
Erzincan Üniversitesi Erzincan University
Fen Bilimleri Enstitüsü Dergisi Journal of Science and Technology
2025, 18(2),476-494 2025, 18(2),476-494
ISSN: 1307-9085, e-ISSN: 2149-4584
Araştırma Makalesi

DOI: 10.18185/erzifbed.1590024
Research Article

*Corresponding Author: isil.karabey@erzurum.edu.tr
Isil KARABEY AKSAKALLI, https://orcid.org/0000-0002-4156-9098

476

Leveraging Machine Learning and Transformers to Identify Domain-Specific Services
Decomposition in Legacy Systems

Isil KARABEY AKSAKALLI 1*

1Erzurum Technical University, Engineering and Architecture Faculty, Computer Engineering Department

Received: 22/11/2024, Revised: 21/02/2025, Accepted: 11/03/2025, Published: 31/08/2025

Abstract
Service-oriented architecture, one of the popular software architectures that have become very popular in recent
years, has scalability, isolation and flexibility as it consists of smaller and independent domain-specific services
compared to monolithic systems. For this reason, the transition from monolithic monolithic systems to service-
oriented architectures is becoming widespread for large-scale applications with millions of users to have an
easily manageable, scalable and flexible structure. In this study, the effectiveness of various machine learning
models and different types of tokenization methods were evaluated by analyzing static source code to
decompose monolithic legacy systems into domain-specific services. Lightweight machine learning algorithms
and transformer-based tokenizers were applied to the FXML-POS legacy system and model performance were
evaluated using precision, recall, accuracy, and F1 score metrics. Experimental results indicate that all
transformer-based feature extraction models achieve strong performance with an F1 score of 91.9% using
Random Forest and Logistic Regression classifiers. Furthermore, it has been observed in the experimental
results that the Word2Vec vectorization method outperforms TF-IDF in most scenarios and a maximum F1
score of 97.2% is achieved using the Random Forest Classifier. These results underscore the utility of advanced
embedding techniques and classifiers in the accurate identification of domain-specific service components.

Keywords: Decomposition using source code, Static analysis, Transformer-based tokenizers, Word
embeddings, Machine learning

Eski Sistemlerde Alana Özgü Hizmet Ayrıştırmasını Belirlemek İçin Makine
Öğreniminden ve Transformatörlerden Yararlanma

Öz

Son yıllarda oldukça popüler hale gelen yazılım mimarilerden biri olan servis odaklı mimari monolit sistemlere
göre daha küçük ve bağımsız alana özgü hizmetlerden oluştuğundan ölçeklenebilirlik, izolasyon ve esnek
yapıya sahiptir. Bu nedenle milyonlarca kullanıcıya sahip büyük ölçekli uygulamaların kolay yönetilebilir,
ölçeklenbilir ve esnek bir yapıya sahip olması için monolitk tek parçalı sistemlerden servis odaklı mimarilere
geçiş yaygınlaşmaktadır. Bu çalışmada, tek parçalı eski sistemleri alana-özgü hizmetlere ayrıştırmak için statik
kaynak kod analizi yapılarak çeşitli makine öğrenimi modelleri ve farklı tokenleştirme yöntemlerinin etkinliği
değerlendirilmektedir. Hafif ağırlıklı makine öğrenimi algoritmaları ve dönüştürücü tabanlı tokenleştiriciler
FXML-POS eski sistemine uygulanmıştır ve model performansı hassasiyet, geri çağırma, doğruluk ve F1 skor
metrikleri kullanarak değerlendirilmiştir. Deneysel sonuçlar, tüm transformatör tabanlı özellik çıkarım
modellerinin Rastgele Orman ve Lojistik Regresyon sınıflandırıcılarını kullanarak %91,9'luk bir F1 puanı ile
güçlü bir performans elde ettiğini göstermektedir. Ayrıca, Word2Vec vektörleştirme yönteminin çoğu
senaryoda TF-IDF'den daha iyi performans gösterdiği ve Rastgele Orman Sınıflandırıcısı kullanılarak %97,2'lik
maksimum bir F1 puanı elde edildiği deneysel sonuçlarda görülmüştür. Bu sonuçlar, alan-özgü hizmet
bileşenlerinin doğru bir şekilde tanımlanmasında gelişmiş yerleştirme tekniklerinin ve sınıflandırıcıların
yararlılığını vurgulamaktadır.
Anahtar Kelimeler: Kaynak kodu kullanarak ayrıştırma, Statik analiz, Transformatör tabanlı belirteçleyiciler,
Kelime yerleştirmeleri, Makine öğrenimi

Leveraging Machine Learning and Transformers to Identify Domain-Specific Services Decomposition in
Legacy Systems

477

1. Introduction

With the rapid development of technology, the number of users using web infrastructures is
increasing significantly. This necessitates software architectures to be more comprehensible,
scalable and flexible [1]. Therefore, companies and organizations with software infrastructures
with large user bases are decomposing their monolithic software architectures into smaller,
service-based architectures to meet the demands of the market [2-4]. The current market
requires flexible architectures that can provide easily scalable solutions to meet frequently
changing user demands and in the case of a rapidly growing user base [5-7]. For these reasons,
companies are moving towards service-oriented architectures. While monolithic architectures,
also known as legacy systems, are being modernized, in service-oriented architectures it is
necessary to identify service types and decompose the source code according to these types.
Identifying reusable functionalities and evaluating these functionalities as candidate services is
a critical step in the transition from legacy systems to service-oriented systems [8]. Therefore,
it is important that the Service Identification (SI) process, which is the first stage of the
transition process, is carried out completely and effectively [9].

There are many SI approaches in the literature [10-15]; however, the most of these approaches
have some limitations due to their service identification accuracy and the need for various types
of data such as business process model, Unified Modeling Language (UML), use cases, activity
diagrams. Methods that use these diagrams are called domain analysis. On the other hand, static
analysis, another legacy code parsing method, provides a faster and more accurate identification
process by using the relationships between functions and classes in the source code and the
classes and interfaces imported in the source files. This process is based on the accurate
identification of service types through associated code patterns. In this study, based on the
importance of identifying service types in the decomposition of monolithic legacy systems into
service-based architectures, the source code of a monolithic project is decomposed into three
main service types named application, utility and entity using static analysis, transformer
models and machine learning (ML) methods. On the JavaFX-Point of Sales (FXML-POS)
project [16], an open source legacy system, twelve different ML methods and five different
embedding methods were applied and their performances were compared based on accuracy,
precision, recall and F1 score metrics. Experimental results show that ML and transformer
approaches can automatically recognize domain-specific service types in promising
performance. The main contributions of this study are listed below:

• A machine learning-based service decomposition approach is proposed as an alternative
to time-consuming methods that rely on expert intervention during the transition from
legacy systems to service-oriented architectures, as well as to manual or heuristic-based
approaches.

