxiliary problem having some advantages
over the main problem is introduced. The proposed auxiliary problems also
permit us to develop effective different numerical algorithms for finding the
solutions. Some computer experiments are carried out.

Keywords: Scalar conservation laws, auxiliary problem, exact and
numerical solution in a class of discontinuous functions

OZET

Bu calismada iki boyutlu skaler korunum kurallar icin yazilnus siireksiz
baslangi¢ kosullu Cauchy probleminin ger¢ek ¢oziimiiniin bulunmasi igin
yeni bir yontem Onerilmistic. Bu amagla 6nce, lineerlestirilmis denklemin
zayif ¢oziimiiniin bazi 6zellikleri incelenmis ve bu 6zellikler dikkate alinarak
esas problemde bulunmayan ve bazi avantajlara sahip yardimci problem dahil
edilmistir. Onerilen yardimc1 problem gdz 6niine alinan problemin sayisal
¢Ozimiinli bulmak icin etkin sayisal algoritmalar yazmaya da genis imkan
saglamaktadir.

Anahtar Kelimeler: Skaler korunum yasalari, yardimct problem, stireksiz
Jonksiyonlar smifinda gergek ve sayisal ¢coziimler
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1. INTRODUCTION

It is known that investigation of many problems in sciences and
engineering, particularly in fluid dynamics, requires to study the
nonlinear hyperbolic equations of conservation laws. It is typical in
such problems that their solutions admit the points of discontinuity
whose locations are unknown beforehand. Therefore, even in one
dimensional case they pose a special challenge for theoretical and
numerical analysis.

The mathematical theory of the Cauchy problem for one
dimensional nonlinear hyperbolic equation is studied in [4], [8],
[9], [13], [21], [25]. Profound results for the mathematical theory of
the initial boundary value problem for scalar conservation laws in
several space dimensions can be found in [1], [3], [6], [7]. Most
hyperbolic equations (or systems) of conservation laws in physics
are nonlinear and solving them analytically is often difficult,
sometimes impossible.

There are many sensitive numerical methods for the solving
of the Cauchy problem of nonlinear hyperbolic equations [2], [8],
[10], [12] and etc. Very relevant results to the basis of the main
themes are found [5], [6], [11], [22], [23], [24].

In this study the original method for finding the exact and
numerical solution of the Cauchy problem for the two dimensional
scalar equation

ou(x, y,0)  Ofux,y.1))  ohux,p.0) _
ot ox oy

(1)

is suggested. The conditions which the functions F,(u),(i=1,2)

must satisfy will be expressed in section 3, later. For this aim, the
special auxiliary problem having some advantages over the main
problem is introduced. The suggested auxiliary problem permits us
in some cases to construct the exact solution of the investigated
problem in a class of discontinuous functions, and to develop
sensitive algorithms for obtaining the numerical solution of the
main problem. The principle application of the proposed method is
schematically shown in Figure la.
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Figure 1: a) Schematic representation of the suggested method; b) Domain ny

The Cauchy problem for equation (1), when
I(u)=F,(u)= F(u) has been studied in [17], [18] analytically as
well as numerically. In order to study in full detail at first the case
F(u)=Au and F,(u)=Bu 1s considered. Here 4 and B are
given real constants.

2. THE LINEAR EQUATION AND SOME PROPERTIES OF
THE EXACT SOLUTION

Let R’=R’x[0,7) be Euclidean space of the points (x,y,1),
where (x,))e R*>, te€[0,]) and T is a given constant. In R’ we
consider the following Cauchy problem

8u(x,y,l)+A5U(X,y,f)+Ba”(x>y>Z) =0 (2)
ot ox ’
u(x,y,0)=uy(x,y). G)

Here, u,(x,y) is any given measurable and bounded continuous

function having both positive and negative slopes. The problem (2),
(3) later on will be called as the main problem. We support that
A#B and let D, be the domain defined as follows
D, ={(&,n), asé<x, b<n<y} R’ teR. By D, we
denote the boundary of the domain D, ., figure 1b

It is easily shown that the function

u(x,y,t)=u,(x—At,y—Bt) 4)
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is the exact solution of the main problem, and such solution is
called a soft solution of the problem (2), (3).

