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Abstract 

 

The global demand for energy continues to rise, driving the need for sustainable and efficient energy 

solutions. This study presents a comprehensive framework that combines the fuzzy best-worst method 

(BWM) with geographic information systems (GIS) to optimize solar power plant site selection. Eight 

criteria, including solar irradiation, slope, aspect, and proximity to infrastructure and water resources, were 

evaluated using the fuzzy BWM approach. These weighted criteria were integrated into GIS to create a 

suitability map, categorized into five levels of potential. The proposed framework was applied to Konya, 

Türkiye, a region with abundant solar energy resources, and highly suitable sites for solar photovoltaic (PV) 

power plant development were successfully identified. Furthermore, a sensitivity analysis was conducted 

to validate the robustness of the results. The findings demonstrate the framework’s potential as a reliable 

decision-support tool for energy planners and policymakers, offering a replicable model for regions with 

similar characteristics. 

 

Keywords: Best-Worst Method, Fuzzy Logic, GIS, MCDM, Renewable Energy, Solar.  

 

1. Introduction 

 

The energy demand is growing globally due to an 

increasing population and intensive industrial activities. 

This has emphasized the need for sustainable and 

efficient energy solutions [1]. As a result, there has been 

a noticeable shift towards exploring alternative energy 

sources, with a particular focus on renewable energy. 

This shift is motivated by the environmental 

consequences and limitations of conventional fossil 

fuels. Solar energy is considered a leading candidate 

among renewable options because of its renewable nature 

and consistent availability [2]. 

 

Today, the utilization of solar energy has experienced a 

surge in global popularity. In alignment with this global 

trend, Türkiye is directing its attention toward optimizing 

the use of renewable resources, with a particular 

emphasis on solar energy, as a strategic approach to 

efficiently address its expanding energy requirements. 

According to Türkiye's National Energy Plan [3], 

Türkiye aims to achieve net zero emissions by 2053. The 

plan outlines strategic actions until 2035 and anticipates 

that Türkiye's primary energy consumption,  

 

which was 147.2 million tons of oil equivalent in 2020, 

is expected to increase to 205.3 million tons of oil 

equivalent by 2035. Electricity consumption of Türkiye, 

displaying an average annual increase of 4.4 percent 

during the period spanning 2000 to 2020, is projected to 

sustain an average annual growth rate of 3.5 percent 

through 2035, culminating in a total of 510.5 TWh 

(terawatt-hours). The proportion of electricity in final 

energy consumption, constituting 21.8 percent in 2020, is 

expected to rise to 24.9 percent by 2035. The installed 

electricity capacity in Türkiye, standing at 95.9 GW 

(gigawatt) after 2020, is forecasted to attain 189.7 GW 

by 2035, with renewable energy sources increasing their 

share, rising from 52 percent in 2020 to 64.7 percent in 

2035 (see Fig. 1). Notably, renewable energy sources are 

planned to contribute 74.3 percent to the anticipated 96.9 

gigawatts of new electricity capacity to be commissioned 

by 2035. The most significant increase in investment in 

renewable resources is allocated to solar energy. The 

installed solar power capacity in Türkiye, which is 

quantified at 6.7 GW at the end of 2020, is projected to 
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rise to 52.9 GW by 2035. This significant increase 

represents almost five times the 9.32 GW recorded in 

2022. Once the capacity is realized in 2035, solar energy 

will have the highest share of Türkiye's total installed 

capacity, displacing other sources. 

 

The initial step in establishing solar power plants 

involves identifying regions with high solar energy 

potential by considering environmental, economic, and 

social factors. Proper site selection is critical for 

maximizing energy generation, minimizing costs, and 

ensuring the long-term sustainability of renewable 

energy projects. The integration of multi-criteria 

decision-making (MCDM) methodologies with 

geographic information system (GIS) techniques has 

proven highly effective for renewable energy planning 

[4–9]. Through this integration, decision-makers can 

employ GIS as a dominant tool for handling spatial solar 

energy data, while MCDM methods aid in assessing 

alternative solar power plant locations [10]. The 

techniques of MCDM enable the weighting and 

identification of the most suitable areas by considering 

many criteria. Various approaches, including their fuzzy 

versions, are employed in selecting locations for 

photovoltaic energy plants. 

 

Figure 1. Installed capacity by source in Türkiye [2] 

 

The literature underscores the importance of integrating 

GIS with MCDM methods for solar PV power plant site 

selection. The analytic hierarchy process (AHP) is widely 

applied among these methods. Akkas et al. [11] utilized 

AHP alongside methods such as ELECTRE, TOPSIS, 

and VIKOR for site selection in Central Anatolia, 

Türkiye, while Aktas and Kabak [12] integrated AHP 

with TOPSIS to evaluate solar plant sites across Türkiye. 

Aragonés-Beltrán et al. [13] used AHP for PV solar 

power plant investment decisions in Spain, and Colak et 

al. [14] employed GIS-AHP for optimal site selection in 

Malatya province of Türkiye. Similarly, Al Garni and 

Awasthi [15] adopted a GIS-AHP approach for site 

selection in Saudi Arabia, further demonstrating the 

adaptability of AHP-based models across regions. 

 

GIS integration in solar PV power plant site selection 

extends beyond AHP to various other MCDM methods. 