• Instead of traditional semantic or rule-based methods that require expert knowledge and
documentation such as UML diagrams, business process models, or architectural
specifications a static source code analysis approach is adopted to eliminate document
dependency.

Leveraging Machine Learning and Transformers to Identify Domain-Specific Services Decomposition in
Legacy Systems

478

• The feature extraction performance of transformer-based tokenizers and word
embedding models is evaluated using ML methods, providing a more lightweight
approach compared to traditional techniques.

The remaining sections of the paper are organized as follows: In the second section, the
literatüre studies regarding the service-type decomposition are presented as comperatively. In
the third section, the process of identifying domain-specific services, the transformation of
source code into vectors using transformer-based models and word embedding methods, and
the service-based classification process are described in detail. In the fourth section,
experimental results are presented by comparing the performance of various embedding
methods and ML algorithms. In the fifth and sixth sections, the findings, the limitations of the
case study and applied methods, the results obtained and future directions are discussed
respectively.

2. Related Work

Due to the costly and complex nature of transitioning from a monolithic architecture to service-
oriented and microservices architectures, the software engineering literature proposes various
methods for analyzing the codebase and decomposing it into service components. Research
findings indicate that static analysis approaches based on source code, dynamic analysis
leveraging runtime information, word embedding techniques, and ML models play a crucial
role in facilitating the migration of legacy systems to service-oriented and microservices
architectures. In the transformation of legacy systems into Service-Oriented Architecture
(SOA) or Microservices Architecture (MSA), Abdellatif et al. [8] proposed the ServiceMiner
method, which applies a codebase analysis-driven approach. This method aims to extract
specific functional clusters from the source code of legacy systems by identifying service types.
As a result of the experiments, it was stated that the ServiceMiner method achieved 77.9%
precision, 66.4% recall and 71.7% F1 score metrics in decomposing monolith structures into
service types. The topic modeling approach proposed by Brito et al. [17] aims to create
microservice clusters by analyzing textual information to identify functional components in the
system. In terms of cohesion and domain level metrics, the independence value of 200 open
source projects on Github was determined as 0.6 and the conceptual modularity value as 0.4.
Although this method offers promising results in enhancing service independence and
modularity, its exclusive reliance on textual analysis may lead to overlooking dependencies and
semantic relationships within the code. In another study by Trabelsi et al. [18], a method called
MicroMiner was proposed by using both static code relations analysis and semantic analyses
from source codes. The proposed method was tested on four different open source systems. One
of the open source systems tested was FXML-POS and an accuracy rate of 92% was obtained
with the SVM method using the dataset generated from this system.

In the literature, ML and natural language processing (NLP) methods are frequently used for
code decomposition. In the study by Al-Debagy and Martinek [1], a hierarchical clustering
algorithm and a Code2Vec based NLP feature extraction method were used to group vectorially
similar components by creating meaningful vector representations from the code. In terms of
the metrics Cohesion at Message Level (CHM) and Cohesion at Domain Level (CHD), the

Leveraging Machine Learning and Transformers to Identify Domain-Specific Services Decomposition in
Legacy Systems

479

algorithm shows promising results compared to other decomposition systems. This approach
simply consider dependencies within the code and does not directly model contextual service
relationships, despite the fact that it is more capable of analyzing semantic similarities within
the code. On the other hand, Trabelsi et al. [19] proposes the MAGNET approach, and presents
a microservice identification mechanism that uses Graph Neural Networks (GNNs) to integrate
the static, semantic, and structural aspects of the code. The experimental findings show that on
open-source systems, GNN with semantic analysis have 68% recall and 56% precision.
Although this method offers an automated method for identifying service components, the
model's training can be time-consuming, and the system requires higher recall, accuracy, and
precision values. Another approach used for microservice decomposition is evolutionary
optimization methods. The MSExtractor method proposed by Sellami et al. [19] focuses on
optimizing metrics such as service granularity, independence, and cohesion using multi-
objective optimization techniques. The proposed method has 0.6-0.7 CHD and 0.4-0.5 CHM
using the open-source systems. However, the applicability of such methods to large-scale
systems is often limited due to their high computational costs.

Unlike existing studies, this research proposes an approach that combines static code analysis
with transformer-based feature extraction and employs lightweight ML models to more
accurately and less costly identify service components. The feature extraction performance of
transformer-based models is compared against Word2Vec and the traditional TF-IDF
vectorization method, and the classification models that best capture service types are evaluated
using ML techniques. In the proposed model, pre-trained models in transformers are not used
as classifiers to minimize computational complexity and provide a scalable approach for large-
scale monolithic architectures. In this context, the proposed model not only reduces
computational costs but also improves service decomposition accuracy.

3. Material and Methods

To decompose legacy systems into smaller services, service types must first be identified. For
this purpose, SI taxonomies that deal with different aspects of service types have been analyzed.
The SI taxonomies developed by Abdellatif et al. [10] divided SI approaches into four main
categories named Input, Process, Output and Usability. Within the scope of this study, we
focused on Domain-specific service types under the Output category. These service types
include Application, Utility and Entity services. The goal is to decompose the legacy system
into these type-services by performing source code analysis. The steps of the applied
methodology are described in the following subsections. Furhermore, a general flowchart of
the service-type classifiction process of a monolithic legacy system presented in Figure 1.

