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ABSTRACT 

A surface M in a Kaehler surface N is called purely real if it contains no complex 
points. A slant immersion which was introduced by B.Y. Chen in [1] is an isometric 
immersion of a Riemannian manifold into an almost Hermitian manifold with constant 
Wirtinger angle. In this article, we study slant surfaces and purely real surfaces and also 
give a general optimal inequality for purely real surfaces in complex space forms 
proved by Chen. 

Key words and phrases: Purely real surfaces; slant surfaces, Wirtinger angle; optimal 
inequality. 

ÖZET 

N Kaehler yüzeyinin bir M yüzeyi hiçbir kompleks nokta kapsamıyor ise bu yüzeye sırf 
reeldir denir. Sabit eğilimli (Slant) bir immersiyon [1] de B.Y.Chen tarafından bir 
Riemann manifoldunun sabit Wirtinger açılı hemen hemen hermityen bir manifoldu 
içine olan izometrik bir immersiyonu olarak tanımlanmıştır. Bu makalede, sabit 
eğilimli ve sırf reel yüzeyler çalışılmış ve kompleks uzay formlarındaki sırf reel 
yüzeyler için Chen tarafından ispatlanan genel optimal bir eşitsizlik verilmiştir. 

Anahtar kelimeler: Sırf reel yüzeyler; sabit eğilimli yüzeyler; Wirtinger açısı; optimal 
eşitsizlik. 

1. INTRODUCTION 
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Let N be a Kaehler surface endowed with a complex structure J 
and a Riemannian metric g which is J- Hermitian, namely; 

g(JX,JY) = g(XJ\ VX, Y e TpN 

VJ = 0 
for p ^ N , where V is the Levi-Civita connection of g . Then 
the curvature tensor R of N satisfies the following equations: 

R(X, Y; Z, W) = -R(Y, X; Z, W), 
R(X,Y;Z,W) = R(Z,W;X,Y\ (1.2) 

R(X, Y; JZ, W) = -R(X, Y;Z,JW), 
where R(X, Y; Z, W) = g(R(X, Y)Z, W) . 

Let M be a surface in a Kaehler surface N with induced 
metric g from g . Denote by V and R the Levi-Civita connection 
and the curvature tensor of M, respectively. So the formulas of 
Gauss and Weingarten are given respectively by 

VxY = VxY + h(X,Y), (1.3) 

= + (1.4) 

for vector fields X, Y tangent to M and £ normal to M , where h, 
A and D are the second fundamental form, the shape operator and 
the normal connection. 

The shape operator and the second fundamental form are 
related by 

g(k(X,Y),£) = g(AiX,Y) (15) 

for X, Y tangent to M and £ normal to M. The equations of 
Gauss, Codazzi and Ricci are given respectively by 

R(X, Y; Z, W) = R(X, Y; Z, W) + (h(X, W), h(Y, Z)> -
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<h( X, Z ), h(Y ,W )>, 

(R(XJ)Zf =(Vxh)(Y,Z)-(yrh\X,Z), (1.6) 

g(RD (X, i f ) = R(X, 7; £ i f ) + g([ As, ^ ]X, Y\ (1.7) 

where X,Y,Z,W are vectors tangent to M and (, > is the inner 
product associated with the metric g, Vh and RD are defined by 

(Vxh)(Y, Z) = Dxh(Y, Z) - h(VxY, Z) - h(Y, VXZ), (1.8) 

RD (X, Y) = [Dx , DY ] - D[ X,Y ]. (1.9) 

The mean curvature vector H of the surface is defined by 

H = 1 trace h (1.10) 

The surface is called minimal if H vanishes identically. 

Let N(4s) denote a complex space form with constant 
holomorphic sectional curvature 4s. Then the Riemannian 
curvature tensor of N(4s) satisfies 

R(X, Y; Z, W) = e{{X, W){Y, Z> - {X, Z)(Y, W> + <JX, W){JY, Z> 

-< JX, Z >< JY, W > + 2< X, JY >< JZ, W » . (1.11) 

2. BASIC FORMULAS ON SLANT SURFACES 

An immersion of a surface M into a Kaehler surface is called 
purely real if the complex structure J on N carries the tangent 
bundle of M into a transversal bundle, [6]. Obviously, every 
purely real surface admits no complex points. A point on a purely 
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real surface M is called Lagrangian point if J carries the tangent 
space T M into its normal space Tp;M. A purely real surface is 
called Lagrangian if every point on M is a Lagrangian point. 

