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Abstract. In this study, we will define dual-type octonions by drawing inspiration from dual quaternions and
Galilean geometry. Besides giving the basic properties of dual-type octonions and defining isotropic and non-
isotropic dual-type octonions, we present Euler’s and De Moivre’s formulas for dual-type octonions. Finally, we
give a matrix representation of dual-type octonions.

2020 AMS Classification: 11C20, 15B33

Keywords: Octonions, dual-type octonions, Euler’s formula, De-Moivre formula, Galilean Geometry.

1. Introduction

Before starting, providing basic information about number systems that have been studied for a long time will help
the reader understand which gap this article fills in the literature.

When the literature is examined, along with complex numbers (C) present as two-dimensional, there are also dual
numbers (D) and hyperbolic numbers (H) among the number systems that are well known to researchers. We can
summarize these number systems and related references with the help of the table below.

Numbers General Form Property of Units References
C a + ib i2 = −1 [1, 16, 38]
D a + εb ε2 = 0 [22, 27, 37]
H a + h b h2 = 1 [4, 5, 18, 21, 28, 29, 33, 34, 36]

Table 1. Complex, Dual, and Hyperbolic numbers, and their general forms

In addition to the number systems given above, hybrid numbers, which are generalized versions of these numbers,
are also defined as z = a + ib + ϵc + hd, here the units have same properties with the number system above. There are
many different studies in the literature about these numbers, for details see [8, 14, 26].

Quaternions can be given as an example of a four-dimensional number system. They are obtained in two ways: the
first way is obtained by changing the coefficients, the second way is obtained by changing the role of the quaternionic
units. It can be summarized as below:
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i. Quaternions with different coefficients:
a. H − Real Quaternions, Q1 = a0 + ia1 + ja2 + ka3, i2 = j2 = k2 = −1.
b. HC − Complex Quaternions, Q = Q1 + iQ2, i2 = −1,Q1,2 ∈ H.
c. HD − Dual Quaternions, Q = Q1 + εQ2, ε

2 = 0,Q1,2 ∈ H.
d. HH − Hyperbolic Quaternions , Q = Q1 + hQ2, h2 = 1,Q1,2 ∈ H.

For details, we refer to reader [2, 17, 25, 30, 31].
ii. Quaternions with different unit properties, for Q1 = a0 + ia1 + ja2 + ka3 general form:

a. H − Real Quaternions , i2 = j2 = k2 = −1, i jk = −1.
b. HS − Split Quaternions , i2 = j2 = −1, k2 = 1, i jk = 1.
c. HD − Dual Type Quaternions , i2 = j2 = k2 = 0, i jk = 0.
d. HH − Hyperbolic Type Quaternions , i2 = j2 = k2 = 1, i jk = 1.

For details, we refer to reader [8–13, 20, 23, 32].
Some of the structures given above regarding quaternions are also given on octonions [6, 7, 15, 19, 35]. When the

literature is examined, it is seen that dual-type octonions are not defined. The main purpose of this study is to fill this
gap in the literature. For this purpose, firstly basic information about dual numbers will be given in order to provide
preliminary information and understanding about the subject.

Dual numbers, D ≡ R[ε], are an extension of real numbers with the dual unit ε. For the real numbers a and a∗, a
dual number can be written as z = a+εa∗. These numbers can be expressed as a combination of two real numbers with
a dual unit. The dual unit ε is not equal to zero and ε2 = ε3 = · · · = 0, 0ε = ε0 = 0 and 1ε = ε1 = ε. The set of dual
numbers can be defined as follows:

D =
{
z = a + εa∗ | a, b ∈ R, ε2 = 0, ε , 0

}
.

1, ε are the base elements of dual numbers. The set of dual numbers is a 2 -dimensional vector space over R.
Moreover, dual numbers are described as R[x]/x2 in algebra. It is easy to see that (D,+, ·) is a commutative ring with
unity. Dual numbers without real parts are called pure dual numbers, and they are zero-divisors such as εa, εb.