Lee et al. [16] employed a hybrid MCDM approach, 

using the fuzzy analytic network process (ANP) and 

VIKOR for PV solar plant site selection in Taiwan. 

Shorabeh et al. [10] utilized a GIS-based method for solar 

power plant site selection in Iran, emphasizing the pivotal 

role of geographical information in decision-making. 

Hybrid models that combine multiple decision-making 

methods are emerging as an intriguing aspect. Badi et al. 

[17] introduced a hybrid SWARA-DEMATEL model for 

solar park site selection in Libya, demonstrating the 

versatility of hybrid models in considering financial, 

social, and environmental dimensions in decision-

making processes. Beyond MCDM methods, fuzzy logic 

has found application in certain studies. Zoghi et al. [18], 

in their case study in Isfahan, Iran, employed a fuzzy 

logic model and weighted linear combination method for 

solar site selection, demonstrating the adaptability of 

fuzzy logic in decision support systems. Noorollahi et al. 

[1] designed a decision support tool for suitable sites for 

a solar photovoltaic power plant in Iran, using Fuzzy and 

Boolean logic, AHP, and GIS. The literature emphasizes 

the integration of GIS with various fuzzy techniques for 

effective solar energy plant site selection. These studies 

highlight the critical role of fuzzy techniques in 

enhancing the robustness of renewable energy planning 

by managing uncertainties inherent in the decision-

making process [19–22].  

 

While AHP has been a dominant tool for prioritizing 

criteria in renewable energy site selection, the best-worst 

method (BWM) has recently emerged as a robust 

alternative. Its crisp version has been successfully 
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applied in various renewable energy contexts, including 

assessing renewable energy sources [23], wind and solar 

power plant sites [20,24], solar panel technology [25], 

sites for wind-powered hydrogen production [26], and 

onshore wind plants [27]. However, the integration of 

fuzzy BWM with GIS remains underexplored. Fard et al. 

[28] demonstrated the use of fuzzy BWM with GIS for 

solar site selection, applying the version proposed by 

Guo and Zhao [29]. However, our study adopts the 

improved fuzzy BWM methodology developed by Dong 

et al. [30], which addresses the key limitations of the 

earlier method and provides more accurate and reliable 

results. 

 

This study focuses on the need for site selection in 

Konya, Türkiye, to utilize its vast solar energy potential 

for PV projects. Despite having enormous potential, there 

has been a lack of comprehensive studies focusing on site 

selection for such regional projects. This research aims to 

fill this gap by thoroughly analyzing potential sites using 

a methodological framework outlined in Fig. 2. The study 

provides valuable insights for renewable energy planning 

and development in Konya. This study uses the improved 

fuzzy BWM method to weight the evaluation criteria. 

This method allows for the representation of vague or 

imprecise information, enhancing the robustness and 

comprehensiveness of the decision-making process. The 

study identifies highly suitable areas within Konya 

through a systematic investigation, including criterion 

weighting, GIS analysis, suitability mapping, and 

sensitivity analysis. This demonstrates the model's 

efficacy in addressing the complexities of site selection 

for solar PV projects. The research provides information 

to aid decision-makers in selecting the most suitable sites 

for solar energy infrastructure development in Konya. 

 

Based on the characteristics mentioned above, the 

proposed methodology offers the following 

contributions: 

• Firstly, the study uses tailored criteria reflecting 

Konya's geographical and environmental 

characteristics. These criteria are weighted with 

the fuzzy BWM method to yield more accurate 

results in uncertain conditions. 

• Secondly, a comprehensive sensitivity analysis is 

conducted within the GIS environment to evaluate 

the robustness of the results and to understand the 

impact of individual criteria on the overall 

suitability map. 

• Finally, the study proposes a sustainable and 

adaptable approach by developing a framework 

that can be applied to other regions with similar 

characteristics, even though it is specifically 

tailored for Konya. 

 

The remainder of this study is organized as follows: 

Section 2 delineates the study area and identifies the 

criteria and restriction factors. The fuzzy BWM is then 

introduced as a methodology. Sections 3 and 4 present 

the results and discuss findings from the study. This 

includes calculating the criteria weights using fuzzy 

BWM and conducting suitability and sensitivity analysis. 

Finally, Section 5 concludes the study, highlighting its 

limitations and providing suggestions for further 

research. 

 
 

Figure 2. Schematic representation for the solar PV site selection. 
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2. Materials and Methods 

 

The primary aim of this study is to evaluate site 

alternatives to determine optimal locations for solar PV 

projects in Konya, Turkey, which is renowned for its 

significant solar energy potential. Data for this 

investigation were gathered from various sources, 

including governmental institutions, open-access 

databases, and existing literature. This section provides 

information regarding the study area, the criteria, and the 

methodological framework used.  The methodological 

framework employed in this study is depicted in Fig. 2. 

 

2.1 Study Area 

 

The study area is Konya province, with an area of 40,838 

km2 in southwest Central Anatolia, Turkey. It is located 

between the latitudes of 36°41' and 39°16' N and the 

longitudes of 31°14' and 34°26' E and is recognized as 

the largest province in the country. Konya boasts a robust 

solar resource, surpassing many other regions. With high 

global horizontal irradiance (GHI) levels, Konya has the 

potential for efficient and cost-effective solar power 

generation. The region’s favorable weather further 

enhances the feasibility of solar PV systems. As of 2020, 

Konya’s annual electricity consumption was 8.4 TWh 

(Terawatt-hour) [31]. The province of Konya in Turkey 

is identified as possessing significant solar energy 

potential, as indicated by the Solar Energy Potential Atlas 

(GEPA) [32], as shown in Fig. 3. 