Let M be an oriented surface immersed in a Kaehler 
surface N. For any vector X tangent to M, we put 

JX = PX + FX, (2.1) 

where PX and FX are the tangential and the normal componenets 
of JX, respectively. Thus, P is an endomorphism of the tangent 
bundle TM and F a normal bundle valued 1-form on TM. The 
submanifold M is called a complex surface if F = 0 and is called 
a totally real surface if P = 0, and called proper if it is neither a 
complex surface nor a totally real surface,[9]. P and F defined by 
(2.1) are the endomorphisms on the tangent bundle of M. Since N 
is almost Hermitian, we have 

{PX, Y) = -<X, PY), X, Y e T(M). 

Hence if we define Q = P2 then Q is also a symmetric 
endomorphism of the tangent bundle of M. Therefore, at each 
point x e M the tangent space T M admits an orthogonal direct 
decomposition of eigenspaces of Q TM = D(x)®...®D(x). 

Since P is skew-symmetric and J 2 = -1 , each eigenvalue 
Xi of Q lies in [-1,0]. If 0, then the eigenspace 

D (x) corresponding to Xi is of even dimension and invariant 
under P, that is P(Dt (x)) = D (x). Furthermore, for each Xt ^ -1 , 
dim F ( D (x)) = dim D(x) and the normal subspaces 
F(D(x)), i = 1,...,^, are mutually perpendicular. Hence 
dim N > 2dimM - dim D (x), where D_i (x) denotes the 
eigenspace of Q corresponding to eigenvalue -1. For 
X,Y e T M l e t us define 
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(V XQ)Y = VX (QY) - Q ( V X Y ) . ( 2 . 2 ) 

Then the following lemmas can be proved. 

Lemma 2.1 [1,8] Let M be a submanifold of an almost 
Hermitian manifold N. Then the symmetric endomorphism Q is 
parallel, that is VQ = 0, if and only if each eigenvalue Xi of Q is 
constant on M. 

Each distribution Di corresponding to the eigenvalue Xi of Q is 
completely integrable. M is locally the Riemann product 
M x M 2 x...xMs of the leaves of distributions. 

Lemma 2.2 [1,4] Let M be a submanifold of an almost 
Hermitian manifold N. Then VP = 0 if and only if M is locally 
the Riemannian product M xM2 x...xMs, where each M i is 
either a complex submanifold, a totally real submanifold or a 
Kaehlerian slant submanifold of N. 

From Lemma 2.1 and Lemma 2.2 we get easily the 
following 

Proposition 2.1 [3] Let M be an irreducible submanifold of an 
almost Hermitian manifold N. I f M is neither complex nor totally 
real, then M is a Kaehlerian slant submanifold if and only if the 
endomorphism P is parallel, that is VP = 0. 

Then we may prove the following theorem for surfaces in 
an almost Hermitian manifold. 

Theorem 2.1, [5] Let M be a surface in an almost Hermitian 
manifold N , then the following statements are equivalent: 

(i) M is neither totally real nor complex in N and VP = 0. 

(ii) M is a Kaehlerian slant surface. 

(iii) M is a proper slant surface. 

Proof. Since every proper slant submanifold is of even 
dimension, Lemma 2.2 implies that if the endomorphism P is 
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parallel then M is a Kaehlerian surface, or a totally real surface, 
or a kaehlerian slant surface. Thus if M is neither totally real nor 
complex by definition the statemenets (i) and (ii) are equivalent. 

