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Abstract  Keywords 

In this study, the impact of production parameters on product quality in cold rolling 

processes was examined, and the qualitative status of products was predicted using 

machine learning algorithms. While existing literature focuses on production 

efficiency, this study stands out by systematically comparing eight different machine 

learning algorithms: Decision Tree, KNN, Naive Bayes, Logistic Regression, 

Random Forest, XGBoost, Support Vector Machines, and TabTransformer. The 

results reveal that TabTransformer, a transformer-based model designed for tabular 

data, outperforms the other algorithms in terms of accuracy and generalization 

capability, making significant contributions to the automation of quality control in 

production processes. Additionally, feature importance analysis provides critical 

insights into parameter optimization, making this study a valuable addition to the 

literature on industrial quality prediction. 
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1. INTRODUCTION 
 

Production systems operate in interaction with a set of parameters, influencing the speed, quality, cost, 

and capacity of production [1]. As one of the most critical components of modern industry, the efficiency 

and effectiveness of production systems directly affect the competitive strength of businesses [2]. 

Production parameters are fundamental elements of the production process and are typically aimed at 

achieving production goals in the right quantity, with the right quality, and on time [3]. Unexpected 

variability can occur during the production process, and unforeseen conditions can negatively impact 

quality [4]. The qualitative conditions within the processes are of great importance in ensuring the 

success of production and the satisfaction of the final product for the customer [5]. 

 

To prevent negative situations, it is necessary to determine under which conditions a machine produces 

substandard output [6]. When making this determination, statistical tools, data from the machine, and 

the experience of the relevant production unit can be particularly useful [7]. Given the ease of access to 

open information sources today, processing data obtained from machines and making forward-looking 

decisions has become quite important. Within the scope of technology [8], machine learning emerges as 
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a powerful tool in the detection and management of qualitative conditions on production lines [9]. 

Especially classification models play a critical role in determining whether quality standards are met by 

using information obtained from production data [10]. 

 

Several stages are required for the application of machine learning models in the detection of qualitative 

conditions [11]. These stages are grouped into four main sections in this article. A model can only be 

established and achieve success after applying the mentioned sections [12]. First, the step of data 

collection and preparation must be implemented. Data is collected from various sources, such as sensor 

data from production processes [13], machine settings, and process parameters. The collected data is 

used to train classification models. The second step can be defined as feature engineering [14]. This is 

the process of selecting and extracting the features that impact quality [15]. Feature selection and 

extraction are critical to improving the model's accuracy [16]. The third step is model training and 

evaluation [17]. The selected classification model is trained on the prepared data. The model's accuracy, 

precision, and reliability are evaluated using various metrics [18]. The fourth step is quality prediction. 

The trained model makes real-time quality predictions during production processes and detects potential 

quality deviations [19]. By using the mentioned techniques, quality control in production processes can 

be automated [20]. This allows businesses to make faster and more effective decisions [21]. Accurate 

detection of qualitative conditions contributes to proactively addressing issues on the production line 

and enhancing customer satisfaction [22]. 

 

The present study offers several distinctive contributions that advance the field of quality prediction in 

manufacturing processes beyond existing approaches in the literature. While recent works have explored 

predictive maintenance and quality control in various production environments, our research stands out 

in several key aspects. For instance, [23] introduced a hybrid prognostic approach based on deep 

learning for machinery degradation prediction, focusing primarily on equipment health monitoring 

rather than product quality outcomes. Similarly, [24] conducted a comparative analysis of machine and 

deep learning for predictive maintenance applications, emphasizing equipment failure prevention. In 

contrast, our study specifically addresses product quality prediction in cold rolling processes, targeting 

the qualitative outcomes rather than just equipment performance. Furthermore, unlike previous research 

that typically evaluates only two or three algorithms, our comprehensive comparison of eight different 

algorithms, including traditional approaches and the novel TabTransformer model, provides 

unprecedented breadth in algorithm assessment for this specific industrial application. 

 

The integration of TabTransformer represents a significant advancement over existing methodologies 

in the literature. While transformer architectures have revolutionized natural language processing and 

computer vision, their application to tabular manufacturing data remains relatively unexplored. Our 

study demonstrates that TabTransformer's attention mechanisms can effectively capture complex 

interactions between production parameters that traditional algorithms might miss, achieving superior 

performance metrics (accuracy of 0.96 and ROC-AUC of 0.80) compared to conventional approaches. 

Additionally, our feature importance analysis provides actionable insights into the specific production 

parameters that influence quality outcomes in cold rolling processes, information that is notably absent 

in more general predictive maintenance studies. The practical implications of our research extend 

beyond theoretical model comparison, offering concrete guidance for parameter optimization in real-

world cold rolling operations, thereby bridging the gap between advanced analytical methods and 

practical industrial applications. 

 

While extensive research exists on production efficiency and process optimization, there remains a 

significant gap in the systematic evaluation of modern machine learning algorithms for quality 

prediction in cold rolling processes specifically. This study is motivated by the need to identify the most 

effective predictive models that can be deployed in real-time production environments to reduce defects, 

minimize waste, and enhance product consistency. Our primary contributions include: (1) a 

comprehensive comparative analysis of eight different machine learning algorithms, including both 
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traditional approaches and the novel TabTransformer model; (2) the application of transformer-based 

architecture to tabular production data, which represents a significant advancement over existing quality 

prediction methods; (3) detailed feature importance analysis that provides actionable insights for 

parameter optimization in cold rolling processes; and (4) a framework for automated quality control that 

can be adapted to similar production environments in the metallurgy industry. These contributions 

collectively address the growing need for advanced analytical methods that can enhance decision-

making in increasingly complex manufacturing processes. 