Leveraging Machine Learning and Transformers to Identify Domain-Specific Services Decomposition in
Legacy Systems

480

Figure 1. A general flowchart diagram of the legacy source code analysis into domain specific
service-type classification (MLP: Multilayer Perceptron, DT: Decision Tree, GBN: Gaussian
Naive Bayes, BNB: Bernoulli Naive Bayes, kNN: k Nearest Neighbor, NC: Nearest Centroid,
SGDC: Stochastic Gradient Descent, SVM: Support Vector Machine, GBC: Gradient Boosting,
RF: Random Forest, AB: AdaBoost; LR: Logistic Regression)

Figure 1 illustrates the process of decomposing legacy source code into domain-specific
services within the scope of this study. Initially, the legacy system source code is processed by
categorizing all Java files from a legacy e-commerce application named FXML-POS [16] into
application, entity, and utility classes. Within the application layer, classes containing
"inventory.controller" are included. The entity layer comprises classes under "inventory.dao",
"inventory.entity", and "inventory.model". Finally, the utility layer consists of classes such as
"HibernateUtil", "PrintInvoice", and "login.LoginController". Then the tokenization
procedures are applied to the extracted code components, followed by feature extraction using
transformer-based architectures and vector space-based models. After the feature extraction
process, each tokenized dataset is subjected to training and testing using the 3-fold Stratified
Cross-Validation method. Subsequently, service-type classification is performed utilizing
various ML techniques.

3.1. Identifying Domain-Specific Services

Layered architectures such as Model-View-Controller [20] do not sufficiently decouple
function-based systems compared to the SOA and microservices [21] leading to a decrease in
the performance of web applications in terms of scalability, flexibility and deployability
performed against the number of users or faults. In monolithic applications, it is almost
impossible to scale a particular functionality independently or to update it without affecting
other functionalities. Each update to a monolithic functionality may require changes to other
parts of the application [22]. In this study, we focus on Application, Utility and Entity from four
main domain-specific service categories identified by Abdellatif et al. [10]. In order to separate
the Enterprise services from the Application services, dynamic analysis must be used together
with static analysis. The description of these services separated by functionality and domain is
given below [18].

• Enterprise services: This service, positioned in the Presentation Layer, typically refers
to highly critical services that provide and support core business functions [23]. These

Leveraging Machine Learning and Transformers to Identify Domain-Specific Services Decomposition in
Legacy Systems

481

services are reusable, scalable and business critical. ERP services and Customer
Relationship Management (CRM) services are examples of such services.

• Application services: The services in the Business layer are domain-specific and only
provide functionality for a specific application. In addition, these services can also use
or create functionality provided by Entity services [8].

• Utility services: They have common discrete functionalities such as logging, mail, print
function and authentication that are necessary for domain specific services [18, 24].

• Entity services: Entity Services are designed to handle persistent data and manage all
the functions related to that data (such as storage, retrieval, locking and transaction
management), so they are known as CRUD (Create, Read, Update, Delete) services.
This type of service manages a single data entity by encapsulating CRUD operations
and related business logic [24].

3.2. Generating Embeddings from Source Codes

To generate embedding vectors from the source code, the Java extension source files of the
MVC project named FXML-POS is first assigned to the “application”, “entity” and “utility”
classes using the ground truth files provided by Trabelsi et al. [18]. The dictionary created as a
result of this assignment maps all file names to the appropriate class labels. Thus, it is ensured
that the file names are used as classified for further processing. After this process, the content
of each Java file is split into tokens using transformer-based tokenizers such as CodeBERT
[25], BERT-based uncased [26] and RoBERTa-base [27], as well as word embedding-based
TF-IDF [28] and Word2Vec [29] vectorization models. The content is divided into chunks
according to the maximum token length and the embedding vectors of each chunk are
calculated. The calculated vectors are added to a list, which is transformed into a numpy matrix
of all embedding vectors and the average embedding vector is calculated. This average value is
added to the relevant dataset of the file. Then, the embedding vectors are saved in a dataset in
csv format. This dataset contains the name of each Java file, its domain class and the embedding
vectors. Since there are 55 Java files in the FXML-POS project, the dataset has 55 rows and
770 columns depending on the line of code of the files. Among these columns, all data except
the class name and the domain where the class is located are embedding vectors.

3.3. Service Type Classification

The dataset generated through transformer-based tokenizer and word embedding vectorizers
were classified using Multilayer Perceptron (MLP), Decision Tree (DT), Gaussian Naive Bayes
(GBN), Bernoulli Naive Bayes (BNB), k-Nearest Neighbor (kNN), Nearest Centroid (NC),
Stochastic Gradient Descent (SGDC), Support Vector Machine (SVM), Gradient Boosting
(GBC), Random Forest (RF), AdaBoost (AB) and Logistic Regression (LR) ML methods and
3-fold Stratified Cross Validation data separation method. To analyze the classification results,
accuracy, precision, recall and F1-Score metrics were evaluated to compare the performance of
the machine learning methods. The algorithms used to classify service types are briefly
explained in the subsections.

Leveraging Machine Learning and Transformers to Identify Domain-Specific Services Decomposition in
Legacy Systems

482

3.3.1. Multilayer Perceptron (MLP)

MLP is one of the most widely used types of artificial neural networks and has a feed-
forward network structure consisting of an input layer, one or more hidden layers and an
output layer [30]. The main feature of MLP is that it is effective in solving problems that
cannot be linearly decomposed. This is possible thanks to the activation functions used in
the hidden layers. The working principle of MLP is based on producing an output by
processing input data through weighted connections. Each neuron applies weights to the
incoming inputs, combines them and produces its output by passing it through the activation
function. Mathematically, this process is expressed as equation (1):

ℎ! 	= 	𝑓(∑(𝑤"! 	 ∗ 	𝑥") 	+	𝑏!) (1)

In this equation, 𝑥" represents the input variables, 𝑤"! represents the weight between the
input and hidden layer, 𝑏! is the bias term and f is the activation function. A similar
calculation is made for the output layer shown in the equation (2):

𝑦	# = 	𝑔(∑(𝑣	!# ∗ 	ℎ") 	+	𝑐#) (2)

In this equation, ℎ" represents the output of hidden layer neurons, 𝑣	!# represents the weight
between hidden and output layer, 𝑐# is the bias term of output layer and g is the activation
function of output layer (softmax or sigmoid).

3.3.2. Decision Tree (DT)

DT is a popular ML algorithm that classifies or regresses data by branching it according to
certain rules. Each internal node represents a decision rule, branches represent possible
decision paths, and leaf nodes represent the final result [31]. Decision trees can be applied
in different types, especially to handle discrete or continuous variables on data. For
example, Classification Trees used in classification problems help to determine the possible
classes of a given variable, while Regression Trees focus on predicting for a specific target
variable. In addition, more reliable results can be obtained by combining multiple decision
trees with methods such as Decision Tree Forests. Among the reasons why this algorithm
is preferred in this study are that it requires fewer parameters compared to other ML
algorithms and that pre- and post-pruning techniques can be applied to prevent the risk of
overfitting on the training data. Furthermore, decision trees can work especially effectively
in situations with data incompleteness and noise, thus having a wide range of applications
in various fields such as health, finance, education and text mining.

