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Developing solid-state batteries for higher energy densities and safety has been a 
popular research subject in recent years. Since their first report, Li7La3Zr2O12 (LLZO) 
solid electrolytes have attracted extended attention due to their high ionic 
conductivity, chemical stability, and wide electrochemical window. Although LLZO 
fulfills all the requirements for high energy density and a longer lifespan, its intrinsic 
electronic conductivity accelerates the Li dendrite growth short-circuiting the 
battery. In this study, we have applied air and oxygen sintering atmospheres to 
prepare two types of Ga-doped LLZO pellets, to identify the effect of sintering 
atmospheres on the physical properties such as crystal phase, ionic conductivity, 
roughness, and electronic band gap energy (Eg). Both the crystal structures were 
found to be in cubic phase with a relatively small amount of secondary phase 
impurities. On the other hand, the oxygen-sintered sample showed better properties 
with high ionic conductivity of 1.04x10-4 Scm-1, lower surface root-mean-square 
roughness of 0.1833 µm, and a relative density of 90.5%. Furthermore, the electronic 
indirect band gap energy of the oxygen-sintered sample was larger, Eg=5.77 eV, 
which is desired for lower electrical conductivity. It is important to note that the 
precise determination of Eg values of powders would be erroneous through 
Ultraviolet-Visible (UV-Vis) absorption spectroscopy due to the scattering effects of 
solids. So, to the best of our knowledge, for the first time, this study reports Eg values 
of oxygen and air-sintered LLZO determined by the Kubelka-Munk model on 
Ultraviolet-Visible-Near Infra-Red (UV-Vis-NIR) diffuse reflectance spectroscopy. 

 
1. Introduction 
 
Garnet-type Li7La3Zr2O12 (LLZO) solid 
electrolytes can be replaced with organic 
flammable non-safe liquid electrolytes due to 
their advantages, such as high ionic conductivity, 
wide electrochemical window, and compatibility 
with high-voltage cathodes and Li metal anodes. 
These benefits make garnet-type solid 
electrolytes increasingly recognized as a good 
candidate for solid-state batteries compared to 
other solid electrolytes such as sulfides, halides, 
NaSICONs, and polymers [1-8]. However, when 
Li metal is used as the anode, lithium dendrites 
grow through LLZO and lead to a battery short-
circuit which is challenging to prevent [9-10].  
 

Although recent studies have indicated the 
factors contributing to dendrite formation, such 
as the low relative density of LLZO, preexisting 
cracks on the surface, and poor contact between 
LLZO and Li metal, this issue has not been 
solved [11-13]. On the other hand, Han et al. 
reported that the electronic conductivity of 
LLZO is mostly responsible for Li dendrite 
formation [14]. Although the solid electrolyte 
and the alloy interphase at the Li/Solid 
electrolyte interface have low electronic 
conductivities, the enlarged ‘effective’ contact 
area between Li and the solid electrolyte could 
lower the potential in the solid electrolyte, 
accelerating Li dendrite formation [14]. This 
means that at even very low electronic 
conductivities Li dendrites can grow. In recent 
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reports, to suppress the growth of Li dendrites, 
electronic insulator layers have been deposited 
on the LLZO surface, and some compounds have 
been introduced into LLZO to contract electron-
blocking properties, especially at the grain 
boundaries [15-16].   
 
On the other hand, most current research on 
LLZO is focused on improving the ionic 
conductivity with single-element and dual-
element doping strategies. However, while these 
strategies increase the ionic conductivity, they 
may also increase the electronic conductivity.  
That’s why it is important to consider a lower 
electronic conductivity while considering a high 
ionic conductivity. In that manner, UV-Vis 
diffuse reflectance spectroscopy (DRS) might be 
a convenient and easy way to determine the 
electronic band gap of newly synthesized solid 
electrolytes with high ionic conductivity.   
 