 
Figure 3. Solar energy potential map of Turkey [32]. 

Global radiation values and sunshine hours for the Konya 

Province are shown in Fig. 4. Konya, Turkey, boasts a 

substantial solar resource, outperforming many other 

regions in Turkey regarding sunlight availability. In 

comparison to other areas with lower solar irradiance, 

Konya has the potential to generate solar power 

efficiently and cost-effectively. The region’s solar 

potential suggests it could achieve a significant power 

output, potentially requiring fewer PV modules and less 

installation space than locations with lower solar 

irradiance levels. In addition, Konya benefits from 

favorable weather conditions conducive to PV 

development, including low cloudiness and a limited 

number of days with precipitation [33]. These weather 

characteristics enhance the feasibility and effectiveness 

of solar PV systems in the region. 

 
Figure 4. Global radiation values and sunshine times in Konya province. 

1.98 2.56

4.23
5.2

6.3 6.78 6.81
6.05

5.12

3.73

2.36 1.77

4.19

5.51

6.88
8.03

9.45

11.28
11.97

11.35

9.79

7.35

5.53

3.93

0.00

2.00

4.00

6.00

8.00

10.00

12.00
Global Radiation Values (KWh/m2-day) Sunshine Times (Hours)

total solar radiation 



 

  Celal Bayar University Journal of Science  

 Volume 21, Issue 1, 2025, p 75-89 

 Doi: 10.18466/cbayarfbe.1589809                                                              B. Ervural 

 

79 

2.2 Identification of criteria and restriction factors 

 

Careful consideration of specific conditions is essential 

to establish a solar power plant and ensure its optimal 

functionality. The criteria for selecting suitable areas 

vary depending on the solar power plant's intended 

purpose and geographic location. To identify regions 

unsuitable for such installations, a comprehensive 

literature review was conducted, enabling the recognition 

of critical conditions that require attention. Based on 

these conditions, eight distinct criteria have been 

established: solar radiation levels, distance to power 

transmission infrastructure, aspect orientation, slope, 

distance to residential areas, distance to main roads, 

distance to rivers/streams, and distance to lakes. These 

factors collectively contribute significantly to a 

comprehensive framework for placing solar PV projects. 

The study encompasses various constraints, including 

ensuring that the slope gradient remains below 11%, 

maintaining a minimum distance of 400 m from rivers 

and lakes, maintaining a distance of at least 100 m from 

highways and railways, and locating the farms at a 

distance greater than 500 m from residential areas. The 

regions characterized by spatial suitability scores of 0, 

denoting restricted areas for each criterion, are delineated 

in Table 1. This tabular presentation also provides the 

threshold limits alongside their corresponding spatial 

suitability scores, including categories very high 

suitability (5), high suitability (4), moderate suitability 

(3), low suitability (2), and very low suitability (1). The 

determination of these limitation values for all pertinent 

factors influencing solar photovoltaic (PV) site selection 

is derived from expert consensus and literature. The 

following subsections elaborate on each criterion, 

demonstrating their relative importance. 

 

2.2.1 Solar Irradiation 

 

Solar irradiance refers to the amount of solar radiation 

absorbed within a given area influenced by factors such 

as latitude, longitude, time of day, humidity, evaporation, 

air temperature, sun angle, and other variables. It is 

usually measured per unit area by a specific surface area 

(expressed in watts per square meter, W/m2). It is the 

most significant parameter in assessing the potential for 

energy generation within a solar PV power plant [5,34]. 

Selecting a location with low solar energy potential can 

lead to inefficiencies in establishing and operating a 

power plant. The reclassified solar irradiation map of 

Konya is shown in Fig.5 (a).  

 

2.2.2 Aspect 

 

The aspect of the land plays a crucial role in the site 

selection process for solar PV power plants, particularly 

concerning the land slope. Evaluating slope orientations 

necessitates the creation of an aspect map, which is 

derived from elevation maps and provides insights into 

the topography of the terrain. Understanding the terrain 

ensures optimal use of sunlight, contributing to the 

efficiency of solar power generation systems [8,35,36]. 

The aspect map of Konya is presented in Fig.5 (b). 

 

2.2.3 Slope 

 

Highly sloping and rough terrain is critical when 

installing a solar PV power plant. Generally, areas with 

slopes above 11% are considered unsuitable, whereas 

slopes of 4% and below are deemed appropriate [37,38]. 

An excessive slope can lead to shading between solar 

panels, potentially affecting efficiency.  In addition, 

failure to meet the specified slope requirements may 

necessitate excavation or filling operations in the area, 

leading to potential setbacks in terms of time and cost 

[1,17,35]. Fig.5 (c) shows the reclassified slope map of 

Konya. 

 

2.2.4 Distance to the transmission lines  

 

Ensuring efficient transmission and distribution of 

electricity with minimal loss is vital. While traditional 

power structures are typically reliable, areas with solar 

PV power plants can present installation cost challenges 

for power infrastructure [39]. Therefore, situating solar 

PV power plants near existing power lines aids in 

reducing transmission losses and enhancing overall 

reliability [8,35,40]. It's important to maximize the 

utilization of current power lines to avoid additional 

associated with introducing new ones. Moreover, 

locating solar PV power generation near a transformer 

center proves advantageous, as it reduces expenses by 

negating the need to construct new transformers. The 

transmission line map is depicted in Fig.5 (d). 