3.3.3. Gaussian Naive Bayes (GBN)

GNB is a probabilistic classifier based on Bayes theorem and assumes strong independence
between features. It is particularly effective when the data are normally distributed and
offers high speed and low computational cost in classification processes. The GNB
algorithm is widely favoured for its scalability, especially on large datasets. Its ability to

Leveraging Machine Learning and Transformers to Identify Domain-Specific Services Decomposition in
Legacy Systems

483

cope with missing data and its robustness against noisy data are among the most important
advantages of the model. However, the independence assumption of the model may not
always hold in real-world data and this may limit the accuracy of the model. However, it
has been observed that it performs particularly well in areas such as text classification,
biomedical data analysis and financial forecasting [32].

3.3.4. Bernoulli Naive Bayes (BNB)

BNB is a probabilistic model that belongs to the Naïve Bayes classifier family and
calculates the presence or absence of features. This model, which is widely used especially
in text classification problems, treats the presence or absence of each word as a binary
variable. This approach gives effective results in applications such as spam filtering,
document classification and sentiment analysis [33]. In this study, BNB is preferred due to
its low computational cost, good performance on small datasets and its ability to deal with
noisy data. However, the fact that it does not take into account word frequency may lead to
information loss in some cases. Therefore, when compared to alternative methods such as
Multinomial Naïve Bayes (MNB), it seems to be more suitable especially for short texts.

3.3.5. k-Nearest Neighbor (kNN)

kNN algorithm is an unsupervised ML algorithm that classifies data according to its nearest
neighbours. The basic principle is that in order to determine the class of a data point, the
closest is to look at the class of its k neighbours. The algorithm calculates the distance
between data points, usually using metrics such as Euclidean distance, and performs
classification by majority voting [34]. It is preferred in this study for service type separation
because it uses a memory-based method by working in the prediction phase instead of the
learning phase, allows direct use of data and does not require parameter optimization, and
offers a flexible classification method by capturing non-linear relationships.

3.3.6. Nearest Centroid (NC)

NC classifier is a ML method that calculates the centroid of each class and classifies new
instances according to the nearest centroid. This method is effective when the class
distributions can be clearly separated from each other and offers a fast and computationally
efficient alternative, especially in high-dimensional datasets. The NC classifier calculates
the mean vector of each class in the training data and assigns the test data to the nearest
centre [35]. This method is particularly favoured for its low computational cost and
interpretability. However, its accuracy may decrease when there are significant overlapping
classes or non-linear distinctions in the dataset. However, Nearest Centroid, which is seen
as one of the bridges between statistical methods and machine learning, is preferred due to
its simplicity and efficiency, especially in large datasets.

3.3.7. Stochastic Gradient Descent Classifier (SGDC)

SGDC is a fundamental ML algorithm for solving optimisation problems on large datasets.
Unlike the classical Gradient Descent method, SGDC optimises the weights by updating

Leveraging Machine Learning and Transformers to Identify Domain-Specific Services Decomposition in
Legacy Systems

484

only a randomly selected subset (mini-batch) instead of the entire dataset at each iteration.
This approach provides a significant performance improvement, especially in training deep
learning models, and greatly reduces computational costs [36]. SGDC is preferred in this
study, because it provides faster model training by reducing the computational cost on such
large-sized source code files. In addition, the fact that it requires less memory usage
compared to traditional gradient descent methods and offers a dynamic learning process
with mini-batch updates increases its effectiveness in microservice decomposition
processes.

3.3.8. Support Vector Machine (SVM)

SVM is a powerful supervised learning algorithm used in classification and regression
problems. It is based on finding the optimal hyperplane that best discriminates between
classes and thus works effectively, especially in high-dimensional and complex data sets
[37]. SVM facilitates classification by transforming linearly separable data into a higher
dimensional space using kernel methods. It can be customised for different data structures
thanks to different kernel functions such as linear, polynomial, radial basis functions (RBF)
and sigmoid kernels. This flexibility helps to achieve the best classification performance in
accordance with the structure of the dataset. It is preferred in this study because of its
potential to produce more accurate results by filtering out noisy or irrelevant components
in the code base during the service type separation process, to separate code components
into the correct services by determining the dividing line between classes in the best way,
and to separate service components more effectively by generalising even in large and
complex code bases.

3.3.9. Gradient Boosting Classifier (GBC)

GBC is an ensemble learning method that builds a stronger model by iteratively training
weak learners. This algorithm improves the overall accuracy of the model by focusing on
reducing the error rate at each iteration and is often preferred because it achieves high
accuracy rates, especially in large datasets [38]. Gradient Boosting improves prediction
accuracy by creating new trees that focus on the errors of the previous model at each step.
It reduces model complexity by filtering out unnecessary features with the Weighted
Feature Importance (WFI) method to prevent overlearning (overfitting). Thus, faster and
more efficient models can be created by using fewer but more meaningful features. In this
study, GBC is preferred since it eliminates redundant data by feature selection and
highlights more meaningful code components in service decomposition, provides reliable
and consistent results in the service decomposition process by reducing the risk of
overfitting, and optimises the processing time by using fewer computational resources.

3.3.10. Random Forest (RF)

RF is an ensemble learning algorithm consisting of many decision trees. Each tree is trained
on different subsets of the training dataset and the final prediction is made by majority
voting in the classification stage [39]. This approach reduces the overfitting tendency of the

Leveraging Machine Learning and Transformers to Identify Domain-Specific Services Decomposition in
Legacy Systems

485

individual decision trees and enables a more generalised model to be constructed. Random
Forest is widely used due to its advantages such as high classification accuracy, robustness
to noise and resistance to overfitting. The voting process of independently generated trees
increases the reliability of the model and provides advantages in terms of variable selection
and error tolerance. It is preferred in this study since it minimises the negative impact of
irrelevant or noisy data in code analysis on the performance of the model and the
combination of multiple decision trees increases the generalisation ability of the model and
minimises erroneous decompositions.

3.3.11. AdaBoost (AB)

AdaBoost (Adaptive Boosting) is an ensemble learning method that can make more accurate
predictions by iteratively strengthening weak learners. This algorithm improves the
accuracy of the model by focusing on the errors of the previous model in each iteration,
increasing the importance of misclassified instances by weighting. AdaBoost is a preferred
method due to its high success especially in small and unbalanced datasets [40]. The reasons
why it is preferred in this study are that it offers high performance with low computational
cost in small and medium-sized datasets, and more accurately identifies service components
by combining multiple weak learners.