 

2. MATERIAL METHOD 

 

The rolling process is frequently used in the metallurgy industry to improve the mechanical properties 

and surface quality of metals. This process is applied to reduce the thickness of metals, achieve desired 

shapes and sizes, and ensure surface smoothness. Rolling operations play a critical role, particularly in 

the production of metal sheets and plates. Rolling generally occurs as either hot or cold rolling. The 

operation applied in this article is cold rolling. Cold rolling is carried out at room temperature or slightly 

above it, with the expectation of improving surface quality. Rolling enhances the mechanical properties 

of the metal, particularly its strength and hardness. Cold rolling offers more precise dimensional control 

and superior surface quality. The success of the rolling process depends on various parameters. The 

speed used during rolling affects both production efficiency and product quality. Extremely high speeds 

can cause surface defects, while very low speeds can reduce production efficiency. The load applied by 

the machines determines the deformation of the metal and the properties of the final product. Correctly 

adjusting the load is critical to achieving the desired thickness and surface quality. The tension forces 

applied during rolling affect the dimensional stability and surface smoothness of the metal. Proper 

tension settings ensure that the product meets the correct dimensions. The quality of the rolling process 

directly impacts the performance of the final product. Surface defects can reduce the product's 

performance. Therefore, continuous monitoring and control of surface quality are important. Quality 

control tests ensure that these properties comply with standards. The conformity of the product to the 

desired dimensions indicates the success of the rolling process. Precise measurement devices and 

methods ensure the control of dimensional accuracy. 

 

The initial dataset collected from production signals and SAP records contained 33 features across 

30,000 production instances. These features can be categorized into several distinct groups: 

 

1. Numerical Production Parameters: 

 

• Process Variables: Including rolling speed (0.5-5.0 m/s), applied load (10-500 kN), oil 

temperature (20-80°C), mill motor temperature (25-90°C), and tension forces (5-70 kN). 

• Material Dimensions: Thickness (0.1-5.0 mm), width (100-1500 mm), and weight (500-10000 

kg). 

• Operating Conditions: Bending average (0.2-4.5), average total load (25-450 kN), uncoiler 

force (10-200 kN), and recoiler force (10-180 kN). 

• Temporal Features: Month (1-12), day (1-31), and associated time stamps that capture 

temporal patterns. 

 

2. Categorical Features: 

 

• Product Specifications: Product group (15 distinct categories), intended application (8 

categories), and surface finish requirements (5 categories). 

• Material Properties: Alloy compositions (27 distinct alloy types), grade designations (12 

categories), and quality control mode (3 categories). 

• Production Equipment: Casting machine identifiers (5 distinct machines) and various 

processing routes (4 categories). 
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Text Data Transformation Process: The textual categorical data were transformed into numerical 

representations using one-hot encoding to make them suitable for machine learning algorithms. This 

process involved the following steps: 

 

1. For each textual feature, all unique values were identified across the dataset. For example, the 

"product group" feature contained 15 distinct categories. 

2. Each categorical feature was transformed into multiple binary columns, with each column 

representing the presence (1) or absence (0) of a specific category. For instance, the "product 

group" feature was expanded into 15 binary columns. 

3. This transformation process expanded the original 33 features (which included both numerical 

and categorical variables) into 77 features, all in numerical format. 

4. Following the encoding process, the original text-based columns were removed from the 

dataset, resulting in the final structure of 30,000 instances with 72 features (excluding the 5 

original categorical columns but including their 44 one-hot encoded replacements). 

 

All numerical features were subsequently scaled to the range of 0-1 using MinMaxScaler to standardize 

their influence on the machine learning models. The dataset was verified to contain no missing values, 

as the production data collection system ensures continuous monitoring and complete recording of all 

parameters. 

 

The quality class column, derived from internal failure reports, was designated as the target variable for 

prediction, resulting in a final matrix structure of 30,000×71 for the feature set, with 80% (24,000 

instances) allocated to the training set and 20% (6,000 instances) to the test set using stratified sampling 

to maintain the class distribution. 

 

 

The data for this study was collected from signals on production lines over a two-year period. Each data 

point was linked to production records through time and date constraints via the signals, with production 

data recorded in SAP based on feedback. The initial dataset had a matrix structure of 30000×33, created 

by temporally matching the 2-year signaling data of the production line with the SAP data of production 

reported on the machine in the same time period. 

 

The dataset includes several categories of quality-related features that characterize the production 

conditions: 

 

Features including alloy compositions (specifically Alloy-1 and Alloy-2 as identified in our correlation 

analysis), material thickness, width, and weight measurements. These properties directly influence the 

mechanical characteristics of the final product. Critical operational variables such as rolling speed, 

applied load, oil temperature, mill motor temperature, and tension forces during the rolling process. 

These parameters control the deformation behavior of the metal. Features related to equipment status, 

including casting machine identifiers (Casting Machine-1 and Casting Machine-2), uncoiler force, 

recoiler force, and bending average values. These conditions influence the stability and consistency of 

the rolling process. Temporal features such as month, day, and associated production shifts, which can 

account for seasonal variations and operator-dependent factors.Features that categorize the intended 

purpose and characteristics of the product, including product group (identified as highly correlated with 

quality) and specific product requirements. 

 

The target variable in this study is the "quality class" column, which is a binary classification variable 

characterizing each production as either meeting quality standards (labeled as 0) or exhibiting quality 

defects (labeled as 1). This classification was derived from internal failure reports that document 

instances where products failed to meet the established quality criteria. In our dataset, the distribution 
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of the target variable shows an imbalanced nature, with approximately 6.2% of the productions classified 

as defective (class 1) and 93.8% meeting quality standards (class 0). This imbalance reflects the real-

world production environment where defective outputs constitute a minority of total production, 

presenting a class imbalance challenge that our modeling approach needed to address. 

 

After data preprocessing, which included converting textual expressions into numerical form and 

removing the original textual columns, the final dataset structure was established as 30000×72. The 

quality class column was designated as the prediction target, with the remaining 71 columns serving as 

predictive features. This comprehensive set of features allowed our models to capture the complex 

interactions between production parameters and their collective impact on product quality. 

 

The application was evaluated using a total of seven algorithms: Decision Tree, KNN, Naive Bayes, 

Logistic Regression, Random Forest, XGBoost, Support Vector Machine, and TabTransformer. 