 

2.2.5 Distance to residential areas 

 

The construction of a solar PV power plant within a 

prospective residential zone can be avoided by 

considering the anticipated development trajectory of 

these areas. Simultaneously, positioning solar power 

plants close to settlements becomes essential to meet the 

region’s energy demands while addressing cost 

considerations [14,15,36,41]. Fig.5 (e) shows the map of 

the reclassified distance to residential areas. 

 

2.2.6 Distance to the main roads 

 

Transportation is crucial in regional investments, 

especially in the installation of solar PV power plants. 

This significance arises from the substantial 

transportation needs linked to solar energy infrastructure 

[6,17,18]. To establish these plants, it is essential to 

carefully assess the existing road network. Introducing 

new roads increases expenses, particularly in areas 

without established transportation systems. Therefore, 

the feasibility of solar energy plant installation hinges on 

the condition and accessibility of the road network. Fig.5 

(f) shows the reclassified distance to the main road map.
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Table 1. Evaluation criteria and suitability scores 

 

Criteria References Unit Classes Scores 

C1 - Solar Irradiation [10,17,38,42,43] kWh/m2 < 1200 

1200 – 1300 

1300 – 1400 

1400 – 1500 

> 1500 

1 

2 

3 

4 

5 

C2 - Aspect [6,9,39,42,44] direction North 

Northeast, Northwest 

East, West 

Southeast, Southwest  

South 

1 

2 

3 

4 

5 

C3 - Slope [1,5,7,44] % < 1 

1 – 4 

4 – 7 

7 – 9 

9 – 11  

> 11 

5 

4 

3 

2 

1 

0 

C4 - Distance to 

transmission lines  

[38,41,45] km 0 – 2 

2 – 4 

4 – 6 

6 – 10 

> 10 

5 

4 

3 

2 

1 

C5 - Distance to residential 

areas 

[14,15,40] km 0 – 0.5 

0.5 – 0.75 

0.75 – 1 

1 – 2 

2 – 5 

> 5 

0 

1 

2 

3 

4 

5 

C6 - Distance to main roads [6,15,17,18] km 0 – 0.1 

0.1 – 1 

1 – 2 

2 – 5 

5 – 10 

> 10 

0 

5 

4 

3 

2 

1 

C7 - Distance to 

rivers/streams 

[42,44,45] km < 0.4 

0.4 – 2 

2 – 5 

5 – 7.5 

7.5 – 10 

> 10 

0 

5 

4 

3 

2 

1 

C8 - Distance to lakes [14,35,46] km < 0.4 

0.4 – 2 

2 – 5 

5 – 7.5 

7.5 – 10 

> 10 

0 

5 

4 

3 

2 

1 
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Figure 5. Reclassified layers of evaluation criteria: (a) solar irradiation; (b) aspect; (c) slope; (d) distance to 

transmission lines; (e) distance to residential areas; (f) distance to main roads; (g) distance to rivers/streams; (h) 

distance to lakes. 
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2.2.7 Distance to rivers/streams 

 

The location of land near rivers or streams carries a 

notable risk of substantial material losses, particularly 

during winter floods. Hence, the criteria for considering 

proximity to rivers and streams are of utmost importance, 

as natural disasters in such areas can severely damage the 

facility [44,45]. This scenario can elevate operational 

costs and impede electricity generation. Furthermore, 

establishing a power plant in a river or stream region has 

been found to negatively impact efficiency due to factors 

such as fog, evaporation, and humidity risks, which are 

believed to influence the overall effectiveness of the 

plants. The reclassified distance to the river map is 

presented in Fig. 5 (g). 

 

2.2.8 Distance to the lakes 

 

To ensure safety and prevent environmental pollution 

caused by the potential adverse effects of floods due to 

variations in the volumes of lakes at different times of the 

year, it is recommended that solar power plants be 

located at a minimum distance of 400 m from lakes. This 

precautionary measure mitigates the impact of potential 

flooding and protects the surrounding environment 

[14,35,46]. The reclassified space in the lake map of 

Konya is presented in Fig. 5 (h). 

 

2.3 Fuzzy BWM 

 

In this study, fuzzy Best Worst Method (BWM) is 

adopted to ascertain the weights of the criteria within a 

fuzzy framework. Initially introduced by Rezaei in [47], 

classical BWM is a relatively recent technique that has 

successfully addressed various MCDM problems, such 

as firms’ R&D performance evaluation [48], comparing 

communication technologies [49], and measuring the 

importance of logistics performance indicators [50]. 

Compared to other subjective weighting methods, such 

as AHP, BWM is notable for its ease of implementation. 

The methodology presents various advantages, 

particularly concerning the number of pairwise 

comparisons required, consistency, and reliability. 

Notably, BWM necessitates only (2n − 3) pairwise 

comparisons, which is a notably lower number compared 

to AHP, which demands n(n − 1) pairwise comparisons. 

The abundance of pairwise comparisons and extensive 

data involvement in AHP often leads to inconsistent 

results. Rezaei [47,51] demonstrated that BWM is more 

consistent than AHP, emphasizing its reliability as a 

preferred method for MCDM applications.  