3.3.12. Logistic Regression (LR)

LR is a probability-based classification method, a statistical model that assigns data points
to specific categories using linear discriminators. It is widely used especially in binary
classification problems and allows the probability estimated by the sigmoid function to be
classified according to a certain threshold value [41]. The advantages of logistic regression
are that it is easy to interpret, requires low computational cost and performs strongly on
small or medium-sized datasets. Its reduced susceptibility to overfitting and ability to
eliminate irrelevant variables through feature selection offer a significant advantage in the
decomposition of monolithic architectures into microservices.

3.4. Hyperparameter Selection

The proposed method incorporates several hyperparameters that influence the performance
of classifiers. The Table 1 summarizes the key parameters used, their tuning approach, and
the rationale for selection.

Table 1. Hyperparameters of ML Methods

Parameter Value(s) Tuning Method
Impact on

Performance

Random Seed 1
Fixed for

reproducibility
Ensures stability

across runs

Leveraging Machine Learning and Transformers to Identify Domain-Specific Services Decomposition in
Legacy Systems

486

Cross-Validation
StratifiedKFold(n_splits=3,

shuffle=True, random_state=1)
Stratified to maintain

class distribution
Prevents data

imbalance bias

Embedding Size
Not explicitly set (depends on POS

embeddings)
Fixed per dataset

configuration

Affects
representation

quality

MLP Hidden
Layers

(5,2) Manually set
Controls network

complexity

MLP Optimizer adam
Default (Adam

optimizer)
Ensures stable

gradient updates

MLP
Regularization

alpha=1e-5 Default Reduces overfitting

SGD Loss
Function

Hinge (default for SGDClassifier) Default Optimized for
linear separation

Random Forest
Trees

100 Default Balances accuracy
and efficiency

Gradient Boosting
Trees

100 Default Reduces variance

AdaBoost
Estimators

50 Default Controls model
complexity

Logistic
Regression Solver liblinear

Default (suitable for
small datasets)

Ensures
convergence

In this study, a fixed seed (random_state=1) was used across experiments to ensure
consistent and reproducible results. Stratified k-fold validation (n_splits=3) was employed
to prevent class imbalance from affecting model performance. For MLP configuration, a
small network structure (hidden_layer_sizes=(5,2)) was used to avoid overfitting on a
relatively small dataset. Adam optimizer and regularization (alpha=1e-5) were applied to
stabilize training. As the SVM and SGD parameters, the Radial Basis Function (RBF)
kernel was chosen for SVM due to its ability to handle non-linearly separable data, while
SGDC used the default hinge loss for linear separability. For the tree-based classifiers such
as RF and GBC, the number of trees was selected as 100 to balance computational cost and
classification accuracy while AB used 50 weak learners to avoid overfitting. Besides, The
liblinear solver was chosen as it is optimized for small-to-medium datasets, ensuring
convergence and numerical stability fort he LR classifier.

4. Experimental Results

After generating embeddings from source codes using different types of tokenizers, various
ML classification models were applied using 3-fold cross validation. Table 2 presents the
performance metrics for source-code classification using different transformer-based

Leveraging Machine Learning and Transformers to Identify Domain-Specific Services Decomposition in
Legacy Systems

487

tokenizers across these models. Among the models evaluated, LR consistently achieves the
highest performance, with an F1 Score of 91.9% when using CodeBERT and BERT-based
uncased tokenizers. RF and AB also demonstrate strong performance, especially with
CodeBERT and RoBERTa-base tokenizers, showing high Precision, Recall, and F1 Scores.
In contrast, MLP performs the weakest overall, with particularly low F1 Scores of 36.4%
across all tokenizers. SGDC shows very poor performance with RoBERTa-base, with
notably low Precision and F1 Scores. Among the tokenizers, CodeBERT generally provides
better results compared to others, while RoBERTa-base shows slightly superior F1 Scores
in some cases. Thus, the choice of tokenizer and model significantly influences
classification accuracy, with CodeBERT and logistic regression emerging as the most
effective combinations.

Table 2. Performance metrics of FXML-POS legacy system’s source-code classification
results with various transformer-based tokenizers according to different ML classifiers

Algorithm

Transformer-Based Tokenizers/Performance Metrics (%-Average weights)
CodeBERT Bert-based uncased Roberta-base

Precision Recall
F1

Score Precision Recall
F1

Score Precision Recall
F1

Score
MLP 47.3 65.6 53.8 27.8 52.7 36.4 27.8 52.7 36.4
DT 82.7 85.2 83 77.5 79.8 78.2 82.2 81.7 81.1

GNB 84 87.5 84.8 83.8 87.2 84.8 85.6 89 86.7
BNB 80.6 81.9 79.2 75.1 76.5 73.7 78.3 80.2 77.6
kNN 87.1 90.8 88.3 78.4 76.4 72.7 88.2 92.6 90.1
NC 56.4 59.7 56.1 73.3 72.8 72.1 81.5 81.9 80.2

SGDC 81.7 81.9 79.7 81.2 83.7 81 26.1 50.8 34.4
SVM 27.8 52.7 36.4 75.1 69.1 64.3 27.8 52.7 36.4
GBC 87 90.8 88.4 81.3 85.3 83 82.4 83.5 82.1
RF 88.3 92.6 90.2 89.6 94.5 91.9 89.6 94.5 91.9
AB 88.3 92.6 90.2 80.1 79.9 79.1 81 83.5 81.3
LR 89.6 94.5 91.9 89.6 94.5 91.9 83.7 85.4 82.9

The Table 3 compares the performance of different ML models for source-code
classification using TF-IDF and Word2Vec vectorizers. Word2Vec consistently delivers
superior results compared to TF-IDF across most models. For instance, Logistic Regression
(LR) and Support Vector Machine (SVM) show notably higher Precision, Recall, and F1
Scores with Word2Vec, achieving an F1 Score of 91% and 36.4%, respectively, with TF-
IDF. GBC and RFboth achieve the highest F1 Scores of 97.2% with Word2Vec,
demonstrating exceptional performance in Precision and Recall. NC and kNN also perform
well with Word2Vec, showing improved metrics over TF-IDF. Conversely, models like
SGDC and SVM perform poorly with Word2Vec, particularly in F1 Score, highlighting
that Word2Vec may not be universally effective for all models. Overall, Word2Vec
outperforms TF-IDF in most cases, particularly for models like GBC and RF, while TF-
IDF yields variable results depending on the model.