For dual numbers z1 = a + εa∗, z2 = b + εb∗ addition and multiplication operation are defined as follows:

z1 + z2 = (a + b) + ε (a∗ + b∗) ,

z1 · z2 = (a · b) + ε (a∗b + ab∗) .

It is easy to see that multiplication is associative and commutative. The conjugate of a dual number is denoted
by z and defined by z = a − εa∗. Furthermore, the modulus of a dual number is denoted by |z| and is defined by
|z| =

√
zz =

√
a2 = |a|. This modulus corresponds to the distance in 2-dimensional Galilean plane. The Galilean plane

is defined by the Galilean inner product, for the vectors x⃗ = (a1, b1) , y⃗ = (a2, b2) ∈ R2, the Galilean inner product is
defined by: ⟨x⃗, y⃗⟩G = a1a2. Dual numbers are isomorphic to the Galilean plane, G2, [22, 27, 37, 38].

A dual number z is called a unit dual number if |z| = 1. The points that satisfy |z| = 1 are called Galilean unit circle
on the dual plane. For |z| = a, the circle can be demonstrated as in the following figure.

Figure 1. A circle with a radius a in the Galilean plane
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In Galilean plane geometry, Galilean cosine and Galilean sine are shown as cosg and sing, respectively. The follow-
ing statements can be given for Galilean plane geometry:

cos g(θ) :=
a
a∗
,

sin g(θ) :=
a∗

a
= θ,

cos g(α + β) = cos gα · cos gβ − ε2 sin gα · sin gβ,

sin g(α + β) = sin gα · cos gβ + cos gα · sin gβ,

cos2 α + ε2 sin g2α = 1.

For further details on dual numbers and Galilean geometry, see [10, 22, 23]. The octonions were first defined by
Cayley. They are used in many areas such as quantum mechanics, electromagnetism, and sting theory [6,7,15,19,35].
The set of octonions can be given as follows:

O =

O = 7∑
s=0

xses : xs ∈ R, e0 = 1, e2
0 = 1, eie j = −δi je0 + εi jkek

 ,
where e0 is the identity element, es are basis elements of octonions, δi j is the Kronecker delta, and εi jk is a completely
anti-symmetric tensor. It can be also said that the set of real numbers (R), complex numbers (C) and quaternions (H)
are subsets of octonions. Thus, a general octonion can be written as

O = x0e0 + x1e1 + x2e2 + · · · + x7e7,

where the coefficients xs are real numbers. When the coefficients are replaced by dual numbers, octonions with dual
number coefficients are obtained. There are many works about octonions with dual number coefficients in the literature.
In all of these studies, the name dual octonion is used. In fact, dual octonions in the literature should have been
introduced as octonions with dual number coefficients. However, we are not working on these types of dual octonions
in this study. Normally, the octonions that we will introduce in this study should be called dual octonions. In this study,
in order to avoid confusion, we will use the name dual-type octonion. Changing the role of the octonion units es, we
are going to define dual-type octonions, then we will define isotropic and non-isotropic dual octonions. Finally, we
will present the properties of dual octonions.

2. Dual-Type Octonions

As we mentioned above, instead of the dual octonions known in the literature, dual-type octonions will be introduced
with a new perspective, inspired by Galilean geometry. A general form of a dual-type octonion can be written as:

O =
7∑

s=0

xses = x0e0 + x1e1 + x2e2 + · · · + x7e7,

where x0, x1, · · · , x7 ∈ R, and e0, e1, · · · , e7 are the units of dual-type octonions. Additionally, e0 = 1 and e2
0 = 1. Any

dual-type octonion can be written as O = S O+VO, where S O = x0e0 is the scalar part of and VO = x1e1+x2e2+· · ·+x7e7
is the vector part of O. If the scalar part equals zero, that is S O = 0, then O is called an isotropic dual-type octonion.
On the other hand, if S O , 0, it is called a non-isotropic dual-type octonion.