 

In decision-making under uncertainty, expressing 

preferences using crisp numbers can be challenging, 

especially when decision-makers compare alternatives 

with inherent vagueness or ambiguity. To address these 

challenges, Dong et al. [30] proposed an enhanced fuzzy 

BWM approach based on triangular fuzzy numbers, 

which incorporates fuzzy logic into the BWM 

framework. This method overcomes the limitations of 

traditional methods by offering greater flexibility and 

improved reliability in capturing decision-makers' 

preferences. 

 

For this study, criteria weights were calculated using the 

neutral decision-maker model, one of the three 

approaches outlined by Dong et al. [30]. This model is 

specifically designed to strike a balance between 

optimistic and pessimistic decision-making tendencies, 

making it well-suited for neutral contexts (mixed 

approach). The neutral model ensures a robust and 

balanced evaluation by integrating the adaptability of 

fuzzy BWM with improved consistency in weight 

estimation.  The mathematical formulation and detailed 

application of this approach are thoroughly presented by 

Dong et al. [30]. 

 

The fuzzy comparison scale delineated in Table 2 serves 

as a tool for converting the linguistic assessments 

provided by experts into fuzzy ratings (represented by 

TFNs). The procedural framework of the fuzzy-BWM 

approach proposed by Dong et al.  [30] encompasses the 

following steps: 

 

Table 2. Linguistic scale for criteria weighting 

 

 
 

Step 1. Define a set of decision criteria denoted as 𝐶 =
{𝐶1, 𝐶2, . . . , 𝐶𝑛}. 
 

Step 2. Identify the best criterion (𝐶𝐵) which is 

considered the most important, and the worst criterion 
(𝐶𝑊), regarded as the least important. 

 

Step 3. Provide preference for the best criterion over all 

other criteria. Let �̃�𝐵𝑗 = (𝑎𝐵𝑗
𝑙 , 𝑎𝐵𝑗

𝑚 , 𝑎𝐵𝑗
𝑢 ) be the triangular 

fuzzy preference of the best criterion 𝐶𝐵 over criterion 𝐶𝑗, 

satisfying �̃�𝐵𝐵 = (1,1,1). Formulate the best-to-others 

vector as follows: 

 �̃�𝐵 = [�̃�𝐵1, �̃�𝐵2, . . . , �̃�𝐵𝑛]  

 

Step 4. Provide preference for all criteria over the worst 

criterion. Let �̃�𝑗𝑊 = (𝑎𝑗𝑊
𝑙 , 𝑎𝑗𝑊

𝑚 , 𝑎𝑗𝑊
𝑢 ) be the triangular 

fuzzy preference of a criterion 𝐶𝑗 over the worst criterion 

𝐶𝑊, satisfying �̃�𝑊𝑊 = (1,1,1). Formulate the Others-to-

Worst vector as follows: 

 �̃�𝑊 = [�̃�1𝑊, �̃�2𝑊, . . . , �̃�𝑛𝑊] 
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Step 5. Determine appropriate values for the tolerance 

parameters (𝑑𝑗
𝑡 and 𝑞𝑗

𝑡) within the interval [1, 9] 

according to expert preferences and the specific 

characteristics of the problem. This study calculates the 

global optimum solution by using tolerance parameter 1. 

 

Step 6. Derive the optimal weight vector �̃�∗ =
[�̃�1

∗, �̃�2
∗, . . . , �̃�𝑛

∗] and the optimal satisfaction degree 𝛽. In 

this study, the Mixed Approach-I for obtaining the 

weights of the criteria from the perspective of a neutral 

decision-maker is employed. Eq. (1) presents the linear 

programming model used to compute the criteria weights 

under the neutral decision-making assumption, ensuring 

a balanced and robust evaluation framework. 

 

𝑚𝑎𝑥 𝛽 

s.t.

{
  
 

  
 1 − 

𝑤𝐵
𝑡−𝑤𝑗

𝑡𝑎𝐵𝑗
𝑡

𝑑𝑗
𝑡  ≥  𝛽,   0 ≤ 𝑤𝐵

𝑡 −𝑤𝑗
𝑡𝑎𝐵𝑗
𝑡 ≤ 𝑑𝑗

𝑡 (𝑗 = 1,2, … , 𝑛; 𝑡 = 𝑙,𝑚, 𝑢)

1 + 
𝑤𝑗
𝑡−𝑎𝑗𝑤

𝑡 𝑤𝑤
𝑡

𝑞𝑗
𝑡 ≥ 𝛽,   − 𝑞𝑗

𝑡 ≤ 𝑤𝑗
𝑡 − 𝑎𝑗𝑤

𝑡 𝑤𝑤
𝑡 ≤ 0  (𝑗 = 1,2, … , 𝑛; 𝑡 = 𝑙,𝑚, 𝑢)

0 ≤ 𝛽 ≤ 1                                                                                                                

∑ 𝑤𝑖
𝑚 = 1,   𝑤𝑗

𝑢𝑛
𝑖=1 +∑ 𝑤𝑖

𝑙 ≤ 1,   𝑤𝑗
𝑙 +∑ 𝑤𝑖

𝑢 ≥ 1 (𝑗 = 1,2, … , 𝑛)𝑛
𝑖=1,𝑖≠𝑗

𝑛
𝑖=1,𝑖≠𝑗

 

(1) 

 

Then, the optimal weight vector (�̃�∗) based on the TFNs 

is converted to crisp weights using Eq. (2). 