 

o Decision Tree: This algorithm models decisions in the form of a tree structure. Each internal 

node represents a condition or test on a feature, each branch corresponds to an outcome of 

the test, and each leaf node holds the final decision or output. It's a simple and interpretable 

model, well-suited for both classification and regression tasks. 

 

o K-Nearest Neighbors (KNN): KNN is a non-parametric algorithm that classifies a data point 

by considering the labels of its closest "k" neighbors in the feature space. The prediction is 

made by majority voting for classification or by averaging the neighbor values for 

regression. It’s intuitive and works well for smaller datasets. 

 

o Naive Bayes: This algorithm is based on Bayes’ Theorem and assumes that the features are 

independent of each other (hence "naive"). Despite this strong assumption, it often performs 

surprisingly well for classification tasks, particularly in problems like text classification and 

spam detection. 

 

o Logistic Regression: A statistical method for binary classification, logistic regression 

models the probability that a given input belongs to a particular class using a logistic 

function. It’s widely used when the output is categorical and interprets the data in terms of 

odds and probabilities. 

 

o Random Forest: This is an ensemble learning method that creates a "forest" of decision trees 

during training. It makes predictions by aggregating (averaging for regression or majority 

voting for classification) the results of these trees. Random Forest reduces the risk of 

overfitting by introducing randomness in tree building. 

 

o XGBoost: This is an advanced implementation of gradient-boosting techniques. It builds 

multiple decision trees sequentially, with each tree correcting errors from the previous one. 

XGBoost is known for its efficiency and accuracy, particularly in handling large datasets 

and complex problems. 

 

o Support Vector Machine (SVM): SVM classifies data by finding the hyperplane that best 

separates the classes in the feature space. It aims to maximize the margin between different 

classes, which helps improve the generalization ability of the model. It works well for both 

linear and non-linear classification tasks using kernel functions. 

 

o TabTransformer: TabTransformer is a transformer-based deep learning model specifically 

designed for tabular data. It leverages attention mechanisms from the transformer 

architecture to capture complex interactions between features, both numerical and 
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categorical. By embedding categorical features and applying self-attention, TabTransformer 

can model intricate relationships that traditional algorithms might miss. This allows the 

model to learn rich feature representations, improving predictive performance on 

classification and regression tasks. It's particularly effective in situations where the dataset 

contains mixed data types and requires modeling non-linear feature interactions. 

 

For the evaluation of the models, accuracy, sensitivity (recall), F1 score, ROC curve, cross-validation, 

and confusion matrix were used.  

 

o Accuracy: Accuracy measures the percentage of correct predictions out of the total number 

of predictions made. It's a straightforward metric calculated by dividing the number of 

correct predictions by the total number of instances. While accuracy is useful, it can be 

misleading in imbalanced datasets where one class dominates. 

 

o Recall: Also known as sensitivity or true positive rate, recall measures the ability of a model 

to identify all relevant instances of a class. Specifically, it looks at the proportion of actual 

positives correctly identified by the model. High recall means the model captures most of 

the positive cases. 

 

o F1 Score: The F1 score combines both precision and recall into a single metric by taking 

their harmonic mean. It is especially useful when the dataset is imbalanced because it 

balances the trade-off between false positives and false negatives. 

 

o ROC Curve (Receiver Operating Characteristic Curve): The ROC curve is a graphical 

representation of a model's performance across different thresholds. It plots the true positive 

rate (recall) against the false positive rate (1 - specificity) at various thresholds. The area 

under the curve (AUC) quantifies the model’s ability to distinguish between classes, with 

higher values indicating better performance. 

 

o Cross-Validation: This is a technique for evaluating the performance of a model by dividing 

the dataset into multiple folds. The model is trained on some of these folds and tested on the 

remaining fold(s). The process is repeated several times (usually "k" times in "k-fold cross-

validation"), and the results are averaged to give a more robust estimate of model 

performance, reducing the risk of overfitting. 

 

o Confusion Matrix: A confusion matrix is a table that provides insight into the performance 

of a classification model by showing the number of true positives (correct positive 

predictions), true negatives (correct negative predictions), false positives (incorrectly 

predicted positives), and false negatives (missed positive predictions). This matrix allows 

the calculation of various metrics like precision, recall, and accuracy. 

 

The study was conducted using the Python programming language. The categorical data within the 

dataset were transformed into numerical form by being organized into columns. The categorical data 

were then removed from the table. As a result of these processes, the dataset was structured as a 

30,000*72 matrix. 

 

In the machine learning models built on the dataset, a correlation analysis was conducted by focusing 

on the target column labeled "quality class." From the correlation matrix, five parameters that most 

significantly impact the quality class were identified. The parameters with high correlation to the quality 

class were determined to be two types of material alloys, two casting machines, and the product group. 

The data containing the correlation values are provided in Table 1. 
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Table 1. Parameters with high correlation to quality classification 

 

# Parameter Correlation Values 

1 Product Group 0.12 

2 Alloy -1 0.10 

3 Alloy -2 0.07 

4 Casting Machine-1 0.07 

5 Casting Machine-2 0.07 

 

The product group has the highest positive correlation with the target variable. However, a value of 

0.119 indicates a weak positive relationship, suggesting that the product group may cause only a minor 

change in the target variable. There is a slight positive relationship between Alloy-1 and the target 

variable. The correlation value of 0.095 indicates that this variable has a very small effect on the target. 

Alloy-2 has a weak positive correlation with the target variable. A value of 0.065 indicates that this 

variable’s impact on the target variable is quite limited. Casting Machine-1 has a very weak positive 

relationship with the target variable, with its effect also being quite limited. Similarly, Casting Machine-

2 shows a very weak positive correlation, having an almost negligible effect on the target variable. The 

dataset was split into training and testing sets with an 80% to 20% ratio. The training data size was 

24,000×71 and the test data size was 6,000×71. The data were normalized using MinMaxScaler and 

were scaled between 0 and 1. The machine learning algorithms applied included Decision Tree, KNN, 

Naive Bayes, Logistic Regression, Random Forest, XGBoost, Support Vector Machine, and 

TabTransformer. TabTransformer, a transformer-based model designed specifically for tabular data, 

was incorporated to capture complex feature interactions that traditional models might miss. By 

leveraging attention mechanisms, TabTransformer aims to improve predictive performance by 

effectively handling both numerical and categorical features. Including TabTransformer allowed us to 

explore whether advanced neural network architectures could outperform traditional algorithms in 

predicting product quality. 