The electronic band gap (Eg) that can be analyzed 
experimentally with Ultraviolet-Visible (UV-
Vis) spectroscopy is an important feature of 
materials that determines their intrinsic 
electronic conductivity. In literature, the 
theoretical indirect band gap of LLZO is given as 
5.918 eV [17].  Experimentally, there are a few 
studies on the electronic band gap of LLZO. In 
one of the reports, a polished transparent LLZO 
which is complicated to prepare was studied with 
UV-Vis absorption spectroscopy. In that study, 
the indirect electronic band gap was determined 
as 5.46 eV for Al-doped LLZO [18]. Another 
study reported a band gap of ~ 6 eV determined 
via the UV-Vis absorption spectroscopy of 
LLZO powders [19].  
 
Although UV-Vis absorption spectroscopy is 
frequently used to analyze the band gap of 
solutions or thin films, it is an inadequate 
technique to determine the band gap value of 
powder samples. Because in the case of powders, 
the estimated wavelength of absorbed photons is 
erroneous due to the scattering effects [20-21]. 
On the other hand, the dispersion of LLZO in 
most liquids is not stable [22]. Consequently, the 
LLZO powder concentration in the liquid 
changes in time which is an obstacle to 
estimating the accurate Eg with the UV-Vis 
absorption spectroscopy.  
 

DRS is a widely used technique to analyze the 
optical properties of powder samples [23-24]. To 
the best of our knowledge, the powder LLZO 
solid electrolyte has not been characterized via 
diffuse reflectance spectroscopy. The electronic 
band gap of materials like other physical and 
chemical properties can be affected by the 
synthesis conditions and methods, we therefore 
synthesized Ga-doped LLZO solid electrolytes in 
oxygen (O2) and air atmospheres [25]. Then, 
crystal structures, morphologies, relative 
densities, electronic bandgaps, and ionic 
conductivities of the samples were characterized. 
 
2. General Methods 
 
Li6.4Ga0.2La3Zr2O12 solid electrolytes were 
synthesized with a solid-state reaction method by 
using the precursor powders (purity: 99.9%) of 
Li2CO3, Ga2O3, La2O3, and ZrO2 in the desired 
stoichiometric ratio according to the following 
chemical equation [26], 
 
 3.2𝐿𝐿𝑖𝑖2𝐶𝐶𝑂𝑂3 + 0.1𝐺𝐺𝑎𝑎2𝑂𝑂3 + 1.5𝐿𝐿𝑎𝑎2𝑂𝑂3 + 2𝑍𝑍𝑍𝑍𝑂𝑂2 
→ 𝐿𝐿𝑖𝑖6.4𝐺𝐺𝑎𝑎0.2𝐿𝐿𝑎𝑎3𝑍𝑍𝑟𝑟2𝑂𝑂12 + 3.2𝐶𝐶𝑂𝑂2  (1) 
 
The powder mixture was then subjected to a 
series of ball milling and heat treatments. First, 
the mixture was ball milled in isopropanol at 400 
rpm with 6-minute reversal intervals for 5 hours 
using a Retsch PM100 ball grinder. The powders 
were then dried to remove the isopropanol. Next, 
the dried powders were heated at 900 oC for 8 
hours in air and O2 atmospheres. In the second 
step, the ball milling was repeated at 350 rpm in 
a dry system. Finally, the powders were pressed 
into pellets with a diameter of 13 mm and a 
thickness of 1 mm. Before sintering at 1230 oC 
for 2 hours in air and O2, the pellets were buried 
in the mother powder to compensate for Li loss 
at high temperatures. Before characterization, 
pellets were polished to remove the mother 
powder and have a smooth surface.  
 
Crystal structure analysis was conducted using a 
Bruker D8 X-ray diffractometer (XRD) with a 
CuKα source. Electrochemical impedance 
spectroscopy (EIS) of the samples with silver-
coated electrodes was measured between two 
cylindrical stainless steel at room temperature in 
the frequency range of 1-105 Hz with an AC 
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signal of 10 mV by Gamry PCI4/750 
Potentiostat.  
 
While a ZEISS LS 10 model scanning electron 
microscopy (SEM) was used to image the 
micron-sized area of the pellet’s surface, a 
Filmetrics Profilm 3D model optical profilometer 
was used to image the millimeter-sized area (2 
mm x 2 mm) of the pellet’s surface.  
 