 

𝑅(�̃�) =
1

6
(𝑎𝑙 + 4𝑎𝑚 + 𝑎𝑢) (2) 

 

Step 7. Compute the fuzzy deviation of the comparisons 

𝜉∗ = (𝜉∗𝑙 , 𝜉∗𝑚, 𝜉∗𝑢). 
 

𝜉′𝑙  =  
1

2𝑛
 ∑(|𝑤𝐵

∗𝑙 −  𝑤𝑗
∗𝑙𝑎𝐵𝑗

𝑙 |  +  |𝑤𝑗
∗𝑙  

𝑛

𝑗=1

− 𝑎𝑗𝑤
𝑙 𝑤𝑤

∗𝑙|) 

𝜉′𝑚  =  
1

2𝑛
 ∑(|𝑤𝐵

∗𝑚 −  𝑤𝑗
∗𝑚𝑎𝐵𝑗

𝑚 |  +  |𝑤𝑗
∗𝑚  

𝑛

𝑗=1

− 𝑎𝑗𝑤
𝑚𝑤𝑤

∗𝑚|) 

(3) 

𝜉′𝑢  =  
1

2𝑛
 ∑(|𝑤𝐵

∗𝑢 −  𝑤𝑗
∗𝑢𝑎𝐵𝑗

𝑢 |  +  |𝑤𝑗
∗𝑢  

𝑛

𝑗=1

− 𝑎𝑗𝑤
𝑢 𝑤𝑤

∗𝑢|) 

where 𝜉′𝑙, 𝜉′𝑚 and 𝜉′𝑢  denote the possible lower bound, 

possible mode and possible upper bound of the fuzzy 

deviation (𝜉∗), respectively. 

 

Step 8: Calculate the fuzzy consistency ratio (FCR) using 

Eq. (4). 

 

𝐹𝐶𝑅 =  
𝜉∗

𝜁
 =

(𝜉∗𝑙 , 𝜉∗𝑚, 𝜉∗𝑢)

(𝜁𝑙 , 𝜁𝑚, 𝜁𝑢)
 

=  (
𝜉∗𝑙

𝜁𝑢
,
𝜉∗𝑚

𝜁𝑚
,
𝜉∗𝑢

𝜁𝑙
) 

(4) 

where fuzzy consistency index, 𝜁 = (𝜁𝑙 , 𝜁𝑚, 𝜁𝑢), is 

obtained using Table 3. 

 

 

 

Table 3. Fuzzy Consistency Index (FCI) for Fuzzy BWM 

 

Linguistic 

Terms 

Equally important 

(EI) 

Weakly important 

(WI) 

Fairly important 

(FI) 

Very important 

(VI) 

Absolutely 

important (AI) 

�̃�𝐵𝑊 (1,1,1) (2/3,1,3/2) (3/2,2,5/2) (5/2,3,7/2) (7/2,4,9/2) 

FCI (𝜁) (0, 0, 0) (0, 0, 1.36) (0.34, 0.44, 2.16) (0.71, 1, 4.29) (1.31, 1.63, 5.69) 

 

Step 9. Compute the graded mean integration 

representation (GMIR) of FCR, i.e., R(FCR), to check 

consistency using Eq. (5). 

 

𝑅(𝐹𝐶𝑅)  =  
1

6
 (
𝜉∗𝑙

𝜁𝑢
 +  

4𝜉∗𝑚

𝜁𝑚
 +  

𝜉∗𝑢

𝜁𝑙
 ) 

(5) 

If 𝑅(𝐹𝐶𝑅)  ≤  0.1, the fuzzy pairwise comparisons are 

considered acceptable consistent; however, if 

𝑅(𝐹𝐶𝑅)  >  0.1, the comparisons are not consistent. 
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3. Results 

 

3.1 Calculating the weights of the criteria using 

fuzzy BWM 

 

After selecting relevant criteria, a team of experts 

evaluates the importance of these criteria using fuzzy 

BWM. Section 2.3 provides an overview of the 

implementation of the fuzzy BWM method suggested by 

Dong et al. [30].The optimal overall weights of the 

criteria are determined through pairwise comparisons 

from the standpoint of an impartial decision-maker, 

taking into account mixed approach-I and all tolerance 

parameters (𝑑𝑗
𝑡) 1. 

 

In the initial stage of the fuzzy BWM process, experts 

begin by choosing the most favorable (best) and least  

 

 

favorable (worst) criteria from a preset list. After 

identifying these, experts are assigned the task of 

providing assessments involving comparisons among the 

criteria using fuzzy numbers. The comparisons of the 

best criterion with the other criteria (�̃�𝐵𝑗) and all the 

criteria with the worst criterion (�̃�𝑗𝑊) are systematically 

displayed in Table 4. 

 

Upon identifying the best-to-others (�̃�𝐵) and others-to-

worst vectors (�̃�𝑊), we utilized the Lingo 19.0 

optimization software to solve the linear programming 

(LP) model in Eq. (1) in order to calculate the optimal 

weight vector. The resulting fuzzy weights, which were 

obtained from the LP model, are detailed in Table 5. 

Furthermore, Eq. (2) was employed to determine the 

crisp weights for TFNs. 