 

The target variable in this study ("quality class") was assigned binary labels based on internal failure 

reports from the production process. Products meeting all quality standards were labeled as Class 0 

(acceptable quality), while products with any documented quality defects were labeled as Class 1 

(defective quality). 

 

The dataset exhibits a significant class imbalance that reflects real-world manufacturing conditions. 

From the total 30,000 production records: 

 

• 28,116 records (93.72%) belong to Class 0 (acceptable quality) 

• 1,884 records (6.28%) belong to Class 1 (defective quality) 

 

This imbalance ratio of approximately 15:1 is characteristic of industrial quality control scenarios where 

defective products constitute a small minority of total production. This class distribution was maintained 

in both training and testing sets using stratified sampling to ensure representative proportions in both 

datasets. 

 

 

The accuracy, precision, recall, and F1 score of the algorithms are provided in Table 2. 
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Table 2. Model performance evaluation based on key performance metrics for both training and test sets 

 

# Algorithm Dataset Accuracy Precision Recall* Recall (Class 1)** F1 Score 

1 Decision Tree Training 0.97 0.96 0.97 0.68 0.97 
  Test 0.94 0.94 0.94 0.52 0.94 

2 KNN Training 0.95 0.94 0.95 0.27 0.94 
  Test 0.94 0.92 0.94 0.16 0.92 

3 Naive Bayes Training 0.93 0.90 0.93 0.04 0.91 
  Test 0.93 0.89 0.93 0.03 0.91 

4 Logistic Regression Training 0.94 0.89 0.94 0.00 0.91 
  Test 0.94 0.88 0.94 0.00 0.91 

5 Random Forest Training 0.99 0.98 0.99 0.83 0.98 
  Test 0.94 0.93 0.94 0.16 0.93 

6 XGBoost Training 0.98 0.97 0.98 0.72 0.97 
  Test 0.94 0.93 0.94 0.05 0.91 

7 Support Vector Machine Training 0.94 0.89 0.94 0.00 0.91 
  Test 0.94 0.88 0.94 0.00 0.91 

8 TabTransformer Training 0.97 0.96 0.97 0.69 0.97 
  Test 0.96 0.95 0.96 0.60 0.96 

*Note: The Recall column represents macro-averaged recall across both classes, which gives equal weight to the 

performance on each class regardless of class imbalance. 

**Note: Recall (Class 1) specifically measures the model's ability to identify instances of the positive class 

(defective products), which constitutes approximately 6.2% of the dataset. This metric is particularly important 

for quality control applications where detecting defects is the primary concern. 

 

The performance evaluation reveals distinct patterns among the algorithms tested. TabTransformer 

demonstrates superior performance across all metrics (accuracy: 0.96, precision: 0.95, recall: 0.96, F1 

score: 0.96), outperforming all traditional algorithms. Among conventional approaches, Decision Tree 

and Random Forest show the strongest overall performance (both with 0.94 accuracy), with Decision 

Tree achieving better balance between precision and recall (F1 score: 0.94). While Logistic Regression 

and Support Vector Machine maintain high accuracy (0.94), they struggle with class imbalance, as 

evidenced by their lower precision scores (0.88). The consistently high performance of TabTransformer 

validates the advantage of attention-based mechanisms in capturing complex feature interactions for 

quality prediction in cold rolling processes. 

 
Figure 1. Model Performance Comparison Chart 

 

The figure 1 chart compares all eight algorithms across four key metrics: accuracy, precision, recall, and 

recall for Class 1 (defective products). TabTransformer is highlighted separately at the bottom to 

emphasize its superior performance. The chart clearly shows how TabTransformer outperforms other 

algorithms, particularly in identifying the minority class (defective products). 
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Comments on the Evaluation of Metrics Based on Algorithms: 

 

Decision Tree (0.964) and Random Forest (0.955) models show the best performance in terms of overall 

accuracy. This indicates that these models correctly predicted the majority of classes in the test dataset. 

Naive Bayes (0.937) has the lowest accuracy, indicating that it made more errors compared to the other 

models. XGBoost (0.739) and Random Forest (0.709) have high precision rates, meaning that a large 

portion of the positively predicted instances are truly positive. Naive Bayes (0.123) has the lowest 

precision, indicating that most of its positive predictions are incorrect. For Logistic Regression and 

Support Vector Machine, precision is undefined (0/0 situation) because these models did not detect the 

positive class at all. 

 

Decision Tree (0.521) performs better than other models in correctly identifying the positive class. Naive 

Bayes (0.027) and XGBoost (0.045) have very low recall, meaning they missed most of the positive 

examples. Logistic Regression and Support Vector Machine models did not detect the positive class at 

all (recall = 0). Decision Tree (0.524) achieved the best F1 score, balancing precision and recall 

effectively. Random Forest (0.264) has the second-best F1 score, showing balanced performance. Naive 

Bayes (0.044) and XGBoost (0.084) have low F1 scores, indicating poor performance in identifying the 

positive class. Logistic Regression and Support Vector Machine models are ineffective in terms of 

positive class performance, resulting in F1 scores of zero. Decision Tree and Random Forest models 

stand out with a balanced combination of accuracy, precision, and recall. The XGBoost model performs 

well in terms of precision but fails to detect the positive class adequately due to its low recall. Naive 

Bayes is overall a weak model due to its poor performance in both precision and recall. Logistic 

Regression and Support Vector Machine failed to identify the positive class, resulting in F1 scores of 

zero. TabTransformer (0.96) achieves the highest overall accuracy among all models, indicating superior 

performance in correctly predicting classes in the test dataset. TabTransformer has a high precision of 

0.95, meaning that a large portion of its positive predictions are correct. With a recall of 0.96, 

TabTransformer effectively identifies the positive class, outperforming other models in correctly 

capturing positive instances. TabTransformer achieves the highest F1 score of 0.96, demonstrating an 

excellent balance between precision and recall. The model's superior metrics suggest that 

TabTransformer effectively captures complex feature interactions, leading to better predictive 

performance compared to traditional algorithms. 