Leveraging Machine Learning and Transformers to Identify Domain-Specific Services Decomposition in
Legacy Systems

488

Table 3. Performance metrics of FXML-POS legacy system’s source-code classification
results with TF-IDF and Word2Vec vectorizers according to different ML models

Algorithm

Word Embedding Vectorizers/ Performance Metrics
(%-Average Weights)

TF-IDF Word2Vec

Precision Recall F1
Score Precision Recall F1

Score
MLP 83.5 83.6 82 89.5 94.5 91
DT 87.5 90 89.1 91.4 92.5 91.8

GNB 83 85.3 83.7 96.4 98.1 97.2
BNB 80 78.2 76 80 80 77.2
kNN 83.3 87.2 84.6 87.8 92.6 90.1
NC 88.4 92.7 90.3 89.1 83.5 84.4

SGDC 90.3 87.2 87.5 73.5 72.4 71.4
SVM 89.6 94.5 91.9 27.8 52.7 36.4
GBC 87.7 92.6 90.1 96.4 98.1 97.2
RF 89.6 94.5 91.9 96.4 98.1 97.2
AB 87.7 92.6 90.1 94.6 96.2 95.4
LR 89.6 94.5 91.9 27.8 52.7 36.4

Comparing the two tables reveals that Word2Vec consistently delivers higher performance
metrics than both TF-IDF and transformer-based tokenizers. In terms of F1 Scores, GBC
and RF achieve exceptional results of 97.2% with Word2Vec, significantly surpassing the
highest F1 Scores of 91.9% seen in Logistic Regression (LR) and Random Forest (RF) using
Bert-based uncased in the first table. Similarly, Precision and Recall values are notably
higher with Word2Vec, with models like GBC and RF reaching 96.4% Precision and 98.1%
Recall. In contrast, the best results with transformer-based tokenizers show lower metrics,
highlighting that Word2Vec provides superior overall performance for classification tasks.

The accuracy metrics shown in Table 4 for the FXML-POS legacy system’s source-code
classification across various tokenizers and ML models highlight significant differences in
performance. LR and RF achieve the highest accuracy with 94.5% and 92.6% respectively,
using both CodeBERT and TF-IDF tokenizers. Word2Vec vectorizers generally deliver
superior accuracy metrics across all models, with the highest accuracy of 98.1% observed
for GBC and RF. In contrast, models such as SVM and SGDC show varied performance,
with SVM reaching a maximum accuracy of 94.5% using TF-IDF, while SGDC performs
best with TF-IDF but remains lower overall compared to Word2Vec results. Overall,
Word2Vec outperforms other tokenizers, demonstrating its efficacy in achieving higher
accuracy in source-code classification.

Leveraging Machine Learning and Transformers to Identify Domain-Specific Services Decomposition in
Legacy Systems

489

Table 4. Accuracy metrics of FXML-POS legacy system’s source-code classification results
of all tokenizers according to different ML models

Algorithm

Accuracy Metrics

Transformer-based Tokenizers Word Embedding
Vectorizers

CodeBERT Bert-based
uncased

Roberta-
base TF-IDF Word2Vec

MLP 65.6 52.7 52.7 83.6 94.5
DT 85.2 79.8 81.7 90 92.5

GNB 87.5 87.2 89 85.3 98.1
BNB 81.9 76.5 80.2 78.2 80
kNN 90.8 76.4 92.6 87.2 92.6
NC 59.7 72.8 81.9 92.7 83.5

SGDC 81.9 83.7 50.8 87.2 72.4
SVM 52.7 69.1 52.7 94.5 52.7
GBC 90.8 85.3 83.5 92.6 98.1
RF 92.6 94.5 94.5 94.5 98.1
AB 92.6 79.9 83.5 92.6 96.2
LR 94.5 94.5 85.4 94.5 52.7

5. Discussion

This study presents a ML-based approach for domain-specific service decomposition in
legacy systems, leveraging transformer-based tokenizers and word embedding techniques.
The proposed methodology effectively classifies source code into application, entity, and
utility services, demonstrating competitive performance across multiple ML classifiers.
Numerous studies have proposed methodologies for service identification in legacy
systems, including domain analysis-based, dynamic analysis-based, and static analysis-
based approaches. For example, Abdellatif et al. [10] introduced a taxonomy for service
identification, highlighting that most existing methods require supplementary artifacts such
as business process models, UML diagrams, or activity diagrams. Similarly, Trabelsi et al.
[18] proposed a semantic analysis-based approach for microservice identification,
integrating function similarity and ML techniques. In contrast, the proposed approach in
this study does not rely on additional external artifacts such as UML models or business
process diagrams. Instead, it utilizes static analysis techniques combined with transformer-
based and word embedding models, making it faster and more scalable than domain
analysis-based methods. Furthermore, our findings indicate that Word2Vec embeddings
outperform transformer-based models, particularly when combined with Random Forest
and Gradient Boosting classifiers, providing a more accurate and computationally efficient
solution for source code classification.

Compared to studies that employ rule-based or heuristic-based methods for service
decomposition, the proposed approach provides greater generalization capability, as ML

Leveraging Machine Learning and Transformers to Identify Domain-Specific Services Decomposition in
Legacy Systems

490

models automatically learn patterns from the source code. Moreover, this method achieves
higher classification accuracy than static analysis-based studies that rely solely on
traditional NLP methods such as TF-IDF, as demonstrated by the significant performance
improvements observed in our experimental results. The effectiveness of fine-tuned
transformer models in text classification tasks has been widely discussed in recent literature,
particularly in domain adaptation scenarios [42] [43]. While our study evaluates
transformer-based tokenizers with traditional NLP methods, they were not specifically fine-
tuned for service decomposition. Future research could focus on fine-tuning transformers
on larger software engineering datasets, similar to how domain-specific BERT models have
been optimized for text categorization tasks.