The theoretical and experimental densities of the 
pellets were calculated using the lattice 
parameters obtained from XRD data refinement 
and the Archimedes principle, respectively. 
Bruker, VERTEX70 model spectrometer was 
used to collect Fourier transform infrared (FTIR) 
data between wavenumber of 4000-400 cm-1 in 
air.  Finally, to study the electronic band gap 
energy of powder samples with a thickness of 1 
mm, the Ultraviolet-Visible Near-Infra-Red 
(UV-Vis-NIR) diffuse reflection spectrum was 
collected between 200-1400 nm wavelengths 
with Shimadzu, ISR-603 spectrometer and the 
Ultraviolet-Visible (UV-Vis) absorption 
spectrum was collected between 200-1400 nm 
wavelengths with Jasco, V-670 spectrometer.   
 
3. Results and Discussion 
 
XRD data in Fig. 1 shows that the atmosphere 
does not play a crucial role in the crystal 
structures, since all the samples heated in air and 
O2 have the same diffraction peaks. When the 
samples are sintered at 1230 oC, diffraction peaks 
become sharper, indicating a well-crystallized 
cubic phase (2241539-CIF) [27]. The XRD data 
were analyzed with MAUD software [28]. 
According to the Rietveld refinement shown in 
Table 1, Li6.4Ga0.2La3Zr2O12 formed with a space 
group of I-43d and a lattice parameter of 12.98Å. 
Moreover, these samples show a relatively small 
amount of secondary phases La2Zr2O7 and La2O3. 
These secondary phases are common impurity 
phases in literature and usually form at high 
temperatures [29].  
 
SEM micrographs of the pellet surfaces after the 
final sintering step at 1230 oC in O2 and air are 
illustrated in Fig. 2. As seen from the images, the 
pellet-O2 has a denser structure, which is similar 
to that reported in the literature [30]. In other 

words, larger pores, where Li dendrites can easily 
grow, are observed between grains for the pellet-
air. During the sintering process, oxygen 
occupies the pores and helps densification by 
diffusion into the LLZO lattice at high 
temperatures. On the other hand, trapped air 
within the pores induces structures with lower 
density [31].  
 

 
Figure 1. XRD data of LLZO samples pre-calcined 
at 900 oC and finally sintered at 1230 oC in air and 

O2 atmospheres 
 

 
Figure 2. SEM micrographs of the surface of Ga- 

doped LLZO pellet sintered at 1230 oC in a) O2 and 
b) air atmospheres

 

(a) 

(b) 
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Table 1. Crystal structure analysis of the samples sintered in air and O2 at 1230 oC 

 

Table 2. The total ionic conductivity and density values of Li6.4Ga0.2La3Zr2O12 pellets sintered in air and O2 
at 1230 oC 

 
SEM results are also confirmed by measuring the 
apparent density of the pellets using the 
Archimedes principle.  In Table 2, the results are 
given in terms of relative density calculated 
through the relation, 𝜌𝜌

𝜌𝜌𝑡𝑡
𝑥𝑥100  where ρ is the 

measured density and ρt is the theoretical density 
determined using the lattice parameter obtained 
by XRD data via the equation, 𝜌𝜌𝑡𝑡 = 𝑍𝑍𝑍𝑍/𝑁𝑁𝑎𝑎3 
where Z is the number of atoms per unit cell (8), 
M is the molecular mass, N is Avogadro’s 
number and a is the unit cell parameter [32-33]. 
The relative density is higher for pellet-O2 (90.5 
%) than pellet-air (86.7 %) showing well-
matched results with the SEM observations.  
 
The increased density of the pellet due to the O2 

sintering atmosphere could be further confirmed 
with a 3D optical profilometer which creates a 
3D surface image for measuring surface profiles 
and roughness. Fig. 3 shows the topography 
images taken over an area of 2 mm x 2 mm of the 
pellets with an optical profilometer. Before 
optical imaging, the surfaces of the pellets were 
polished with a 1200-grit number polishing 
paper. Although polishing conditions were the 
same, the pellet-O2 showed a shiner surface than 
pellet-air which can also reflect some 
information about porosity.  The topography plot 
of the pellet-O2 shows cracks which are most 
probably due to over-sintering time in O2, which 
we can conclude that the pellets can have a 
denser structure in a shorter time in the O2 
atmosphere compared to air [30]. Although  
 