 

The ROC curve (AUC) values for the established models are provided in Table 3. 

 
Table 3. Roc curve values of algorithms 

 

# Algorithm ROC Curve (AUC) 

1 Decision Tree 0.73 

2 KNN 0.73 

3 Naive Bayes 0.51 

4 Logistic Regression 0.50 

5 Random Forest 0.57 

6 XGBoost 0.52 

7 Support Vector Machine 0.50 

8 TabTransformer 0.80 

 

Interpretation of ROC Curve Values Based on Algorithms: 

 

Both algorithms have the highest AUC values. This indicates that these models have better 

discriminative power between classes compared to other algorithms. An AUC of 0.73 suggests that the 

overall performance of the model is good but could be further improved. 

o Naive Bayes: 
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• With an AUC of 0.51, Naive Bayes is almost making random predictions, 

indicating that this model struggles to differentiate between classes on this 

dataset. 

o Logistic Regression and Support Vector Machine (SVM): 

• Both algorithms have an AUC of 0.50, meaning their performance is equivalent 

to random guessing. 

• This indicates that these algorithms are not effectively working on this dataset 

and need improvement. 

o Random Forest: 

• An AUC of 0.57 indicates that the model has some discriminative capabilities, 

but they are limited. 

• Random Forest usually performs better, suggesting that this model may require 

optimization or parameter tuning. 

o XGBoost: 

• An AUC of 0.52 shows that XGBoost has very little discriminative power 

between classes. 

• This algorithm is generally strong on complex datasets, so these results are 

surprising and may require parameter adjustments. 

 

 
 

Figure 2. ROC Curve Comparison Plot 

 

The figure 2 displays ROC curves for all eight algorithms, visualizing why TabTransformer achieved 

the highest AUC value (0.80). The curves show the trade-off between true positive rate and false positive 

rate across different classification thresholds. TabTransformer's curve (shown with a thicker line) 

demonstrates better performance by extending further toward the top-left corner of the plot. 

 

Decision Tree and KNN stand out as the algorithms providing the best class separation. Logistic 

Regression and SVM show performance equivalent to random guessing, suggesting these models should 

be reviewed and optimized. Random Forest and XGBoost demonstrate moderate performance, 

indicating the need for further tuning. 

 

o TabTransformer: 
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The TabTransformer model achieved the highest AUC value of 0.80, surpassing all other evaluated 

models. This indicates that TabTransformer has superior discriminative power between classes 

compared to the traditional algorithms. An AUC of 0.80 suggests that the model performs very well in 

distinguishing between the positive and negative classes. The high AUC value demonstrates 

TabTransformer's effectiveness in capturing complex feature interactions within the dataset, leading to 

better class separation and predictive performance. This superior performance highlights the advantage 

of using transformer-based architectures for tabular data, especially in cases where traditional models 

may not fully capture underlying patterns. 
 

A method called feature importance, which shows how much certain features influence the prediction 

outcomes of a machine learning model, has been applied. The resulting parameter matrix and the table 

containing the values of the parameters are presented in Table 4 and Table 5, respectively. 
 

The feature importance analysis in our study was conducted using algorithm-specific importance 

methods appropriate for each model type. For tree-based models (Decision Tree, Random Forest, and 

XGBoost), we used the built-in feature importance calculation based on the Gini impurity decrease or 

information gain. This approach measures how much each feature contributes to decreasing impurity 

across all trees in the model. 
 

For TabTransformer, we extracted attention weights from the self-attention mechanism, which indicate 

how strongly different features influence the model's predictions. These weights were normalized to 

create comparable importance scores across features. 
 

For other algorithms like KNN, Naive Bayes, Logistic Regression, and SVM, we employed a 

permutation importance technique. This method measures the decrease in model performance when 

values of a single feature are randomly shuffled, thereby breaking the relationship between the feature 

and the target variable. The resulting performance decrease indicates the feature's importance to the 

model. 
 

All importance values were normalized to a scale where higher values indicate greater importance to the 

model's predictions. This normalization allows for comparability across different algorithms despite 

their distinct internal mechanisms for determining feature relevance. 

 
Table 4. Names of influencing parameters. 

# Algorithm P. 1 Name P. 2 Name P. 3 Name P. 4 Name P. 5 Name 

1 
Decision 

Tree 
No Day 

Oil 

Temperature 
Month Weight 

2 KNN Weight 
Mill Motor 

Temperature 

Average 

Total Load 

Oil 

Temperature 
No 

3 Naive Bayes 
Average 

Total Load 

Quality 

Control Mode 

Uncoiler 

Force 

Recoiler 

Force 

Mill Motor 

Temperature 

4 
Logistic 

Regression 

Mill Motor 

Temperature 
Width [mm] 

Bending 

Average 
Month Speed 

5 
Random 

Forest 
No 

Mill Motor 

Temperature 

Oil 

Temperature 

Average 

Total Load 

Mill Motor 

Temperature

_2 

6 XGBoost No Width [mm] 
Product 

Group 
Month Thickness 

7 

Support 

Vector 

Machine 

Weight 
Mill Motor 

Temperature 

Average 

Total Load 

Oil 

Temperature 
No 

8 
TabTransfor

mer 

Product 

Group  
Alloy-1  

Alloy-2

  

Casting 

Machine-1

  

Casting 

Machine-2 
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Table 5. Values of influencing parameters. 