Units of dual-type octonions satisfy the following rules:

• If O is a non-isotropic dual-type octonion,

e2
1 = e2

2 = · · · = e2
7 = 0 = ei × e j,

where e2
1 = e1 × e1, and the symbol ” × ” is used for multiplication of two non-isotropic dualtype octonions.

• If O is an isotropic dual-type octonion,

e2
1 = e2

2 = · · · = e2
7 = −1, ei ×δ e j = −δi je0 + εi jkek,

where e2
1 = e1 ×δ e1, and the symbol ” ×δ ” is used for multiplication of two isotropic dual-type octonions.
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The product of two isotropic dual-type octonions is 0 . It can be observed by simple calculations. For dual-type
octonions O1 = S O1 + VO1 ,O2 = S O2 + VO2 , then

O1 × O2 =
(
S O1 + VO1

) (
S O2 + VO2

)
= S O1 S O2 + S O1 VO2 + S O2 VO1 ,

O2 × O1 =
(
S O2 + VO2

) (
S O1 + VO1

)
= S O2 S O1 + S O2 VO1 + S O1 VO2 .

From the equations above it can be seen that O1×O2 = O2×O1. OD andOp
D denote the set of non-isotropic dual-type

octonions and isotropic dual octonions, respectively. Additionally, Op
D space is a subspace of OD and is isomorphic to

R7. The sum of two dual-type octonions is also a dual-type octonion. The addition operation of dual-type octonions is
defined as follows:

⊕ : OD × OD → OD

(O1,O2)→ O1 ⊕ O2 =
(
S O1 + S O2

)
+
(
VO1 + VO2

)
.

(QD,⊕) is an Abelian group with the identity element. Moreover, the multiplication of a scalar and a dual-type
octonion is defined by

⊙ : R × OD → OD
(λ, 0)→ λ ⊙ 0 = λS 0 + λV0.

This operation implies the following statements:
1. λ ⊙ (O1 + O2) = (λ ⊙ O1) ⊕ (λ ⊙ O2),
2. (λ1 + λ2) ⊙ 0 = (λ1 ⊙ 0) ⊕ (λ2 ⊙ 0),
3. (λ1 · λ2) ⊙ 0 = λ1 ⊙ (λ2 ⊙ 0),
4. 1 ⊙ 0 = 0.

Thus, it can be seen that (OD,⊕,⊙) is a vector space over the real numbers.

Example 2.1. Let O1 = 3e0 + 2e1 + 5e2 − 7e3 + 2e7 and O2 = e0 − 4e2 − e5 + 6e7 be two dual-type octonions. The
addition of these dual-type octonions is as follows:

O1 + O2 = 4e0 + 2e1 + e2 − 7e3 − e5 + 8e7.

Definition 2.2. Let O1 = x0e0 +
∑7

s=1 xses = S O1 + VO1 and O2 = y0e0 +
∑7

s=1 yses = S O2+ VO2 be two dual-type
octonions. Then, the multiplication of these dual-type octonions can be defined as follows:

• If O1 and O2 are non-isotropic dual-type octonions

O1 × O2 = x0y0 + x0

7∑
s=1

yses + y0

7∑
s=1

xses = S O1 S O2 + S O1 VO2 + S O2 VO1 .

• If O1 and O2 are isotropic dual-type octonions

O1 × O2 = − < VO1 ,VO2 > +VO1 ∧ VO2 ,

where notation ” <, > ” is denote the inner product, and ” Λ ” denote the vector product in Euclidean 7 -space.

Example 2.3. Let O1 = 2e0 + e1 − 3e3 + 5e7 and O2 = e0 − 2e2 + 4e5 be two non-isotropic dual-type octonions.
Multiplication of these non-isotropic dual-type octonions are as follows:

O1 × O2 = 2e0 + e1 − 4e2 − 3e3 + 8e5 + 5e7.