 

 

 

 
Figure 3. Topography plots of Ga-LLZO pellet-O2 

and b) Ga-LLZO pellet-air 
 
pellet-O2 shows cracks on its surface, it still has 
a lower root-mean-square (RMS) roughness of 
Rq= 0.1833 µm compared to the pellet-air (Rq= 
0.4035 µm). The higher roughness of the pellet-
air could be related to the higher porosity. A 
lower surface roughness is desired for a solid 
electrolyte since it helps to create an intimate 
interface with the Li anode. On the other hand, if 
there is limited physical contact between the 
solid electrolyte and the Li anode, the local 
electric fields arise leading to the acceleration of 
Li dendrite growth. 
 

Sintering 
Atm. Phase composition  

α 
 
β 

 
γ 

 
a (Å) 

 
c (Å) 

 
Geometry 

 
SG 

 
%(Weight) 

 
Air 

Li6.4Ga0.2La3Zr2O12 90 90 90 12.98 - Cubic I-43d 98.64 
La2Zr2O7 90 90 90 10.81 - Cubic Fd-3m:2 0.13 

La2O3 90 90 120 3.94 6.13 Hexagonal P63/mmc 1.23 
 

O2 
Li6.4Ga0.2La3Zr2O12 90 90 90 12.98 - Cubic I-43d 99.14 

La2Zr2O7 90 90 90 11.04 - Cubic Fd-3m:2 0.37 
La2O3 90 90 120 3.94 6.13 Hexagonal P63/mmc 0.49 

Sintering Atm. σtotal (S cm-1) Apparent Density 
(g/cm3) 

Theoretical Density 
(g/cm3) 

Relative Density 
(%) 

O2 1.04x10-4 4.6677 5.156 90.529 
 

Air 5.17x10-5 4.4638 5.150 86.675 

(a) 

(b) 
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Although 3D optical profilometer, a facile and 
low-priced technique, is not widely used for 
LLZO surface roughness measurement, it gives 
comparable results obtained with an atomic force 
microscope (AFM) in the literature [34-36]. 
 

 
Figure 4. FTIR spectra of Ga-LLZO powder 

sintered in air and O2 

 
Before measuring the FTIR spectra in Fig. 4, 
pellets were polished in air, then milled in a 
mortar, and immediately stored in a vacuum bag, 
so the exposure time to air was minimized. The 
peaks observed at 1421 cm-1 and 865 cm-1 are 
attributed to the impurity of Li2CO3 forms when 
LLZO is exposed to air [37-39]. Li2CO3 is an 
undesired impurity since it makes LLZO surface 
lithiophobic where a limited physical contact at 
the solid electrolyte-Li anode interface is induced 
[40]. Although all conditions were the same, 
these peaks are absent for LLZO sintered in O2, 
indicating that LLZO sintered in O2 can be more 
resistive to the formation of Li2CO3 or it is 
impossible to remove Li2CO3 formed during air 
sintering from grain boundaries of LLZO. Since 
the poor contact at the solid electrolyte-Li anode 
interface accelerates the Li dendrite growth, we 
can conclude from the FTIR results that the life 
span of a battery could be longer with an LLZO 
pellet-O2.  
 
Nyquist plots of the EIS spectra of the LLZO 
pellets on both side silver electrodes and the 
equivalent circuit used to fit the experimental 
data are given in Fig. 5. The equivalent circuit is 
composed of resistors (R) and constant phase 
elements (CPE) which refers to a non-ideal 
capacitor [41]. The impedance of CPE is 
described as 𝑍𝑍𝐶𝐶𝐶𝐶𝐶𝐶 = 1 𝑄𝑄(𝑗𝑗𝑗𝑗)𝑛𝑛⁄ , here 𝑗𝑗 = √−1, 
𝑤𝑤 is the frequency, 𝑄𝑄 is a numerical value with 
dimension 𝑆𝑆𝑆𝑆𝑛𝑛 and 𝑛𝑛 is a constant between 0 and 

1. The abbreviations b, gb, and el refer to the bulk 
(interior of the grains), grain boundary (interface 
of the grains), and electrode (interface of silver 
electrode and pellet), respectively.  
 