Definition 1. The function u(x,y,f) satisfying the initial condition

(3) is called a weak solution of the problem (2), (3) if the following
integral relation

[ [{uey.nlo, v+ 40,060+ Bo, (. 3.0)] jasdyas

R*RT
+ [o(x, 3,00y (x, y)dxdy =0 (5)
R2
holds for every test functions ¢(x,y,7) defined in R’ and

differentiable in the upper half plane and vanishes for /x*+y” +7
sufficiently large.

Theorem 1. If the u(x,y,f) is a continuous weak solution of the
main problem, then the function wu(x,y,f)=u,(x—At,y—Bt) is a
soft solution of the main problem.

The proofs of the Theorem 1 and Theorem 2 are developed
similarly as in [12].

Proof According to the definition of a weak solution we have

I I{u(x, v, t)[vt (x,y,0)+ Av_(x,y,0)+ By g (x,y, t)] }dxdydt

R*RT
+ [o(x, .00 (x, y) ddy =0 6)
R2

for every smooth function v(x,y,f) which vanishes for

Vx> +y* +t sufficiently large.

Applying the following transformation of variables
E=x—-At, n=y-Bt,7=1t,
()

(6) can be expressed as
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[ [{un.0m.&n0}dédn+ [WEn.0u (& n) dédn=0

25T
RTR,

or

| { [u¢.n.ow & no) dﬂ+V(§,77,0)u(§,77,0)}d§ =0

for every smooth v(x, y,7) with appropriate support. If we define

o0

F(gm=[un,ow,&nr)dr

0

then the previous relation can be rewritten as
[[F.m+u(&.n0mé n0]dédn =0,
R2

This implies that (&, n)+u(E,n,0w(E,n,0)=0 for, if there were
and domain [£,¢,,]x[n,,n,] where this is different from zero.
Then we have

[[F&.m)+u&.n.05(&.n.0)dédn > o,

which is a contradiction. We conclude that

[u€.n.ow &m0 de+w(En0uE.n.0)=0.

i
Since, Iv, (&,n,7)dr=-—v(&,n,0), then
by
[ve€.n.ou(€.n.0)dr = —v(E.n.0)u, (.0,
i
and we get

[lu.n.o—u& . Enode=o.

From the continuity of # we conclude that

u(G,n,7) = u(S,m) =ty (x —At, y = Br).
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Theorem 2. If u,(x—At,y—Bt) is integrable, then the function

u(x,y,t) defined by the formula (4) is a weak solution of the main
problem.

Proof Let v be a smooth function which vanishes for y/x* +y* +7
sufficiently large. Consider the expression

I Iuo (x—At,y— Bt){vt (X, 0,0+ Av (x, y,1) + By (X, ,1) }dxdydt

2,T
R7R,

+ [(x, 2.0, (x, y) dxdy] (8)

Taking account into consideration the (7), we have

[ [uo&.myv &m0y dédndz + [v(x,y.0)u, (x, y)dsdy.

RZRT
During the integration with respect to 7, since v=0 for
sufficiently large 7, the sum of these integrals vanishes. Hence, the
function wu(x,y,y)=u,(x—At,y—Bt) 1s a weak solution of the

main problem.
Integrating the equation (2) on the domain D, with respect

to x, y and using the Green’s formula we get

%ﬁu(é,n,t)dfdmr jAudy—Budx =0
ab

oD, '

or

2 [ jute.ny dein + ffuceon.o)-uianoldn

= B[[u(¢, y.0)—u(&,b,n]dg =o.
The last equation can be rewritten as

a x ¥ ¥
= | Jut.n.0dédn + Afutxn,dn
a b b
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~ Blu(&, y,0dE = p(a,y,0)~p(x,b,0). ©)

¥ x
Here, o(a,y,)=Afu(a,n,0dn, y(x,b,0)=Blu(,b,0d¢
b a

The problem finding the solution of the equation (9) subject to (3)
will be called as first auxiliary problem.

We introduce the following operator

_20

3C) oy

(10)
and the function defined as

v(x,y,0) = [ [u(é,n,0)dédn+®,(a,y,)=¥,(x,0,0), (11)

where ¥, (x,b,f) and @, (a,y,t) are the integrals of y(x,b,) and
o(a,y,t) with respect to ¢, respectively. It is easily shown, that the
function ¢(a, y,t)—y(x,b,t) € ker3. Indeed,

Je(a, y,0)—w(x,b,1)]=3 Aju(a, n,)dn + B]E u(&,b,0)dé |=0.