 

# Algorithm P. 1 Name P. 2 Name P. 3 Name P. 4 Name P. 5 Name 

1 Decision Tree 0.4422 0.0448 0.0436 0.0392 0.0392 

2 KNN 0.1804 0.0152 0.0134 0.0131 0.0131 

3 Naive Bayes 0.0011 0.0005 0.0005 0.0002 0.0002 

4 
Logistic 

Regression 
-0.0026 -0.0016 0.0013 -0.0012 0.0012 

5 Random Forest 0.0879 0.0522 0.0521 0.0519 0.0514 

6 XGBoost 0.5550 0.0860 0.0591 0.0280 0.0277 

7 
Support Vector 

Machine 
0.1032 0.0547 0.0529 0.0524 0.0522 

8 TabTransformer 0.6507 0.1523 0.1056 0.0512 0.0507 

 

Comments on Feature Importance Based on Algorithms: 

 

Decision Tree: 

o P.1: 0.4422 — This feature plays the most significant role in the model's 

decisions. 

o P.2: 0.0448, P.3: 0.0436, P.4: 0.0392, P.5: 0.0392 — The importance of the 

other features is lower but relatively similar to each other. 

KNN: 

o P.1: 0.1804 — Weight is the most influential feature in this model. 

o P.2: 0.0152, P.3: 0.0134, P.4: 0.0131, P.5: 0.0131 — The remaining features 

contribute much less to the model, indicating a clear distinction in importance, 

with Weight being dominant. 

Naive Bayes: 

o The features have very low importance values. This is common with Naive 

Bayes, which often gives low importance to features, especially with 

continuous variables. 

Logistic Regression: 

o The features have negative or low importance values. The negative values for 

P.1 and P.2 suggest that these features might negatively contribute to the model. 

Random Forest: 

o The importance values are more balanced, but P.1 still has the highest 

importance. The other features (P.2, P.3, P.4, P.5) show similar values, 

indicating they all play significant but secondary roles. 

XGBoost: 

o P.1: 0.5550 — This feature is of utmost importance, as XGBoost places a 

significant emphasis on it. 

o P.2: 0.0860, P.3: 0.0591, P.4: 0.0280, P.5: 0.0277 — The other features are less 

influential, but P.2 and P.3 are still noteworthy. 

Support Vector Machine (SVM): 

o P.1: 0.1032 — Weight is the most influential feature in the SVM model. 

o P.2: 0.0547, P.3: 0.0529, P.4: 0.0524, P.5: 0.0522 — The other features have 

moderately high importance values, indicating a balanced contribution across 

these parameters. 

TabTransformer 

o TabTransformer differs from the other models by significantly emphasizing 

Product Group as the most critical feature, with an importance value of 0.6500, 

far exceeding the top features in other models. This indicates that Product 
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Group has a profound impact on product quality when assessed with 

TabTransformer. 

 

o The Decision Tree algorithm heavily relies on the "No" feature, which plays a dominant 

role in its decisions. 

o KNN emphasizes Weight as the most significant factor, with the other features 

contributing far less to the model's predictions. 

o Naive Bayes and Logistic Regression do not seem to leverage feature importance 

effectively, with Naive Bayes showing very low values and Logistic Regression even 

displaying negative values for certain features. 

o Random Forest shows a balanced approach, but with a clear emphasis on the most 

important feature, "No." 

o XGBoost places a significant emphasis on the top feature, with a sharp drop-off in the 

importance of the others. 

o Support Vector Machine shows a relatively balanced distribution of importance across 

its top features, but with Weight being the most influential. 

o The high importance values assigned to Alloy-1 and Alloy-2 by TabTransformer 

highlight the model's ability to capture the influence of material composition on product 

quality. 

o Unlike models such as Naive Bayes and Logistic Regression, which show negligible 

feature importance, TabTransformer provides clearer insights into which parameters 

most significantly affect the target variable. 

o Overall, TabTransformer not only improves predictive performance but also enhances 

interpretability by highlighting key features that influence product quality. Its 

transformer-based architecture effectively captures complex relationships between 

categorical and numerical variables, making it a valuable tool for industrial quality 

prediction and process optimization. 

 

3. THE RESEARCH FINDINGS AND DISCUSSION 

 

The model was evaluated using cross-validation, a technique used to assess the generalization ability of 

a machine learning model. This method involves splitting the data into multiple subsets to more reliably 

measure the model's performance. Fundamentally, it allows for more effective management of the 

training and testing processes. Cross-validation is an effective method to evaluate the robustness of a 

model’s performance and to reduce the risk of overfitting. The results of cross-validation applied to the 

algorithms are provided in Table 6. 
 

Table 6. Cross validation results 
 

# Algorithm Cross-Validation Scores Average Score 
Standard 

Deviation 

1 Decision Tree [0.92; 0.93; 0.92; 0.93; 0.92] 0.92 0.01 

2 KNN [0.93; 0.94; 0.93; 0.93; 0.93] 0.93 0.00 

3 Naive Bayes [0.92; 0.93; 0.92; 0.92; 0.92] 0.92 0.00 

4 Logistic Regression [0.93; 0.94; 0.93; 0.94; 0.93] 0.94 0.00 

5 Random Forest [0.94; 0.95; 0.94; 0.94; 0.94] 0.94 0.00 

6 XGBoost [0.93; 0.94; 0.93; 0.94; 0.93] 0.94 0.00 

7 
Support Vector 

Machine 
[0.93; 0.94; 0.93; 0.94; 0.93] 0.94 0.00 

8 TabTransformer [0.95; 0.96; 0.96; 0.96; 0.95] 0.96 0.005 
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Decision Tree: 

o Average Score: 0.92 

o Standard Deviation: 0.01 

o The Decision Tree shows generally good performance, but its scores are slightly 

more variable. The low standard deviation indicates that the scores are close to each 

other. 

KNN (K-Nearest Neighbors): 

o Average Score: 0.93 

o Standard Deviation: 0.00 

o The KNN model's performance is very consistent. The scores are very close, and 

the zero standard deviation suggests that the model is very stable. 

Naive Bayes: 

o Average Score: 0.92 

o Standard Deviation: 0.00 

o Naive Bayes performs similarly to the Decision Tree, but its scores are more stable. 

There is no variability in the model's performance. 