 
 
 
 
 
 
 

Figure 5. Nyquist plots of EIS measured at room 
temperature and fitted data of a) Ga-LLZO pellet-O2 

and Ga-LLZO pellet-air, and b) schematic 
representation of the equivalent circuit that fits 

experimental data 
 
According to fit results summarized in Table 3, 
the Li6.4Ga0.2La3Zr2O12 pellet sintered in O2 
shows lower bulk (Rb) and grain boundary 
resistances (Rgb) compared to the pellet sintered 
in air. The ionic conductivities of the pellets were 
calculated with the equation, 𝜎𝜎 = �1

𝑅𝑅
� �𝑙𝑙

𝑎𝑎
� where 

𝑅𝑅 is the total resistivity (bulk and grain 
boundary), 𝑙𝑙 is the thickness of the pellet and 𝑎𝑎 is 
the area of the electrode [42]. The oxygen-
sintered pellet shows a higher ionic conductivity 
of 1.04x10-4 Scm-1, almost two times more than 
that of the air sintered pellet (Table 2). Since all 
the conditions except the sintering atmosphere 
are the same for both samples, the low relative 
density (high porosity) is probably the main 
reason for lower ionic conductivity.  
 
High density and high ionic conductivity alone 
may not be sufficient to suppress the growth of 
Li dendrites. In addition to high ionic 
conductivity, a good solid electrolyte should also 
have low electronic conductivity. As far as we 
know, the electronic band gap of LLZO 
depending on synthesis conditions has not been 

Rel Rgb 

Rb 

CPEgb CPEel 

(a) 

(b) 
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studied with diffuse reflectance spectroscopy. In 
Fig. 6, the UV-Vis-NIR diffuse reflectance 
spectrum of oxygen and air-sintered powders is 
illustrated. As we mentioned earlier, in the case 
of powders, UV-Vis diffuse reflectance 

spectroscopy is a more convenient technique to 
determine the electronic band gap since UV-Vis 
absorption spectroscopy does not consider the 
scattering effects.  

 
Table 3. Fitting results of the analysis of the impedance data of Li6.4Ga0.2La3Zr2O12 pellets sintered in air and 

O2 at 1230 oC using the equivalent circuit in Fig. 5 (b), χ2 is the square of the standard deviation 

However, DRS may be limited for the samples 
containing mixed powders for systematic 
underestimation of the Eg values. Fortunately, an 
automated method has been developed to get 
accurate Eg values for mixed powders.  In the 
automated method, several concerns have been 
taken into account as reported in the literature 
[20].  On the other hand, the thickness of the 
sample is very important for accurate 
determination of Eg values. The thickness of the 
sample should not cause a significant change in 
its reflectance. That’s why for accurate 
determination of the Eg values, a thickness of 
more than 0.5 mm must be used to avoid any light 
transmission [43].  
 
The diffuse reflectance spectroscopy is analyzed 
with the Kubelka-Munk model, 
 
[𝐹𝐹(𝑅𝑅∞)ℎ𝑣𝑣]𝛾𝛾 = 𝐵𝐵(ℎ𝑣𝑣 − 𝐸𝐸𝑔𝑔)     (2) 
 
 
where 𝐹𝐹(𝑅𝑅∞) is the Kubelka-Munk function, 
ℎ𝑣𝑣 is the incident photon energy, 𝐸𝐸𝑔𝑔 is the 
electronic band gap, 𝐵𝐵 is a constant, and 𝛾𝛾 is 
related to the nature of the band transition, e.g., 
𝛾𝛾 = 1 2⁄ , 𝛾𝛾 = 2, for direct and indirect band 
transitions, respectively [21, 44]. The Kubelka- 
 
Munk function is expressed with the equation 
(3), 
 
𝐹𝐹(𝑅𝑅∞) = 𝐾𝐾

𝑆𝑆
= (1−𝑅𝑅∞)2

2𝑅𝑅∞
      (3) 

 
where 𝑅𝑅∞ is the diffuse reflectance of an 
optically thick sample,  𝐾𝐾 and 𝑆𝑆 are absorption 

and scattering coefficients, respectively [24]. 𝐸𝐸𝑔𝑔 
values of the samples can easily be determined  
 