For the sake of simplicity, we denote H(a,b,x,y,1)
=@(a,y,t)—y(x,b,t) and it is obvious that IH (a,b,x,y,t)=0.

Taking into consideration (11), the equation (9) takes the
form

w0 VY p VYD) (12)
ot ox

The initial condition for the equation (12) is
v(xayao):vo(xay)a (13)

here the function v,(x,y) is any solution of the equation
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azvo (.X, y) e
Ty (x, ). (14)
From (11) we have
O*v(x, 1,0) _
oxy u(x, y,1). (15)

Indeed, if we differentiate the relation (12) at first with respect to x
, then with respect to y we prove validity of (15).

The problem (12), (13) will be called second auxiliary
problem. The second auxiliary problem has the following
advantages:

¢ The differentiability property of the function v(x, y,7) with
respect to x and y is two orders higher than u(x, y,f)

e The function u(x,y,f) may be discontinuous.

e By obtaining the solution u(x,y,7) of the problem (12),

(13), we does not use the derivatives u_, u,, u,, which does not

¥y 2
already exist, usually.

It is obvious that the solution of the auxiliary problem is not
unique. The following theorem is valid:

Theorem 3. If the function v(x,y,f) is soft solution of the
auxiliary problem (12), (13), then the function u(x, y,f) defined by
(15) is a weak solution of the main problem.

Proof Let the function ¢(x, y,f) is a test function and we consider
the following expression

0= [Ip(x,y.1) P a2 Y dydt.
h ot ox oy

After some simple manipulation we get

I¢(x,y,t) 83v+A83v+B83v
P ot ox oy

dxdydt = 0.
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Applying integration by part to the last equality with respect to ¢,
x, y respectively have

I(/’(x y,l){au(x y,t)+A8u(2,y,t)+Bau(2,y,t)}dxdydlzo
x y

This completes the proof.

3. TWO DIMENSIONAL SCALAR CONSERVATION LAW

In this section the two dimensional scalar equation which describes
a certain conservation law as

RO O
ot ox oy

(16)

is considered. We assume that the equation is subjected to the
initial condition (3).
Relatively F (u) and F,(u) we assume that
(1) F,(u) and F,(u) are continuous differentiable functions,
(i) F(u)=0,(i=1,2) for u>0,
(iii) F(u) has an alternative signs, te. the F (u),(i=1,2)
functions have the concave and convex parts.

The solution of the problem (16), (3) obtained using the
characteristics method is

u(x, y,0) =uy(&,1) , (17)

where & =x—F/(u)t and n=y— I, (u)t are the special coordinates
moving with speed of F(u) and F)(u), respectively. From (17) we
get

ity

55

]
o
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Ou,y
on

l—i—[F(u) §°+F”() ﬂj

it
oy
ou_ F(u)angF(u)

ot , o L e Oty ),
l+[Fl(u)8§+F2(u)8njt

As it is seen from this formulas, if % <0, % <0 and
n
F(u)>0, (i=1,2) (or Gty 0, Gty -, Oand F(u)<0) at the
¢ on
value
1
1>1, =
Fin S F 0

the derivatives u,, u, and u, are approaching to infinity. Therefore

the classical solution of the problem (16), (3) does not exist. The
weak solution of the problem (16), (3), we will be defined as
follows.

Definition 2. The function u(x,y,f) satisfying the initial condition

(3) is called a weak solution of the problem (16), (3) if the
following integral relation

J I I up, + F,@)g, + I, ()p, dsdydi

RERE
+ [t (x, )0, 3,0) ety = 0 (18)
R2
holds for every test functions ¢(x,y,7) defined in R’ and
differentiable in the upper half plane and vanishes for /x*+y” +7

sufficiently large.
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In order to find the weak solution of the problem (16),(3) in
sense (18) we will introduce the auxiliary problem as above.
Integrating the equation (16) on the region D, we get

f ”{8@! O () 6};; 7(7u)

}dfdﬂ

> jj &m0+ ] (aF 1) , ag;”)jdfdn

_ % I I u(&,n,0)dédn + I[F1 (w(x,1,0)—F, (u(a,n,0)ldn

+ ]E[Fz (&, y,0)- F,(u(&,b,0))ldé.