Definition 2.4. Let O = S O + VO be a dual-type octonion. The conjugate of O is denoted as O and defined as
O = S O − VO. The following statements are satisfied for dual-type octonions:

• If O be a non-isotropic dual-type octonion, then

O × O = O × O = S 2
O − S OVO + S OVO = S 2

O = x2
0.

• If O an isotropic dual-type octonion, then

O ×δ O = O ×δ O = − ⟨VO,−VO⟩ − VO ∧ VO = ⟨VO,VO⟩ =

7∑
s=1

x2
s .

• Let O1 and O2 be two dual-type octonions, then

O1 + O2 = O1 + O2,
(
O1

)
= O1, λO1 = λO1, λ ∈ R.
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• Let O = S o + Vo be a dual-type octonion, then the following equations are hold:

S O =
O + O

2
, VO =

O − O
2
.

Definition 2.5. Let O = x0e0 + x1e1 + x2e2 + · · · + x7e7 be a dual-type octonion. Then the norm operation is defined
as follows:

• If O is a non-isotropic dual-type octonion, then

∥O∥ =
√

O × O =
√

O × O =
√

x2
0 = |x0| .

• If O is an isotropic dual-type octonion, then

∥O∥ =
√

O ×δ O =
√

O ×δ O =
√

x2
1 + x2

2 + · · · + x2
7 =

√√√ 7∑
s=1

x2
s .

Definition 2.6. A dual-type octonion O is called a unit dual-type octonion if ∥O∥ = 1.

Theorem 2.7. For dual-type octonions O1 and O2, the following operations are hold:
• ∥O1 × O2∥ = ∥O1∥ × ∥O2∥ = ∥O2 × O1∥,
• ∥O1 + O2∥ ≤ ∥O1∥ + ∥O2∥,
•
∥∥∥O2

1 + O2
2

∥∥∥ = 1
2 ∥O1 + O2∥

2 + ∥O1 − O2∥
2,

• ∥O1∥ =
∥∥∥O1
∥∥∥,

• ∥O1∥ = 0⇔ O1 = 0.

Definition 2.8. Let O = x0e0 +
∑7

s=1 xses be a dual-type octonion. The inverse of is O is defined as follows:
• If O is a non-isotropic dual-type octonion, then

O−1 =
O
∥O∥2

=
x0 −
∑7

s=1 xses

x2
0

.

• If O is an isotropic dual-type octonion, then

O−1 =
O
∥O∥2

=
−
∑7

s=1 xses∑7
s=1 x2

s

.

For any dual-type octonion, the inverse operation satisfies the following properties:
•
∥∥∥O−1

∥∥∥ = ∥O∥−1,
• O × O−1 = O ×

(
∥O∥−2O

)
= ∥O∥−2(O × O) = ∥O∥−2∥O∥2 = 1 = O−1 × O.

Definition 2.9. Let O1 and O2 be two dual-type octonions. The inner product of O1 and O2 is defined as follows:
• If O1 and O2 are non-isotropic dual-type octonions, then

<, >: OD × OD → R

< O1,O2 > =
1
2

(
O1 × O2 + O2 × O1

)
=

1
2
(
S O1 S O2 − S O1 VO2 + S O2 VO1 + S O2 S O1 − S O2 VO1 + S O1 VO2

)
= S O1 S O2 .

• If O1 and O2 are isotropic dual-type octonions, then

<, >δ: Op
D ×δ Op

D → R

< O1,O2 >δ =
1
2

(
O1 ×δ O2 + O2 ×δ O1

)
=

1
2
(
< VO1 ,VO2 > −VO1 ∧ VO2+ < VO2 ,VO1 > −VO2 ∧ VO1

)
=< VO1 ,VO2 > .
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2.1. Polar Representation of Dual-type Octonions. Let θ be the angle between the real axis and dual-type octonion
O = x0e0 +

∑7
s=1 xses. The polar representation of O is given as follows:

• If O is a non-isotropic dual-type octonion, then O can be written as follows:

