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Abstract 

 

This research analyses how well the Partial Least Squares Regression models could predict the monthly average daily global 

solar radiation for seven stations in the Mediterranean region of Türkiye. Five model scenarios were created with the SARAH-3 

satellite dataset from 2005 to 2023 and using ERA5-AG meteorological variables. These included maximum and minimum 

temperature configurations, dew point temperature, precipitation, wind speed, and vapor pressure. Different models were examined 

for their prediction success by using different criteria and assessing the models with varying performance evaluation benchmarks. 

Based on the results, the models were accurate, mainly when all the predictor variables were used. The highest predictive 

performance was observed at Burdur station with KGE=0.937, NSE=0.901, and RSR=0.322. The greater regional variations 

showcased the specific meteorological parameters’ relevancy. The results also support the adequacy of the ERA5-AG dataset for 

climate modelling and resource evaluation purposes. Unlike traditional regression approaches, this study demonstrates the efficiency 

of PLSR in handling high-dimensional climatic datasets for solar radiation prediction. These findings support the reanalysis of data 

in renewable energy and agricultural applications, particularly in data-limited regions. 
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1. Introduction 

 

Solar radiation and climate data are crucial to 

understanding agricultural productivity, renewable energy, and 

environmental systems. Accurate modeling and forecasting of 

these factors are critical as climate change and its repercussions 

threaten food security and energy sustainability (Bai et al., 

2024). The evolution of remote sensing with reanalysis datasets 

and compiled statistics gives rise to numerous opportunities that 

make predicting and analyzing solar radiation and climate 

elements possible (Farbo et al., 2024). Other recent studies also 

highlight the limitless future of Artificial Intelligence (AI) 

technology in calculating solar radiation across various locations 

(Rabault et al., 2025).  

Solar radiation is the primary driver of photosynthesis, 

affecting plant growth, yield, and biomass accumulation (Fraga 

et al., 2024). According to studies, more than 50% of agricultural 

yield variation is directly due to climatic factors such as solar 

radiation and precipitation (Munnoli et al., 2023). Furthermore, 

the utilization efficiency of solar radiation is critical for 

maximizing crop biomass production. The capture and 

conversion of solar radiation into biomass are significantly 

influenced by factors such as leaf area index (LAI) and spatial 

distribution of plants (Koester et al., 2014; Sgarbossa et al., 

2018; Kaur et al., 2024). For example, studies on maize showed 

that optimizing plant arrangement increased the efficiency of 

solar radiation use, leading to higher yields (Sgarbossa et al., 

2018). Similarly, sugarcane and rice demonstrated a positive 

relation between higher solar radiation and yield values (Marin 

and Carvalho, 2012; Wang et al., 2016). These findings 

highlight the need for precise solar radiation data that can be 

used in crop modeling and management practices to successfully 
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optimize agricultural outputs (Castro et al., 2018; Perdinan et al., 

2021). In addition, understanding the sensitivity of vegetation to 

radiation and soil moisture changes is another vital issue in 

regions facing water scarcity (Liu et al., 2025). 

Remote sensing is essential in solar radiation analysis 

because it provides comprehensive spatial and temporal 

coverage. High-resolution solar radiation data, which is critical 

for various applications ranging from crop modeling to 

renewable energy system optimization, can be obtained with 

satellite-derived datasets, such as SARAH and Himawari-8 

(Kaskaoutis and Polo, 2019; Hama et al., 2020; Ghazouani et al., 

2021; Kong et al., 2024; Pfeifroth et al., 2024). 

Reanalysis data like ERA5 provide comprehensive, high-

quality datasets by integrating ground-based observations with 

model outputs. These datasets help agricultural decision-

making, hydrological modeling, and climate research by 

addressing data gaps in remote and under-monitored regions 

(Katsekpor et al., 2024; Soci et al., 2024). For instance, since 

reanalysis data can effectively represent weather conditions, it 

can help in runoff simulations and irrigation planning in 

mountainous regions where data is scarce (Wang et al., 2024). 