It is clear that (ii) implies (iii) . Now we will prove the 
converse. Let M be a proper slant surface of N with the slant 
angle a . Let us choose an orthonormal frame {e^ e2} such that 
Pe = (cosa)e2, Pe2 = - (cosa )e . On the other hand we may 
write that 

Vxe = « i ( X ) e + ( X e , V X = ^ ( X x + ^ 2 2 ( X > 2 

which implies that ( V x P ) e = 0 and (VxP)e2 = 0. Therefore, 
VP = 0, that is P is parallel and this implies that M is a 
Kaehlerian slant surface. For any vector field Ç normal to the 
submanifold M in N, we put 

J £ = t% + n£, (2.3) 

where and are the tangential and the normal componenets 

of JÇ , respectively. 

Now, for each nonzero vector X tangent to M at point p, 
we will define the angle a(X) between JX and TpM. For an 

oriented orthonormal frame {e, e2} of T M, it follows from (2.1) 
that 

Pe = (cosa)e2 , Pe2 = - ( c o s a ) e (2.4) 

for some function a . This function a is called the Wirtinger 
angle. The Wirtinger angle is independent of the choice of e , e2 

which preserves the orientation. Thus, it defines a function a on 
M , called the Wirtinger function of M. For oriented purely real 
surface in N, the Wirtinger function is differentiable function. A 
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purely real surface is called a slant surface if its Wirtinger angle 
is constant. The Wirtinger angle of a slant surface is called the 
slant angle, [3]. A slant immersion with slant angle a is said to 
be a -slant. An isometric immersion f:M ^ N of M in N is 
called holomorphic if at each point p e M we have 
J(TM) = TM and it is called totally real if J(TpM) c Tp

LM 
for each p e M , where T p M is the normal space of M at p. 
Then a totally real immersion will be called Lagrangian if 
dimD M = dimD N as defined above. Holomorphic and totally 

u real immersions are slant immersions with slant angle 0 and —, 

respectively. A slant immersion is called proper slant if it is 
neither holomorphic nor totally real. 

For submanifolds for a Kaehlerian manifold we may prove 
in general the following important lemma, [7]. 

Lemma 2.3 Let M be a submanifold in a Kaehlerian manifold N. 
Then 

1) For X, Y e T(M), we have 
( V x P)Y = th( X ,Y) + AFYX 

and hence VP = 0 if and only if A^Y = A^X, X, Y e T(M). 

2) For any X , Y e T ( M ) , we have 

(Vx F )Y = nh( X, Y) - h( X, PY) 

and hence VF = 0 if and only if 

An£X = -A£PX, £ e N(M), X e T(M), 

such that 

Jh( X, Y) = th( X, Y) + nh( X, Y). 
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Proof. For N is Kaehlerian, VJ = 0 . Then for all J , 7 e T(M) 

0 = VXJY - JVXY = Vx (PY + FY) - J(VXY + h(X, Y)) 

= V xPY + h( X, PY ) - AFYX + DXFY - P(V XY ) - F (VXY ) -
th( X, Y) - nh( X, Y). 

If we equate the tangential and the normal parts of both sides, 
then we get 

(Vx P)Y = th( X, Y) + A^X, 
(Vx F )Y = nh( X, Y) - h( X, PY). 

Thus P is parallel if and only if ( th(X , Y) + AFrX, Z> = 0 which is 
equivalent to 

< AfyX , Z > = -<th( X, Y ), Z > = < A F X Y , Z >. 

Besides, V F = 0 if and only if <nh(X, Y) - h(X, PY), £> = 0 

» <h(X, PY),£> = <nh(X, Y),£> = - ^ Y , X> » 

<h(PY, X ),£> = -< ̂ Y , X > 

» <AiPY,X> = -<A^Y,X> ̂ -ASPY = An̂ Y. 

Corollary 2.1 Let M be a surface in a Kaehlerian manifold N. 
Then M is slant if and only if for X,Y e T(M) A^X = AFXY. 

3. SLANT SURFACES AND A GENERAL INEQUALITY 
FOR A PURELY REAL SURFACE 

For a purely real surface M immersed in N, if we put 
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e3 = (csc a)Fe1, e4
 = ( c s c «)Fe2 , (3 1) 

then we may derive from (2.1),(2.4) and (3.1) that 

Jex = cos ae2 + sin ae3, Je2 = - cos « + sin «e4 (3.2) 

Je3 = - s i n « - cosae4, Je4 = - sinae2 + cosae3 (3.3) 

<e3, e3 ) = <e4, e4 > = 1, <e3, e4 > = 0. ( 3 4 ) 

We call such a frame (e1, e2, e3, e4 } an adapted orthonormal frame 
for M. 