 

Figure 6. UV-Vis-NIR diffuse reflectance spectra of 
Ga-LLZO powder sintered in a) air and b) O2, the 
inner graphs were obtained using the reflectance 

data 
 
by extrapolating the linear part of the [𝐹𝐹(𝑅𝑅)ℎ𝑣𝑣]𝛾𝛾 vs 
ℎ𝑣𝑣 plot to the x-axis shown as an inner graph in 
Fig. 6 [43-44]. The indirect electronic band gap 

 
 

Sintering 
Atmosphere 

Rb (Ω) Rgb (Ω) Qgb(Ssn) ngb χ2 

O2 123.3 1.79x103 8.14x10-5 3.53x10-1 1.37x10-4 
Air 386.2 3.46x103 4.15x10-6 4.26x10-1 3.14x10-4 

(a) 

(b) 
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Table 4. Comparison of bandgap energy values obtained with UV-Vis. absorption spectroscopy and UV-Vis. 
diffuse reflectance spectroscopy 

 Indirect bandgap energy 
(eV) 

Direct bandgap energy (eV) 

 
Air-sintered powder 

UV-Vis DRS. 
technique 

5.64 5.18 

UV-Vis Abs. technique 5.42 4.63 
 

Oxygen-sintered powder 
UV-Vis DRS. 

technique 
5.77 5 

UV-Vis Abs. technique 4.92 3.85 

energy of the oxygen-sintered sample, Eg-

O2=5.77 eV, is relatively larger than that of the 
air-sintered sample, Eg-air=5.64 eV. The direct 
band gap also widens when the sample is sintered 
in oxygen (Eg-O2=5.18 eV, Eg-air=5 eV). The 
literature reports that point defects like oxygen 
vacancies narrow the band gap by inducing intra-
band gap energy states [45]. On the other hand, it 
is well-known that high temperatures, required 
for dense LLZO pellets, lead Li to evaporate by 
creating oxygen vacancies to preserve the charge 
neutrality of the lattice [46-47]. That’s why we 
can say that low partial oxygen pressure in the air 
most likely increased the oxygen vacancy 
concentration and caused a band gap narrowing 
[48]. 
 
We have also obtained bandgap energies of the 
samples by using the UV-Vis. absorption 
spectroscopy to compare the results of UV-Vis. 
diffuse reflectance spectroscopy. LLZO powders 
were dispersed in a solvent for UV-Vis 
absorption measurements. As shown in Table 4., 
narrower bandgaps were obtained with the UV-
Vis. absorption spectroscopy technique for both 
samples. Furthermore, while the obtained band 
gap energy of the oxygen-sintered sample is 
relatively larger than that of the air-sintered 
sample with the UV-Vis DRS technique, it is 
obtained narrower with the UV-Vis absorption 
technique. The difference is most probably due 
to the fact that LLZO powder is not soluble, and 
the dispersion of the powders is not stable. That’s 
why scattering effects occur which are not taken 
into account by the UV-Vis absorption 
spectroscopy.   
 
4. Conclusion 
 
In this work, we have studied the effects of 
sintering atmospheres on the optical, structural, 
and conductivity properties of Ga-doped LLZO 

solid electrolytes. Both samples sintered in 
oxygen and air showed a cubic crystal structure. 
The electronic indirect band gap energy of the 
oxygen-sintered sample was obtained relatively 
larger, Eg=5.77 eV, compared to the air-sintered 
sample with UV-Vis DRS spectroscopy. SEM 
and 3D optical profilometer results indicated that 
the oxygen-sintered pellet was formed with 
lower porosity consequently leading to a higher 
relative density.  
 
Furthermore, ionic conductivities also confirmed 
the density difference of the pellets. According to 
the EIS results, the oxygen-sintered pellet has a 
high ionic conductivity of 1.04x10-4 Scm-1. Also, 
the 3D optical profilometer measured a lower 
surface root-mean-square (RMS) roughness of 
Rq= 0.1833 µm for the oxygen-sintered pellet 
which can be useful to create an intimate 
interface with Li anode to suppress the Li growth.  
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