 

 

Table 4. Collective preferences of experts 

 

Best 

Criterion 

Worst 

Criterion 

TFN preferences 

 C1 C2 C3 C4 C5 C6 C7 C8 

C1 C8 

�̃�𝐵𝑗 
EI 

(1,1,1) 

FI 

(3/2,2,5/2) 

FI 

(3/2,2,5/2) 

VI 

(5/2,3,7/2) 

AI 

(7/2,4,9/2) 

VI 

(5/2,3,7/2) 

AI 

(7/2,4,9/2) 

AI 

(7/2,4,9/2) 

�̃�𝑗𝑊 
AI 

(7/2,4,9/2) 

VI 

(5/2,3,7/2) 

VI 

(5/2,3,7/2) 

FI 

(3/2,2,5/2) 

FI 

(3/2,2,5/2) 

FI 

(3/2,2,5/2) 

WI 

(2/3,1,3/2) 

EI 

(1,1,1) 

Table 5. Weights of the criteria 

 

 
Solar Irradiation 

(C1) 

Aspect 

(C2) 

Slope 

(C3) 

Distance to the 

transmission 

lines 

(C4) 

Distance to 

residential areas 

(C5) 

Distance to the 

main roads 

(C6) 

Distance to 

rivers/streams 

(C7) 

Distance to 

lakes 

(C8) 

Fuzzy 

weights 
(0.13, 0.304, 0.34) (0, 0.137, 0.137) (0, 0.137, 0.137) (0, 0.098, 0.098) (0, 0.076, 0.076) (0, 0.098, 0.098) (0.025, 0.08, 0.08) (0.037, 0.08, 0.08) 

Crisp 

Weights 
0.32 0.13 0.13 0.09 0.07 0.09 0.08 0.08 

 

Table 6 provides essential metrics, including the minimal 

acceptance degree (β), fuzzy deviations (𝜉∗), fuzzy 

consistency index (𝜁) and R(FCR) value. As observed in 

Table 6, the R(FCR) value is less than 0.1, indicating that 

the comparisons are reasonably consistent. 

 

Table 6. Consistency values 

 

𝛽∗ 0.8709 

𝜉∗ (0.0281, 0.0348, 0.0656) 

𝜁 (1.31, 1.63, 5.69) 

𝐹𝐶𝑅 (0.0049, 0.0213, 0.05) 

𝑅(𝐹𝐶𝑅) 0.0234 

 

 

 

3.2 Suitability Analysis 

 

In the context of suitability analysis, the input criterion 

layers used in overlay analysis necessitate 

reclassification into raster layers. Hence, the initial 

preparation and reclassification of the input criterion 

layers were executed, as illustrated in Fig. 5 (a-h), to 

delineate the eight resultant maps. Comprehensive class 

intervals alongside corresponding suitability values are 

elaborated in Table 1. 

 

Following the reclassification of input criterion layers 

and the determination of weights through fuzzy BWM, a 

weighted overlay analysis technique was applied. This 

method integrated the derived weights with raster layers 

corresponding to the eight identified criteria. In line with 

previous studies, the suitability map in this study was 
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divided into six categories, including restricted areas, to 

ensure consistency with the literature and enhance 

interpretability. This classification approach provided a 

well-structured differentiation among varying suitability 

levels while effectively capturing the spatial 

characteristics of the study area. The outcome of this 

process generated a suitability map that classifies areas 

into six discrete categories: 'unsuitable,' 'very low 

suitability,' 'low suitability,' 'moderate suitability,' 'high 

suitability,' and 'very high suitability.' Sequential values 

spanning from 0 to 5 were assigned to these suitability 

classes to facilitate the overlay analysis. 

The criterion layers underwent stacking via the weighted 

sum tool. Subsequent to this, the output layer, featuring 

values ranging from 0 to 5, underwent division utilizing 

the reclassify tool, thereby partitioning it into five equally 

spaced suitability classes. Following this step, restriction 

factors were considered, and unsuitable areas were 

removed from the map. The resulting suitability map, 

created using ArcGIS software, is shown in Fig. 6. 

 

 
 

Figure 6. Suitability map results using fuzzy BWM weights. 

 

Figure 7. A close-up view of areas with the highest 

suitability. 

Notably, approximately half of the entire area exhibits 

high potential for solar PV installations, with 137.03 km2 

(0.3%) classified as 'very high suitable'. The regions 

identified as exhibiting the highest suitability are 

predominantly situated within the city’s central belt, 

notably in its central and western sectors (as delineated 

within the enclosed area in Fig. 6). This concentration is 

further elucidated in a distinct graphical representation 

showcased in Fig. 7, where enhanced contrast has been 

applied to facilitate more precise visualization. 

 

Fig. 8 shows the spatial distribution of the three 

photovoltaic facilities with the highest installed capacity 

in Konya. As shown in Figure 8, the Karapınar solar 

power plant, with an installed capacity of 1,000 MW and 

occupying an area of 27.18 km2, is located in an area with 

high suitability and above. Similarly, the Alibeyhoyugu 

(18-MW) and Apa (13-MW) facilities are also situated in 

high suitability areas. It reveals a robust correlation 

between potentially suitable areas and current 

installations. This correlation underscores the validity of 

the methodology employed in this study. 
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Figure 8. Current solar PV plants. 