The last equality can be rewritten as

o0 u(é,n,)dédn + 0 F(u(x,n,0))dn + x By (€, y,0)E
ot

= q)(a, v, t)+ ‘P(x, b, t).

Here

D(a,y,0) = [ F(ula,n,n)dn, ¥(x.b,0)= [ F,u(,b,n)E 1t

is clearly seen that ®(a, y,1)+¥(x,b,1) e ker 3. Indeed,

3{®(a, .0+ ¥ (x,b,0}= S{ [Futan,n)n+[F, (u(f,b,n)df}

_ OF(ua,y,1) , OF,(u(x,b,0) _
ox oy

We denote by v(x, y,f) following expression
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v(x,y,0) = [ [u(&,n,0dédn+ H,(a,b,x,y,0), (19)

where H (a,b,x,y,t) e ker 3. From (19) we have
O*v(x, y,1)
oxoy

Taking into consideration to (19) we get

ov(x, y,1) +TE(82V(X’"’Z)jdn +]~Fz(82v(§,y,l)jd§ o
ot t oxon ocoy

u(x, y,t) =

a

or
VX, ,1)

—= + !Fl ((x,7,0))dn + !Fz (W, y,0)dE=0. (20)

The initial condition for the (20) is
v(x, 1,0) = vy (%, ). 21

Here the function v,(x,y) is any differentiable solution of the
equation (14).

The auxiliary problem (20), (3) has following advantages:

(i) In this case the functions u(x,y,f), F,(u(x,y,t)) and
FE,(u(x,y,t)) can be discontinuous too,

(i1) the order of differentiability of the function v(x,y,7)
more than the order of differentiability of the function u(x,y,7),

(1i1) the derivatives u_, u, and u, in algorithm for obtaining

y
of the solution of the problem (16) and (3) does not occur, as these
derivatives does not exist.

The following theorem is valid.

Theorem 4. If the function v(x,y,7) is solution of the auxiliary
problem (20), (3), then the function wu(x,y,f) expressed by
u(x, y,t)=3v(x, y,t) is a weak solution of the main problem (16)
and (3).
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4. FINITE DIFFERENCES SCHEMES IN A CLASS OF
DISCONTINUOUS FUNCTIONS

In this section, we intended to develop the numerical method for
finding the solution of the problem (2), (3), and investigate some
properties of it. For this aim, we will use the auxiliary problem (9),
(3). As it is stated above, in the nonlinear case the solution of the
main problem has discontinuous points, whose locations are
unknown beforehand. The properties found in the exact solution
does not permit us the application of classical numerical methods to
this problem directly. In this case we will use the problem (20), (3).
By using the advantages of the suggested auxiliary problem, a new
numerical algorithm will be proposed. In order to demonstrate the
effectiveness of the proposed method in this study we will consider
only linear case. In [14], [15], [16] the suggested numerical method
was studied for an one dimensional nonlinear scalar equation.

The offered method will be developed to find the numerical
solution of the Cauchy problem for the equation (1) in following
study.

4.1 The Finite Differences Scheme for Cauchy Problem

By investigating a numerical solution of the Cauchy problem for
the equation (1) we will use the ideas and notations presupposed in
familiar books [19] and [20].

In order to construct the numerical algorithm, the domain of
definition of the problem (2), (3) is covered by the following grid

a)hl,hz,z’ :{('xiayjalk);' 'xi :jhl> yj :jh2> Z(k :kT>
i=0,12,..; j=0,12,.; k=012, :h >0,k >0,7>0},

where, ,, h, and 7 are steps of the grid with respect to x, y and
t, respectively.

In order to approximate of the equation (9) by the finite differences,
the integrals leaving in (9) are approximated as follows

Ju@.y0ds=nYU, . 22)
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Tuﬁuﬁﬂdﬂ=45534%w (23)
and
j j (& n,0)dédn = hh, ZZUW (24)

Taking into consideration (22)-(24) the equation (9) at any point
(i, j,k) of the grid Oy e is approximated as follows

j-1 i—1

T T T T
U on=(1——A+ W BU, ,,— e A;Ui)ﬂ)k + ZB;UW
i-1 j-1 T j-1 T i—1
o ZZ(UV,,U,kH - Uv,,u,k )+ 7 AZUO,,U,k T BZUv,n,k;' (25)
v=l u=1 hl u=1 hz v=1

(i=0,12,..N; j=012,..M, k=0,1,2,..).