In addition, it can be used in agricultural systems ranging from 

predicting evapotranspiration to optimizing growing seasons 

and evaluating the effects of climate on crop yield (Ishak et al., 

2010; Hama et al., 2020; Pelosi et al., 2020; Araújo et al., 2022). 

In cases where data sets have high dimensionality and 

multicollinearity, Partial Least Square Regression (PLSR) is a 

versatile technique that can predict complex interactions 

between variables. The PLSR technique differs from traditional 

regression techniques by allowing efficient dimensionality 

reduction without losing predictive accuracy by removing latent 

variables that maximize the covariance between predictors and 

response variables (Wangeci et al., 2024). This aspect makes 

PLSR ideal for climatic and agricultural studies where large and 

highly correlated datasets must be analyzed (Wu et al., 2022; Li 

et al., 2023; Dai et al., 2024). For instance, PLSR was 

successfully used in a study on rice genotypes to examine how 

different sowing dates influenced spikelet formation about solar 

radiation and temperature (Wang et al., 2019). In another study 

for the assessment of biophysical parameters of grassland, PLSR 

was used alongside reflectance data to improve the prediction of 

solar radiation effects on vegetation (Sakowska et al., 2016). 

Moreover, these findings prove further use in remote 

sensing and reanalysis, thus enhancing agricultural resource 

management and decision-making. The distinctions become 

clear when assessing the performance and applicability of 

traditional station-based techniques to remote sensing methods 

for solar radiation and climate data. Classical methods using 

ground measurements, such as pyranometers and solarimeters, 

can determine solar radiation values for a given location with 

high precision and accuracy. These methods capture acceptable 

temporal variations and changes like direct and scattered 

components (Teke et al., 2015). However, these methods are 

geographically limited to a specific location. They require 

networks with multiple stations to transmit data to large areas, 

which can be logistically challenging and require high 

investment costs. Moreover, local conditions may affect ground 

measurement, such as the shading of close buildings or greenery, 

which are not typical of the regional environment (Harmsen et 

al., 2014; Olpenda et al., 2018). 

In contrast, remote sensing techniques provide extensive 

spatial and temporal access, unlike traditional station-based 

methods, allowing continuous large-scale solar radiation 

monitoring. These techniques use satellite imagery and complex 

models of the atmosphere to predict radiation over many 

terrains, thus filling essential gaps in regions not covered by 

ground-based systems (Irvem and Ozbuldu, 2018; Polo and 

Kaskaoutis, 2023). More excellent remote sensing coverage 

benefits agriculture and renewable energy in areas with limited 

ground-based infrastructure (Kosmopoulos et al., 2018; Hama et 

al., 2020). 

Remote sensing techniques are associated with 

disadvantages such as atmospheric conditions (cloud cover, 

haze, and aerosols) that create uncertainty in the radiation 

prediction, reducing accuracy. Such problems often encourage 

combining remote sensing data with classical ground-based 

measurements to increase the precision of radiation 

measurements. Studies emphasize that the combination of these 

techniques provides an ideal solution due to the adequacy and 

unlimited coverage of satellite data and the sensitivity of 

ground-based methods for agricultural and renewable energy 

systems (Zhou et al., 2017; Wang et al., 2021). In addition to 

these accuracy-enhancement methods, the use of remote sensing 

along with advanced machine learning (ML) post-processing 

procedures can also help solve these issues (Rabault et al., 2025). 

The applications of solar radiation data in agriculture 

extend to renewable energy systems. In this research, the 

combining of remote sensing reanalysis datasets and PLSR was 

examined to improve solar radiation prediction from climatic 

variables. Using these tools, it was aimed to enhance the 

agricultural productivity, optimize energy systems, and deepen 

the understanding of climatic processes. Although the 

application of machine learning and statistical techniques to 

predict solar radiation is on the rise, there is limited research on 

evaluating PLSR using reanalysis datasets. In order to fill this 

gap, the present work tested the prediction performance of PLSR 

against ERA5-AG and SARAH-3 datasets, assessing its 

effectiveness with high-dimensional climate variables under 

varying meteorological conditions in the Mediterranean region. 