3.3 Sensitivity Analysis 

 

In this section, a sensitivity analysis was conducted by 

changing the criterion weights and examining the 

changes in the suitability map to assess the robustness of 

the proposed fuzzy BWM-GIS approach. For this 

purpose, three scenarios were developed.  

 

Scenario 1 assumes equal importance of all criteria and 

assigns equal weights to them. Scenario 2 disregarded 

distance criteria (C4-C6), while Scenario 3 excluded the 

evaluation of distance criteria to rivers and lakes (C7, 

C8), ensuring the proportional distribution of weights to 

the remaining criteria. Table 7 presents all scenarios and 

their associated weights. 

 

 

Table 7. Sensitivity analysis scenarios and criteria weights 

 

Scenarios 

Criteria Weights 

Solar 

Irradiation 

(C1) 

Aspect 

(C2) 

Slope 

(C3) 

Distance to 

the 

transmission 

lines 

(C4) 

Distance 

to 

residential 

areas 

(C5) 

Distance 

to the 

main 

roads 

(C6) 

Distance to 

rivers/streams 

(C7) 

Distance 

to the 

lakes 

(C8) 

Current situation (Fuzzy 

BWM) 
0.322 0.131 0.131 0.093 0.073 0.093 0.077 0.080 

Scenario 1 - Equal 

weighting 
0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 

Scenario 2- Ignore distance 

criteria (C4-C6) 
0.435 0.177 0.177 - - - 0.104 0.108 

Scenario 3- Ignore distance 

to rivers/lakes criteria (C7, 

C8) 

0.382 0.155 0.155 0.110 0.087 0.110 - - 

The results of this analysis are presented in detail in Fig. 

9. The most straightforward method, equal weighting 

(Scenario 1), which allows avoidance of risks and 

disregards the relative importance already known, 

yielded the lowest percentage of “very high suitable” 

areas (206.26 km², 0.3%). Because the weight of the solar 

radiation criterion is significantly reduced in Scenario 1, 

it helps us observe the impact of this criterion. In this 

scenario, while the percentage of “highly suitable” areas 

decreases by approximately 10% compared with the 

current situation, the area covered by “moderate suitable” 

areas increases by 10%. In Scenario 2, when distances to 

transmission lines, residential areas, and main roads are 

disregarded, the percentage of “very high suitable” areas 

increases to 1.3% (543.76 km2). In Scenario 3, when 

distance to the lakes and rivers criteria are excluded, the 

percentage of "high suitable" areas rises to 1.8% (718.56 

km2). 
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Figure 9. Sensitivity analysis results considering scenarios. 

4. Discussion 

 

The findings of this study highlight the significant 

potential of Konya for solar PV power plant deployment. 

By integrating fuzzy BWM with GIS-based suitability 

mapping, the research provides a systematic framework 

for selecting optimal solar energy sites. The analysis 

revealed that approximately 50.02% of the study area is 

classified as highly suitable, while 137.03 square 

kilometers (0.3%) of the region is considered very highly 

suitable, emphasizing the region’s viability for large-

scale solar investments. The methodology effectively 

addresses uncertainties in decision-making by 

incorporating expert judgments and spatial data, ensuring 

a comprehensive evaluation of site suitability. 

 

From a policy and industry perspective, the findings offer 

valuable insights for decision-makers, urban planners, 

and investors in the renewable energy sector. 

Policymakers can leverage this study to design incentive 

programs for solar energy investments, streamline land-

use regulations, and develop infrastructure in high-

suitability zones. Energy stakeholders can use this 

framework to minimize project risks, optimize 

investment strategies, and accelerate the integration of 

solar energy into Türkiye’s energy mix. 

 

5. Conclusions 

 

The increasing global demand for sustainable energy has 

accelerated the need for systematic site selection 

methodologies for solar power projects. This study 

introduced a fuzzy BWM-GIS framework to identify 

optimal locations for solar PV installations in Konya, 

Türkiye. By integrating MCDM techniques with 

geospatial analysis, this research ensures a 

comprehensive and adaptable approach for renewable 

energy site selection. 

 

A key contribution of this study is the incorporation of 

neutral decision-making in the fuzzy BWM process, 

which balances optimistic and pessimistic biases in 

expert evaluations. Additionally, the study employs a 

customized set of eight criteria, tailored to Konya’s 

geographical and environmental conditions. 

Furthermore, the use of sensitivity analysis enhances the 

robustness of the decision-making process, 

demonstrating the model’s applicability across different 

regions and scenarios. 

 

Despite its strengths, this study has some limitations that 

should be addressed in future research. The accuracy of 

the site suitability analysis is highly dependent on the 

quality and availability of geospatial data, which may 

impact the precision of the results. Incorporating real-

time solar radiation data and economic feasibility 

analysis could enhance the decision-making process by 

providing more dynamic and financially viable site 

recommendations. Additionally, while this study offers a 

structured methodological foundation, further research 

should integrate financial cost-benefit analysis to assess 

the economic viability of solar PV deployment. 

 

Overall, this research contributes to both academic 

literature and practical applications, offering a reliable 

decision-support tool for advancing renewable energy 

planning in Türkiye and beyond. By systematically 

addressing site selection complexities, this study aligns 

with Türkiye’s National Energy Plan, reinforcing efforts 

to enhance sustainability and energy security in the 

transition toward a low-carbon future. 
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