O = ∥O∥
x0 +
∑7

s=1 xses

∥O∥
= ∥O∥

 x0

∥O∥
+

∑7
s=1 xses

∥O∥


= ∥O∥

 x0

∥O∥
+

√∑7
s=1 x2

s

∥O∥

∑7
s=1 xses√∑7

s=1 x2
s

 ,
where

n =
∑7

s=1 xses√∑7
s=1 x2

s

, cos gθ =
x0

∥O∥
=

x0

x0
= 1, sin gθ =

√∑7
s=1 x2

s

∥O∥
.

Then, we obtain the polar form of a non-isotropic dual-type octonion as

O = ∥O∥(cos gθ + n sing θ).

• If O is an isotropic dual-type octonion (x0 = 0), then O can be written as follows:

O = ∥O∥
∑7

s=1 xses

∥O∥
= ∥O∥

0 +
√∑7

s=1 x2
s

∥O∥

∑7
s=1 xses√∑7

s=1 x2
s

 ,
where

n =
∑7

s=1 xses√∑7
s=1 x2

s

, cos θ =
0
∥O∥
= 0, sin θ =

√∑7
s=1 x2

s

∥O∥
.

Then, we obtain the polar form of a non-isotropic dual-type octonion as

O = ∥O∥(cos θ + n sin θ).

2.2. Euler’s Formulas for Dual-type Octonions. From the previous section, it is easy to see that a unit non-isotropic
dual-type octonion can be expressed as O = cosg θ + n sing θ. Using the property n2 = n3 = · · · = na = 0 (a ∈ Z+), for
any angle θ the Euler formula of any non-isotropic dual-type octonion can be given as follows:

enθ = 1 + nθ +
(nθ)2

2!
+

(nθ)3

3!
+ · · · = 1 + nθ = cos gθ + n sin gθ,

following equations hold for non-isotropic dual-type octonions:
i. enθ1 × enθ2 = en(θ1+θ2),

ii. 1
enθ = e−nθ,

iii. enθ1

enθ2
= en(θ1−θ2).

The Euler formula for isotropic dual-type octonions can be obtained as follows:

enθ = cos θ + n sin θ,

where n ∧ n =
−→
0 , < n, n >δ,

〈
n, n >R7= 1, n2 = n ⊗δ n = −1 , and n3 = −n, n4 = −1, · · · .

2.3. De-Moivre’s Formula and Inner Product for Dual-type Octonions. Let O1 = cosg θ + n sing θ and O2 =

cosg β + n sing β be two dual-type octonions. For n =
∑7

s=1 xses√∑7
s=1 x2

s

, it can be seen that

cos g(α + β) + n sin g(α + β) = (cos gα + n sin gα) ⊗ (cos gβ + n sing β).

Theorem 2.10. Let O be a non-isotropic dual-type octonion. Then, O can be written as Ok = cos g(kα) + n sin g(kα).

Proof. The proof of this theorem can be easily obtained by induction. □
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Definition 2.11. The inner product of a non-isotropic dual-type octonions is defined as follows:

<, >: OD × OD → R

< O1,O2 > =
1
2

(
O1 × O2 + O2 × O1

)
= S O1 S O2 = x0y0.

Example 2.12. Let O1 = 2e0 − 9e1 + 3e5 − e6 and O2 = 5e0 + e4 − e6 − 3e7 be two nonisotropic dual-type octonions.
Inner product of these non-isotropic dual octonions are as follows:

< O1,O2 >=
1
2

(
O1 × O2 + O2 × O1

)
= 2 · 5 = 10.

Definition 2.13. The inner product of an isotropic dual-type octonions is defined as follows:

<1>δ:O
p
B ×δ Op

D → R

< O1,O2 >δ=
1
2

(
O1 ×δ O2 + O2 ×δ O1

)
=< VO1 ,VO2 >=

7∑
s=1

xsys.