 

2. Materials and methods 

 

2.1. Study area and dataset 

 

This work was carried out using the average monthly solar 

radiation data of the provincial centers of Adana, Hatay, 

Osmaniye, Antalya, Mersin, Isparta, and Burdur in the 

Mediterranean region of Türkiye. The data was retrieved from 

the European Exploitation of Meteorological Satellites 

Organization’s (EUMETSAT) SARAH-3 (Surface Radiation 

Data Set-Heliosat 3) dataset for the years 2005-2023. The study 

area is shown in Fig. 1. The SARAH data set is critical in 

understanding the solar radiation dynamics of Europe, and 

therefore, is an integral part of the solar radiation European 

system (CM SAF).  

Compared to its predecessors, SARAH-3 is enhanced by 

lower-resolution solar radiation data from the METEOSAT 

satellite series. This data is supplied with a spatial resolution of 

0.05°. The surface radiation value is calculated using the 

Heliosat technique (Thomas et al., 2023). 

Data has undergone processing, cross-referencing satellite 

images and using ground truthing algorithms to ascertain 

precision on the data being analyzed (Mikelsons et al., 2022). 

With the satellite’s ground observation, it was possible to create 

more reliable, optimized datasets critical for climate monitoring 

and modelling (Pfeifroth et al., 2018; Manara et al., 2020). 
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Inclusion for its systematic nature makes the dataset’s 

accessibility and comprehensiveness unparalleled for most 

researchers and analysts, including policymakers and the 

industry (Kothe et al., 2017). The selected SARAH-3 solar 

radiation data, with its corresponding metadata, can be found at 

the JRC website (JRC, 2024). The solar radiation data from 

SARAH3 was analysed and tested for quality using the 

Kolmogorov-Smirnov data normalization tests individually per 

station in R Studio. Statistical granularity of the presented test 

results and data sets is highlighted in Table 1. Normality tests 

reported that all stations met the requirements, p<0.05 reported 

(Azad et al., 2024). ERA5-AG and SARAH-3 were chosen due 

to their long-term availability, high geographical accuracy, and 

spatial detail. Their reliability has been previously proven by 

comparing them with in situ measurements. 

 

Fig. 1. Location of the study areas. 

 
Table 1 

Descriptive statistical values of monthly average solar radiation (kWh 

m-2 day-1) data. 

Station Average 
Standard 

Deviation 
Max. Min. 

Kolmogoro-

Smirnov 

p value 

Adana 5.03 1.97 8.09 1.84 0.002 

Hatay 5.18 2.24 8.46 1.36 0.001 

Osmaniye 4.86 1.93 8.11 1.81 0.003 

Mersin 5.07 1.98 8.19 1.76 0.001 

Antalya 5.21 2.07 8.44 1.97 0.001 

Burdur 5.10 2.10 8.60 1.85 0.003 

Isparta 4.84 2.03 8.45 1.57 0.006 

 

2.2. Model inputs and creation of scenarios 

 

In the study, maximum temperature (Tmax), minimum 

temperature (Tmin), average dew point temperature (Tdew), 

precipitation (P), wind speed (WS) and vapor pressure (VP) 

were used as predictor variables to be used in the models that 

will predict the monthly average solar radiation. The ERA5-AG 

reanalysis dataset is a notable improvement in climate data as it 

contains high-resolution meteorological data from ECMWF’s 

5th generation of atmospheric reanalysis (ERA5)-a new and 

improved version. It benefits agricultural, hydrological, and 

environmental studies because it covers a wide area and has a 

high spatial resolution of 0.1° x 0.1° (about 10 km) (Zhou and 

Ismaeel, 2020). Simanjuntak et al. (2022) claimed that the 

dataset is essential for agriculture because it contains wind, 

solar, and other parameters for studying and modeling the 

environment or weather-changing factors. This research 

acquired the required ERA5-AG data from Google Earth Engine 

for the corresponding study areas. Five scenarios concerning 

model inputs were structured with the data discussed above to 

predict the impact of climate parameters. The model scenarios 

are presented in Table 2. Initial tests showed that wind speed had 

little impact in the stable climate regions, while precipitation had 

more significant impacts in the coastal areas. Atmospheric 

conditions (with accompanying changes in wind speeds) could 

considerably affect energy production, which indicates that 

under more stable conditions (low variability in wind), the wind 

speed does not have much impact. Furthermore, in areas with 

changing precipitation patterns, precipitation can diminish solar 

radiation by obstructing light in the region (Vizzo et al., 2021; 

Pérez et al., 2023). 