Let co1,a2 denote the dual 1-forms of e , e . For an 
adapted orthonormal frame (e1, e2, e3, e4}, we may put 

Vxei = c(X)e2, Vxe2 = - a ( X ) e (3.5) 

Vxe3 = 0(X)e4, Vxe4 = -O{X)e3 (3.6) 

for some 1-forms a and O known as the connection forms. 

Then we have 

d cC = A A C 2 , d a 2 = - a A A 1 . ^ ^ 

Now for any vector rç normal to M, we may write 
rç = (rç, e >e + ( ^ e ) e . For the second fundamental form h of M , 
we have h(ei, e j ) e T1 (M ), and therefore, we may write 

h(ei,ej) = j + h ^ , 1 < i,j < 2 (3.8) 

( h ( e , , e j ) , e 3 ) = hj , (h(e,,ej),e4) = hj . (3.9) 

68 



M. ERDOGAN, B. PiRiNQCi, G. YILMAZ and J. ALO 

X h y (X) =YJ{h(el, e,), >< X, e, > 
1 1 

= (h ^ et, X<X, e, >e, j , e}j = (h(X, et), er > = (e, A^X>, r = 3 ,4. 

where Ae is Weingarten map and VXer=-Ae X + Dxer. Here 

Vis the connection on N and (Dxer,e1) = (Dxer,e2) = 0. So we 
get 

2 

Y J h y ( X ) = (ei,AeX)-(ei,Dxer) = -(ei,Vxer) 

= {Wxei,er)-X{ei,er) = {Wxei,er) 

=y (x). 

Thus we proved that 

y = h O + h^y2 , = h i y 1 + h o o 2 (3.10) and 
4 7 4 1 7 4 2 4 7 4 1 7 4 2 1 1 \ y = + h^o , y = + o (311) 

where h is symmetric that is hr = h i . Also , since the Weingarten 
map is symmetric we have 

0 = < v x e „ o = v x o 

= -<e , , -A e X + ^ > = <e,, A^X> = ( A ^ , X>. ( 3 1 2 ) 

On the other hand, since Ae e. is tangential, we get 
Ae,ei = X( , ̂  >ei = E ( h ( e i , e i

 ) , er H = X hiTei . 
i i i 

Then we have 
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= j + j V ; = j + j ( 3 1 3 ) 

It is known that the Gauss and normal curvatures of the surface M 
in a Kaehler surface N are given by 

G = h X - (hi2)2 + h h - ( h 2 ) 2 

G = h i i h i 2 + h12h22 - h12h11 - h2!2h12 

Theorem 3.1 Let M be a slant surface in a Kaehler surface N. 
Gauss and normal curvatures of M are identically equal, namely 
G = GD . 
Proof. Let {e , e , e , e } be an orthonormal adapted frame as in 
above. By using Corollary 2.1 we have 

h^ = (h(e, e2 ), e ) = (h(e, e ), (csc a)Fel ) 

= (csc o)(h(ex, e2 ), Fex ) = (csc «)( ej, e2 ) 

= (csc «)( ̂ Fe e2, ej ) = (csc «)( AF% ^ ) 

= (csc a)(h(e1, e ), Fe2 ) = (h(e, e ), e ) = hi. 

Similarly, we have 

h|2 = (h(e2, e2 ), e3 ) = (h(e2, e2 ), (csc a)Fe1 ) 

= (csc«)(h(e2, e2), F ^ ) = (csc«)( A F ^ , e2 ) 

= ( c s c « ) ( ^ e 2 , e 2 ) = ( c s c « ) ( A F e 2
 e ı , e 2 ) 

= (csc «)(h(e1, e2), Fe2 ) = (h(e1, e2 ), e4 ) = hj2. 
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Therefore, using (*) we get R = RD. We need the following 
lemma, [1,6]. 