Unlike manual domain analysis-based methods, which require substantial human
intervention and domain knowledge, this approach offers an automated and scalable
alternative for large-scale monolithic systems without the need for additional metadata such
as business process models or UML diagrams. The results confirm that ML models,
particularly Random Forest and Logistic Regression with Word2Vec, significantly enhance
the accuracy and efficiency of service decomposition. Recent research has shown that the
choice of embedding method significantly influences classification performance in various
NLP tasks, including sentiment analysis and text categorization [44]. Similarly, in this
study, Word2Vec demonstrated superior performance over TF-IDF in distinguishing
domain-specific services from monolithic systems, supporting previous findings on the
importance of embedding quality.

Despite the promising results, this study has certain limitations that should be addressed in
future work. One notable limitation is the dataset size and generalizability, as the study was
conducted using the FXML-POS legacy system, which consists of a relatively small number
of Java classes. While the results are promising, further validation is necessary on larger
and more complex legacy systems to assess the robustness and scalability of the approach.
Additionally, the decomposition was performed into three service types (application, entity,
and utility), whereas future research could explore more granular service categorization,
including business logic and presentation layer services. Another limitation of this study is
its reliance solely on static source code analysis, which may not fully capture dynamic
interactions between software components. Incorporating dynamic analysis techniques,
such as runtime monitoring and execution traces, could improve the accuracy of service
identification by considering real-time dependencies and function calls. While transformer-
based tokenizers were evaluated, they were not fine-tuned specifically for service
decomposition. Future studies could focus on fine-tuning transformer models on larger
software engineering datasets, potentially improving their classification performance.
Moreover, while this study demonstrates strong performance in an offline experimental
setup, its applicability in real-world software migration projects remains an open challenge.
Future research should explore the integration of this approach into software reengineering
pipelines and evaluate its effectiveness in industrial case studies to further assess its
practical applicability.

Leveraging Machine Learning and Transformers to Identify Domain-Specific Services Decomposition in
Legacy Systems

491

6. Conclusion

In this study, we focused on domain-specific service decomposition to facilitate the
transformation of monolithic architectures into service-oriented architectures. The
motivation behind this research stems from the increasing need for modular, scalable, and
maintainable software structures, particularly as legacy systems struggle with adaptability
and performance constraints. By leveraging ML models and transformer-based tokenization
techniques, we demonstrated an automated and effective methodology for identifying and
classifying service types within a legacy system. The FXML-POS project, used as a case
study, presented an inherent dataset imbalance due to the relatively small number of utility
classes compared to application and entity classes. Despite this challenge, the proposed
classification models successfully identified service types with high accuracy, showcasing
the potential of data-driven approaches in software modernization efforts.

The findings indicate that transformer-based tokenizers, such as CodeBERT, RoBERTa,
and BERT-based uncased, performed well, achieving precision, recall, and F1 scores of
89.6%, 94.5%, and 91.9%, respectively. However, the results also highlight that Word2Vec
embeddings, a classical word embedding method, exhibited superior performance in source
code classification, surpassing transformer-based models in various evaluation metrics.
This suggests that traditional word embeddings still hold significant value in software
engineering applications, particularly when combined with ensemble-based classifiers.
Among the ML models tested, the Random Forest classifier demonstrated the most robust
results, achieving an accuracy of 98.1%, precision of 96.4%, recall of 98.1%, and an F1
score of 97.2%. These findings underscore the importance of selecting appropriate
vectorization strategies and classification models in the context of static source code
analysis.

One of the major contributions of this study is the demonstration that ML-driven service
decomposition can effectively replace manual or heuristic-based methods, which are often
time-consuming and reliant on expert intervention. Unlike traditional semantic or rule-
based techniques, which require extensive external documentation such as UML diagrams,
business process models, or architectural specifications, the proposed approach operates
purely on static source code analysis. This independence from external artifacts enhances
the applicability of the method across various domains and software ecosystems.
Furthermore, the comparative analysis of transformer-based tokenizers and word
embedding models provides valuable insights into their strengths and limitations in the
context of software decomposition. While transformer-based models offer contextual
richness, their computational overhead remains a concern, making Word2Vec a more
lightweight and effective alternative in many scenarios.

Overall, this study demonstrates that ML techniques, particularly Word2Vec combined with
ensemble classifiers, provide an efficient and accurate solution for automated domain-
specific service decomposition in legacy systems. By eliminating the need for manual
intervention and external documentation, this approach offers a scalable and high-
performance alternative to traditional static and semantic analysis techniques. Future

Leveraging Machine Learning and Transformers to Identify Domain-Specific Services Decomposition in
Legacy Systems

492

research will focus on decomposing larger monolithic projects into both service-oriented
and microservice architectures, enhancing model generalizability, incorporating dynamic
analysis, and evaluating real-world deployment feasibility to further improve service
decomposition in large-scale legacy software systems.

References
1. Al-Debagy, O., P.J.S.C.P. Martinek, and Experience, A microservice decomposition

method through using distributed representation of source code. 2021. 22(1): p. 39-52.
2. Akl, M., Exploring Software Architectural Transitions: From Monolithic Applications

to Microfrontends enhanced by Webpack library and Cypress Testing. 2024, Politecnico
di Torino.

3. Balalaie, A., A. Heydarnoori, and P.J.I.S. Jamshidi, Microservices architecture enables
devops: Migration to a cloud-native architecture. 2016. 33(3): p. 42-52.

4. Razzaq, A. and S.A.J.C.A.i.E.E. Ghayyur, A systematic mapping study: The new age of
software architecture from monolithic to microservice architecture—awareness and
challenges. 2023. 31(2): p. 421-451.

5. Cerny, T., M.J. Donahoo, and M.J.A.S.A.C.R. Trnka, Contextual understanding of
microservice architecture: current and future directions. 2018. 17(4): p. 29-45.

6. Stojanov, Z., et al., A Tertiary Study on Microservices: Research Trends and
Recommendations. 2023. 49(8): p. 796-821.

7. Verma, R., D.J.S.C.P. Rane, and I.f.R.-T.S.-O. Computing, Service-Oriented
Computing: Challenges, Benefits, and Emerging Trends. 2024: p. 65-82.

8. Abdellatif, M., et al. A type-sensitive service identification approach for legacy-to-SOA
migration. in Service-Oriented Computing: 18th International Conference, ICSOC
2020, Dubai, United Arab Emirates, December 14–17, 2020, Proceedings 18. 2020.
Springer.

9. Khadka, R., et al. A structured legacy to SOA migration process and its evaluation in
practice. in 2013 IEEE 7th International Symposium on the Maintenance and Evolution
of Service-Oriented and Cloud-Based Systems. 2013. IEEE.