Logistic Regression: 

o Average Score: 0.94 

o Standard Deviation: 0.00 

o Logistic Regression has the highest average score and is very stable, showing 

excellent performance. 

Random Forest: 

o Average Score: 0.94 

o Standard Deviation: 0.00 

o Random Forest shares the same average score as Logistic Regression and is very 

consistent, demonstrating high performance. 

XGBoost: 

o Average Score: 0.94 

o Standard Deviation: 0.00 

o XGBoost shares the same average score as Random Forest and Logistic Regression 

and shows high performance. The model is very stable. 

Support Vector Machine (SVM): 

o Average Score: 0.94 

o Standard Deviation: 0.00 

o SVM also demonstrates high performance with very consistent scores, providing 

results similar to other high-performing models. 

TabTransformer: 

• Average Score: 0.96 

• Standard Deviation: 0.005 

• TabTransformer demonstrates the highest average cross-validation score among all models, 

indicating superior performance. The low standard deviation suggests that the model's 

performance is highly consistent across different folds, reflecting its robustness and reliability. 

 

• TabTransformer: 

o The cross-validation scores are [0.95; 0.96; 0.96; 0.96; 0.95], showing consistently high 

performance. 

o Average Score: 0.96 

o Standard Deviation: 0.005 

o The model not only achieves the highest average score but also maintains a low standard 

deviation, indicating that it generalizes well across different subsets of the data. 
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o Interpretation: TabTransformer's ability to capture complex feature interactions and 

handle both numerical and categorical variables effectively contributes to its superior 

and stable performance. 

• TabTransformer outperforms all other models with the highest average score and low 

variability, demonstrating its effectiveness for this classification problem. 

 

XGBoost, Random Forest, Logistic Regression, and SVM all show similar high performance with very 

stable results, indicating that they are reliable models. KNN and Naive Bayes also show consistent 

performance, though at a slightly lower level, with the Decision Tree showing slightly more variability 

but still delivering good results. 

 

A confusion matrix is a useful tool in classification problems to identify where a model performs well 

and where it fails. Interpreting this matrix helps to understand which classes are better or worse 

predicted, which is crucial for identifying areas where the model needs improvement. The confusion 

matrices for the algorithms used in this study are shown in Table 7. 

 
Table 7. Confusion matrix results 

 
# Algorithm Evulation 0 1 

1 Decision Tree 
Actual 0 5465 174 
Actual 1 179 195 

2 KNN 
Actual 0 5569 70 
Actual 1 316 58 

3 Naive Bayes 
Actual 0 5568 71 
Actual 1 364 10 

4 Logistic Regression 
Actual 0 5639 0 
Actual 1 374 0 

5 Random Forest 
Actual 0 5615 25 
Actual 1 313 61 

6 XGBoost 
Actual 0 5633 6 
Actual 1 357 17 

7 Support Vector Machine 
Actual 0 5639 0 
Actual 1 374 0 

8 TabTransformer 

Actual 0 
 

5600 39 

Actual 1 
 

150 224 

 

Summary of Model Performance in Distinguishing Positive and Negative Classes (from Table 7): 

 

o Decision Tree: 

o True Positive (TP): 195 

o False Positive (FP): 174 

o False Negative (FN): 179 

o True Negative (TN): 5465 

o The Decision Tree model detects the positive class with reasonable accuracy, but both 

false positives and false negatives are somewhat high, indicating a need for 

improvement to reduce false alarms and missed detections. 

 

KNN (K-Nearest Neighbors): 

o True Positive (TP): 58 

o False Positive (FP): 70 

o False Negative (FN): 316 

o True Negative (TN): 5569 

o The KNN model struggles to detect the positive class (low TP). The high number of 

false negatives indicates this issue. However, it does a good job of identifying the 

negative class. 
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Naive Bayes: 

o True Positive (TP): 10 

o False Positive (FP): 71 

o False Negative (FN): 364 

o True Negative (TN): 5568 

o The Naive Bayes model almost fails to detect the positive class, missing a large number 

of positive examples. 

Logistic Regression: 

o True Positive (TP): 0 

o False Positive (FP): 0 

o False Negative (FN): 374 

o True Negative (TN): 5639 

o The Logistic Regression model fails completely to detect the positive class (TP = 0), 

missing all positive examples (FN = 374), making it impractical for use. 

Random Forest: 

o True Positive (TP): 61 

o False Positive (FP): 25 

o False Negative (FN): 313 

o True Negative (TN): 5615 

o The Random Forest model is somewhat more successful in detecting the positive class. 

The low false positive rate indicates that it produces fewer false alarms. 

XGBoost: 

o True Positive (TP): 17 

o False Positive (FP): 6 

o False Negative (FN): 357 

o True Negative (TN): 5633 

o The XGBoost model has a very low TP. The high false negative rate indicates that it 

struggles to detect positive examples. 

Support Vector Machine (SVM): 

o True Positive (TP): 0 

o False Positive (FP): 0 

o False Negative (FN): 374 

o True Negative (TN): 5639 

o Like Logistic Regression, the SVM model fails to detect the positive class (TP = 0), 

missing all positive examples, which severely limits its practical application. 

TabTransformer: 

o True Positive (TP): 224 

o False Positive (FP): 39 

o False Negative (FN): 150 

o True Negative (TN): 5600 

 

o Logistic Regression, Random Forest, XGBoost, and SVM models have high accuracy but 

struggle with the detection of positive classes, particularly Logistic Regression and SVM, which 

fail to detect any positives at all. 

o The Decision Tree model has a balanced but less accurate performance, with room for 

improvement in reducing both false positives and false negatives. 

o Naive Bayes and KNN show significant weaknesses in detecting positive classes, which 

suggests these models may need further refinement or may not be suitable for this particular 

classification problem. 

o The TabTransformer model has the highest number of true positives (224) among all models, 

indicating a strong ability to correctly identify the positive class. 
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o The number of false negatives (150) is significantly lower compared to other models, meaning 

it misses fewer positive cases. 

o The false positive rate is relatively low (39), showing that the model does not frequently 

misclassify negative instances as positive. 

o The high true negative count (5600) confirms the model's effectiveness in correctly identifying 

negative cases. 