Example 2.14. Let O1 = −9e1 + 2e4 + 3e5 − e6 + 5e7 and O2 = e1 + e4 − e6 − 3e7 be two isotropic dual-type octonions.
Inner product of these isotropic dual octonions are as follows:

< O1,O2 >δ=
1
2

(
O1 × δO2 + O2 ×δ O1

)
= −9 + 2 + 1 − 15 = −21.

2.4. Matrix Representation of Dual-type Octonions. Let O = x0e0 + x1e1 + x2e2 + · · · + x7e7 =
∑7

s=0 xses be a
dual-type octonion. For the linear map LO which is defined as follows:

LO : OD → OD

LO (O1) = O × O1,

using the basis elements of dual-type vector space {e0 = 1, e1, e2, . . . , e7} and the operator above, we can write

LO(1) = O × 1 = x0 · 1 + x1 · e1 + x2 · e2 + x3 · e3 + x4 · e4 + x5 · e5 + x6 · e6 + x7 · e7

LO (e1) = O × e1 = 0 · 1 + x0 · e1 + 0 · e2 + 0 · e3 + 0 · e4 + 0 · e5 + 0 · e6 + 0 · e7

LO (e2) = O × e2 = 0 · 1 + 0 · e1 + x0 · e2 + 0 · e3 + 0 · e4 + 0 · e5 + 0 · e6 + 0 · e7

LO (e3) = O × e3 = 0 · 1 + 0 · e1 + 0 · e2 + x0 · e3 + 0 · e4 + 0 · e5 + 0 · e6 + 0 · e7

LO (e4) = O × e4 = 0 · 1 + 0 · e1 + 0 · e2 + 0 · e3 + x0 · e4 + 0 · e5 + 0 · e6 + 0 · e7

LO (e5) = O × e5 = 0 · 1 + 0 · e1 + 0 · e2 + 0 · e3 + 0 · e4 + x0 · e5 + 0 · e6 + 0 · e7

LO (e6) = O × e6 = 0 · 1 + 0 · e1 + 0 · e2 + 0 · e3 + 0 · e4 + 0 · e5 + x0 · e6 + 0 · e7

LO (e7) = O × e7 = 0 · 1 + 0 · e1 + 0 · e2 + 0 · e3 + 0 · e4 + 0 · e5 + 0 · e6 + x0 · e7.

Then, we can obtain the real matrix representation of the dual-type octonion as follows:

LO =



x0 0 0 0 0 0 0 0
x1 x0 0 0 0 0 0 0
x2 0 x0 0 0 0 0 0
x3 0 0 x0 0 0 0 0
x4 0 0 0 x0 0 0 0
x5 0 0 0 0 x0 0 0
x6 0 0 0 0 0 x0 0
x7 0 0 0 0 0 0 x0


.
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Example 2.15. Let O1 = 5e0 + 2e1 − 3e3 + 4e5 − 9e7 be a dual type octonion. Real matrix representation of O1 is as
follows:

LO =



5 0 0 0 0 0 0 0
2 5 0 0 0 0 0 0
0 0 5 0 0 0 0 0
−3 0 0 5 0 0 0 0

0 0 0 0 5 0 0 0
4 0 0 0 0 5 0 0
0 0 0 0 0 0 5 0
−9 0 0 0 0 0 0 5


3. Conclusion and Future Remarks

In this paper, a new number system has been defined, and it is added to the types of octonion number systems. This
new system is obtained by changing the role of octonionic units and is introduced as the dual-type octonion system.
This study is inspired by Galilean space and the article [9, 22, 32]. Dual-type octonions have been studied as isotropic
and non-isotropic dualtype octonions. In addition to giving the basic properties of dual octonions, polar representation,
Euler’s formula, De-Moivre’s formula, and matrix representation of dual-type octonions are also given. As a future
direction and study, we will examine the application of this new number system to Fibonacci and the other sequences.
The results studied and presented in [3, 24] can be examined with this new number system.
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