10. Abdellatif, M., et al., A taxonomy of service identification approaches for legacy
software systems modernization. 2021. 173: p. 110868.

11. Abebe, S., H.J.I.J.o.P.M. Twinomurinzi, and Benchmarking, Identifying business
services from small and micro enterprises' collaboration: the activity-based service
identification framework. 2023. 15(3): p. 373-399.

12. Ayalew, S.A.J.A.P., Identifying reusable services from collaborative activities using
activity theory (AT): The Activity-Based Service Identification Framework (ASIF).
2023.

13. Si, H., et al. A service-oriented analysis and modeling using use case approach. in 2009
International Conference on Computational Intelligence and Software Engineering.
2009. IEEE.

14. Yousef, R., et al., Extracting SOA Candidate Software Services from an Organization’s
Object Oriented Models. 2014. 2014.

15. Zhao, Y., et al. A service-oriented analysis and design approach based on data flow
diagram. in 2009 International Conference on Computational Intelligence and Software
Engineering. 2009. IEEE.

16. Rafsanjani, S. JavaFX Point of Sales. 2024; Available from:
https://github.com/sadatrafsanjani/JavaFX-Point-of-Sales.

https://github.com/sadatrafsanjani/JavaFX-Point-of-Sales

Leveraging Machine Learning and Transformers to Identify Domain-Specific Services Decomposition in
Legacy Systems

493

17. Brito, M., J. Cunha, and J. Saraiva. Identification of microservices from monolithic
applications through topic modelling. in Proceedings of the 36th annual ACM
symposium on applied computing. 2021.

18. Trabelsi, I., et al., From legacy to microservices: A type‐based approach for
microservices identification using machine learning and semantic analysis. 2023.
35(10): p. e2503.

19. Sellami, K., et al., Improving microservices extraction using evolutionary search.
Information and Software Technology, 2022. 151: p. 106996.

20. Bastidas Fuertes, A., M. Pérez, and J.J.A.S. Meza, Transpiler-based architecture design
model for back-end layers in software development. 2023. 13(20): p. 11371.

21. Hu, M., et al., Collaborative Deployment and Routing of Industrial Microservices in
Smart Factories. 2024.

22. Karabey Aksakallı, I., et al., Micro‐IDE: A tool platform for generating efficient
deployment alternatives based on microservices. 2022. 52(7): p. 1756-1782.

23. Woods, D., Enterprise services architecture. 2003: " O'Reilly Media, Inc.".
24. Xiao, Z., I. Wijegunaratne, and X. Qiang. Reflections on SOA and Microservices. in

2016 4th International Conference on Enterprise Systems (ES). 2016. IEEE.
25. Feng, Z., et al., Codebert: A pre-trained model for programming and natural languages.

2020.
26. Behera, S.K. and R. Dash, Fine-Tuning of a BERT-Based Uncased Model for

Unbalanced Text Classification, in Advances in Intelligent Computing and
Communication: Proceedings of ICAC 2021. 2022, Springer. p. 377-384.

27. Liu, Y., et al., RoBERTa: A robustly optimized BERT pretraining approach. arXiv
[Preprint](2019). 1907.

28. Abubakar, H.D., et al., Sentiment classification: Review of text vectorization methods:
Bag of words, Tf-Idf, Word2vec and Doc2vec. 2022. 4(1): p. 27-33.

29. Rong, X., word2vec Parameter Learning Explained. 2014.
30. Popescu, M.-C., et al., Multilayer perceptron and neural networks. WSEAS

Transactions on Circuits and Systems, 2009. 8(7): p. 579-588.
31. Navada, A., et al. Overview of use of decision tree algorithms in machine learning. in

2011 IEEE control and system graduate research colloquium. 2011. IEEE.
32. Ampomah, E.K., et al., Stock market prediction with gaussian naïve bayes machine

learning algorithm. Informatica, 2021. 45(2).
33. Abbas, M., et al., Multinomial Naive Bayes classification model for sentiment analysis.

IJCSNS Int. J. Comput. Sci. Netw. Secur, 2019. 19(3): p. 62.
34. Zhang, Z., Introduction to machine learning: k-nearest neighbors. Annals of

translational medicine, 2016. 4(11).
35. Thulasidas, M. Nearest centroid: A bridge between statistics and machine learning. in

2020 IEEE International Conference on Teaching, Assessment, and Learning for
Engineering (TALE). 2020. IEEE.

36. Tian, Y., Y. Zhang, and H. Zhang, Recent advances in stochastic gradient descent in
deep learning. Mathematics, 2023. 11(3): p. 682.

37. Hearst, M.A., et al., Support vector machines. IEEE Intelligent Systems and their
applications, 1998. 13(4): p. 18-28.

38. Upadhyay, D., et al., Gradient boosting feature selection with machine learning
classifiers for intrusion detection on power grids. IEEE Transactions on Network and
Service Management, 2020. 18(1): p. 1104-1116.

39. Liu, Y., Y. Wang, and J. Zhang. New machine learning algorithm: Random forest. in
Information Computing and Applications: Third International Conference, ICICA
2012, Chengde, China, September 14-16, 2012. Proceedings 3. 2012. Springer.

Leveraging Machine Learning and Transformers to Identify Domain-Specific Services Decomposition in
Legacy Systems

494

40. Weidong, L., et al., Implementation of AdaBoost and genetic algorithm machine
learning models in prediction of adsorption capacity of nanocomposite materials.
Journal of Molecular Liquids, 2022. 350: p. 118527.

41. Nusinovici, S., et al., Logistic regression was as good as machine learning for
predicting major chronic diseases. Journal of clinical epidemiology, 2020. 122: p. 56-
69.

42. Coban, O., M. Yağanoğlu, and F. Bozkurt, Domain Effect Investigation for Bert Models
Fine-Tuned on Different Text Categorization Tasks. Arabian Journal for Science and
Engineering, 2024. 49(3): p. 3685-3702.

43. Alawi, A.E.B., F. Bozkurt, and M. Yağanoğlu. BERT-AraPeotry: BERT-based Arabic
Poems Classification Model. in 2024 4th International Conference on Emerging Smart
Technologies and Applications (eSmarTA). 2024. IEEE.

44. Ba Alawi, A. and F. Bozkurt, Performance Analysis of embedding methods for deep
learning-based Turkish sentiment analysis models. Arabian Journal for Science and
Engineering, 2024: p. 1-23.