2 AR

The initial condition for (25) is
U, o=u(x,y,), (=012, .N; j=012, . M) (26)

Now, we approximate the problem (12), (13) by the finite
differences. For this aim, we introduce the following notations

U('xzayja k) z]> U('xi?yj?ZkJrl):(}i,j?
_(U Uz 1]) AJ‘/U _(U Ul_] 1)

N U, =AU,  —A, Lk 1), Ayx =AU —AU ).

Xy 1] x4

In this notations the problem (12), (13) is approximated by the
finite differences scheme as follows

s T T
V=V = A A~ BT, 27)

2.
Vo=V (28)

Here, the function I/if(j).) is any continuous solution of the equation

Ve =uy(x,, ), (29)
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and the grid functions U, ; and V, ; represent approximate values
of the functions u(x,y,f) and v(x,y,f) at point (i,J,k)
respectively.

Note 1. It should be noted that AU =AU . In order to prove this
property, we consider

A U A U A U (U U, 1]) (Ui,jfl _Uifl,jfl)

X =1

-v,,-v,,.)-U

i—1.j

~U,,,1)=AU.

It is easy to prove that, if the grid function V_is the solution the

L

problem (27), (28), then the grid function U,.’ ; defined by

U, =—NV, (30)

is the solution of the problem

0, =U, AhlAfol] Bh AU, G1)
2
U, jo0 =t (%,,%,). (32)

In order to prove this claim, let us consider the relation

ZZAxy A’J ZZK u = ) (Vi,j—l_l}i—l,j—l)J
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D P) A AR AR AN

T
- A E [(A)_CVZJ - AJ—CVH,]‘) - (Afl/i,jfl - A;‘cVi—l,j—l)]

It is proved the correctness of our claim.

5. NUMERICAL EXPERIMENTS

In this section, in order to demonstrate the suggested method we
will carry out some numerical experiments using the suggested
method. At first, we will find the exact solution of the auxiliary
problem (12), (13), and using the formula (15) the exact solution of
the main problem. Next, we will compare these with the solution of
the main problem obtained by classical methods.

Figure 2: The graph of the function #,(x, y); a) u, >u,; b) u, <u,

For the sake of simplicity the initial function of the main
problem u,(x,y) we will take the following form

uO(xay): >O£y£l (33)
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where u, and u, are given real constants. In this case, the function
v,(x,y) according to (14) is defined as

uxy, —2<x<0

v, (x,y) = 0<y<l.
u,xy, 0<x<2

Figure 3: The graph of the function vy (X, y); a) u, >u,; b) u, <u,

The graphs of the initial functions u,(x,y) and v,(x,y) are shown
in Figure 2 and Figure 3, respectively.
The exact solution of the problem (12), (13) obtained by the
characteristics method is
u(x—At)(y—Bt), -2<x<0
v(x, y,1)= O0<y<l.
u,(x—At)(y—-Br), 0<x<2

>

Figure 4: The graphs of the function v(x, y,7), A=0.5, B=1.0, T=1.0;

a)u, >u, by u <u,
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The graphs of v(x,y,7) at time 7 =1.0 are given in Figure 4. The
solution of the problem (2), (3) obtained by the formula (15) is
demonstrated in Figure 5. On an equal footing the graphs of the
exact solution obtained by the formula (4) is given in Figure 6, at
value 77=0.6.

Figure 5: The graphs of the function u(x,f,1)=3v(x,y,t), A=0.5,
B=10, 7'=1.0a) u, >u,, b) u, <u,

Figure 6: The time evaluation of #(X, y,f) atthe value 7' =0.6 a) u, > u,
by <u,

6. CONCLUSION
In this study an original method for finding the exact and numerical

solutions of the Cauchy problem for the first order 2-D nonlinear
partial equations in a class of discontinuous functions is proposed.
The properties of the exact solution of the linearized equation are
also studied.
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The special auxiliary problem whose solution is more
smoother than the solution of the main problem is introduced,
which makes possible to develop efficient and sensitive algorithms
that describe all physical properties of the investigated problem
accurately.
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