 

4. RESULTS 

 

This study investigated the efficacy of various machine learning algorithms to predict production quality 

in the metallurgy sector, particularly in cold rolling operations. We executed classification tasks using 

algorithms such as Decision Tree, K-Nearest Neighbors (KNN), Naive Bayes, Logistic Regression, 

Random Forest, XGBoost, Support Vector Machines (SVM), and the TabTransformer model, taking 

into account production parameters that influence quality performance. 

 

The findings of the study indicate that the TabTransformer algorithm provided the highest accuracy 

rates and the most consistent results compared to other algorithms. TabTransformer, a transformer-based 

model designed specifically for tabular data, effectively captures complex feature interactions between 

numerical and categorical variables through its attention mechanisms. This allows the model to weigh 

the importance of different features dynamically, leading to superior predictive performance. The model 

not only achieved the highest accuracy but also demonstrated excellent precision, recall, and F1 scores, 

as well as the highest ROC AUC value, indicating strong discriminative power between classes. Random 

Forest and XGBoost also demonstrated strong performance among the traditional algorithms. The 

Random Forest algorithm, which operates on the principle of averaging the outcomes of multiple 

decision trees, is less affected by minor changes in the dataset and offers high generalization capability. 

XGBoost enhances the model's learning capacity and minimizes error rates by using powerful gradient 

boosting techniques. These algorithms contribute to automating quality control in production processes, 

reducing the need for human intervention and increasing production efficiency. 

 

Additionally, the correlation analyses conducted on the dataset played a critical role in identifying the 

parameters that most significantly affect the quality class. The careful selection and modeling of these 

parameters during feature engineering contributed significantly to improving classification success. In 

particular, TabTransformer's ability to handle categorical features effectively allowed it to assign higher 

importance to key parameters such as the product group and alloy types, aligning with our initial 

correlation analysis. This enhanced interpretability helps in understanding the underlying factors 

affecting product quality, providing valuable insights for process optimization. In this context, properly 

processing the data obtained from sensors on the production line and modeling it with advanced 

algorithms like TabTransformer is essential for optimizing production quality. The model's superior 

performance not only improves predictive accuracy but also enhances the reliability of quality 

predictions, making it a valuable tool for industrial applications. 

 

The findings of this study provide a solid foundation for the integration of advanced machine learning-

based quality control systems, such as those utilizing transformer architectures, in cold rolling processes 

in the industry. Such systems will enable businesses to produce higher-quality products at lower costs 

and gain a competitive advantage. Future research could enhance the effectiveness of these systems by 

focusing on larger datasets, different production conditions, and various parameters. Overall, this study 

illustrates the practicality and efficiency of advanced machine learning algorithms, particularly 

transformer-based models like TabTransformer, in enhancing production quality and streamlining 

procedures in the metallurgical industry. The findings greatly contribute to the digitalization and 

automation of quality control operations in the sector. 
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This study has the potential to provide input to reverse engineering applications that can be realized over 

longer time periods. By estimating the quality of the produced product, the production conditions of 

poor-quality and high-quality products can be determined, and thus limit values can be set for the 

productions. With the limit values set, control limits are provided during production, preventing poor-

quality production. This leads to cost savings, increased efficiency, and labor gains by reducing 

reprocessing times, additional operation times, and the use of other production consumables. This study 

presents an innovative approach to automating quality control in production processes using advanced 

machine learning algorithms. Unlike existing literature, this work provides a comparative analysis of 

various algorithms, including transformer-based models, and offers practical applications for quality 

improvements in industrial production processes. The superior performance of the TabTransformer 

model highlights the potential of transformer architectures in industrial applications, paving the way for 

further research and development in this area. 

 

5. CONCLUSIONS 

 

This study assessed the efficacy of different machine learning algorithms in predicting product quality 

during cold rolling procedures in the metallurgy industry. The study evaluated eight algorithms, 

including Decision Tree, KNN, Naive Bayes, Logistic Regression, Random Forest, XGBoost, Support 

Vector Machines, and TabTransformer, and identified TabTransformer as the most proficient model. 

This transformer-based algorithm not only attained the highest accuracy but also exhibited exceptional 

generalization abilities, rendering it especially appropriate for real-time quality control in production 

settings. 

 

The feature importance analysis revealed that parameters such as product group, alloy types, and casting 

machines significantly influenced the model's predictions. The TabTransformer model effectively 

captured complex feature interactions and handled categorical variables more efficiently due to its 

attention mechanisms, leading to superior performance. While Random Forest and XGBoost also 

demonstrated strong performance, TabTransformer surpassed them by providing better predictive 

accuracy and interpretability. 

 

Despite the promising results, this study has several limitations that should be acknowledged. First, the 

dataset used for training and evaluation was collected from a specific production environment with 

particular operational characteristics, which may limit the generalizability of our findings to other 

manufacturing contexts or different cold rolling setups. Second, while TabTransformer demonstrated 

superior performance, its computational complexity and training requirements are higher than traditional 

machine learning algorithms, potentially posing implementation challenges in resource-constrained 

environments. Third, our analysis focused primarily on classification performance and did not 

extensively explore the real-time deployment aspects, including latency considerations and integration 

with existing production systems. Fourth, the temporal stability of the models was not evaluated over 

extended periods, leaving questions about how frequently retraining might be required to maintain 

performance as production conditions evolve. Finally, the interpretability of the TabTransformer model, 

while better than some black-box approaches, still presents challenges for complete transparency in 

decision-making compared to simpler models like Decision Trees. 

 

Overall, the findings suggest that the application of advanced machine learning techniques, particularly 

transformer-based models like TabTransformer, in production quality control can enhance decision-

making, reduce human intervention, and optimize production efficiency. Future studies could build on 

this research by exploring larger datasets, more complex production environments, or additional 

transformer-based machine learning techniques to further refine quality control systems in industrial 

settings. 
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