Lemma 3.1 Let M be a purely real surface in a Kaehler surface 
N. Then, with respect to an adapted orthonormal frame 
(e1, e2, e, e }, we have 

e1& = h^1
 -

 h 1 2 ,
 e

2 a = h 2
 - h22, (3 14) 

^ = o - (hfi + h t ) cot a , 0 2 = o2 - ( h f 2 + h22 ) cot a 

where o . = o ( e. ) and O. = 0 ( e. ) for j = 1,2. 

Now we will give a general optimal inequality for purely 
real surfaces proved by B. Y. Chen in [6]. 

Theorem 3.2, Let M be a purely real surface in a complex space 
form N(4s) . Then we have 

H 2
 > 2 { ^ - M 2 - ( 1 + 3cos2 a)s} + 4 < V a , J h ( e , e 2 ) ) c s c a 

(3.15) 

with respect to an orthonormal frame {e, e2} satisfying 

(Va, e2) = 0, where H 2 and K are the squared mean curvature 
and the Gauss curvature of M , respectively. 

The equality case of (3.15) holds at p if and only if, with 

respect a suitable adapted orthonormal frame e ^ e 4 } , the 
shape operator at p take the forms 

( 3m 8\ ( 5 + e a p ^ 
A = , Ae = 1 

5 p ) e4 ^ p 3 5 + 3exa 
(3.16) 
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Proof. Assume that M is a purely real surface in M. Without loss 
of generality, we may choose an adapted orthonormal frame 
(e1, e2, e, e } such that the gradient of a is parallel to e at p. So, 
we have V a = ( e t a ) e . Let us put 

h(e, e ) = Pe3 + ye4, h(e, e2 ) = 5e3 + pe4, h(e2, e2 ) = + ¡e^. 
(3.17) 

Then by Lemma 3.1 we have 

A = ( P 5 ^ 

5 P y 
A = 

(5 + exa p 

P d J 
(3.18) 

From this we see that the squared mean curvature H 2 and the 
Gauss curvature K of M satisfy 

4H2 = ( P + p ) 2 + ( 5 + d + exa)2, (3.19) 

^ = Pp + 5d + ¡ieYa - 5 - p + (1 + 3 cos2 a ) s (3.20) 

Hence, we obtain 

H 2 - 2K + Va||2 = 1 {(P - 3p)2 + ( ¡ - 3(5 + e,a)2} -

- 2(1 + 3 cos2 O)S > - 4 ^ 0 - 2(1 + 3 cos2 O)S. (3.21) 

On the other hand, from VO = ( eo)e and (3.1) we have 
F (VO) = (eo) sin oe3. Hence, we obtain from (3.17) that 

8exo = ( J (VO), h(e, e2 )> csco. (3.22) 

Combining this with (3.21) gives inequality (3.15). 
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If the equality case of (3.15) holds at a point p , then it 
follows from (3.21) that p = 3m and ju = 38 + 3exa hold at p. 
Hence we obtain (3.16) from (3.18). Conversely, if (3.16) holds 
at a point p, then it follows from (3.16) and Lemma 3.1 that we 
have e2a = 0 at p. Thus, we get (Va, Jh(el, e2 )} = - 8 e a s i n a at 
p. So, it is a straight-forward to show that (3.16) holds at p. 

Now, we may express the following two results of the 
Theorem 3.2 about a slant surface in a complex space form 
N(4s) and a purely real surface in C2, [6]. 

Corollary 3.1 If M is a slant surface in a complex space form 
N(4s) with slant angle 0, then we have 

H2> 2{K-(1 + 3cos2 0)ej. (3.23) 

Corollary 3.2 Let M be a purely real surface in C2 Then we have 

H2 > 2 { K - | | v a | 2 + 2(Va, Jh(e,e2)}csca} (3.24) 

with respect to an orthonormal frame {e1, e2} satisfying 
( V a , e } = 0. 

The equality case of (3.24) holds if and only if, with respect 
to a suitable adapted orthonormal frame {e1, e2, e3, e4}, the shape 
operators of M take the forms 

(3m 5 ( 8 + e,a rn 
A = , 4 = 1 

8 m J 4 v m 38 + 3exa 
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