 
Table 2 

Model input scenarios. 
Model Scenarios Input variables 

M1 Tmax + Tmin + Tdew + P + WS + VP 

M2 Tmax + Tmin + Tdew 

M3 Tmax + Tmin + Tdew + P 

M4 Tmax + Tmin + Tdew + VP 

M5 Tmax + Tmin + Tdew + WS 

 

2.3. Multivariate data analysis 

 

The data were analyzed to assess the potential for 

predicting solar radiation based on climatic variables, including 

Tmin, Tmax, Tdew, WS, and VP. Regression analysis were 

conducted using the Partial Least Squares Regression method, 

implemented in the multivariate statistical software 

UnScrambler (version 9.7, Camo, Oslo, Norway). The PLS 

method was selected as more suitable than other classical 

techniques (such as Multiple Linear Regression and Principal 

Component Regression) for datasets with highly correlated 

variables (Esbensen, 2009). In the PLS analysis, 70% of the data 

(from 2005 to 2017) were used for model calibration, while the 

remaining 30% (from 2018 to 2023) served as the validation set. 

 
2.4. Criteria for evaluating model performance 

 

In this study, the results received from the PLS regression 

model were evaluated using five separate performance 

assessment metrics. The coefficient of determination (R2) is one 

of the most important criteria used to evaluate the regression 

model’s goodness of fit. As stated in (Kasuya, 2018), “A higher 

R2 value indicates a better fit.” Root Mean Square Error (RMSE) 

has emerged as one of the most common metrics used to evaluate 

the accuracy of predictive models. It captures the discrepancies 

between predicted values (Mi) and observed values (Oi) and 

assesses the overall effectiveness of the model (Chai and 

Draxler, 2014). It is widely accepted that lower RMSE values 

suggest improved model performance. However, the actual 

value of this parameter depends on data dataset size. On the 

contrary, the Root Mean Standard Deviation Ratio (RSR) was 

introduced by (Singh et al., 2005) as a model comparison 
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statistic that improves the interpretability of these values. RSR 

adjusts the RMSE values by the standard deviation of the 

observations to produce a constant value. 

As for the calculation of the NSE, its coefficient is a metric 

to measure the predictive power of a model. The coefficient can 

take any value lower than 1, preferably zero or higher. Closer to 

1 suggests that the model prediction result is satisfactory 

(Moriasi et al., 2007). The KGE is one of the most common 

metrics used for model evaluation, especially for hydrological 

models. KGE is composed of three main components: the 

correlation coefficient (r), the variability ratio (α) and the mean 

bias (β), making the model evaluation much more informative 

(Smit and Van Tol, 2022). These model performance metrics are 

derived from the results calculated in Equations 1-5. The 

quantitative results from these equations were benchmarked 

against the qualitative evaluations listed in Table 3 and Table 4. 

 

R2 = (
∑ (Oi− O̅) × (Mi− M̅)n

i=1

√∑ (Oi− O̅)2n
i=1   × √∑ (Mi− M̅)2n

i=1

)

2

              (1) 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑ (𝑂𝑖 − 𝑀𝑖)

2𝑛
𝑖=1                 (2) 

 

RSR =
RMSE

𝜎𝑜𝑏𝑠
                 (3) 

 

NSE = 1 −  
∑ (Oi− Mi)2n

i=1

∑ (Oi− O̅)2n
i=1

                (4) 

 

𝐾𝐺𝐸 = 1 −  √(𝑟 − 1)2 +  (𝛼 − 1)2 +  (𝛽 − 1)2             (5) 

 

 
Table 3 

NSE and RSR performance evaluation table (Singh et al., 2005; Moriasi 

et al., 2007). 
Performance NSE RSR R2 

Very good 0.75<NSE≤1.00 0.00≤RSR≤0.50 0.90≤R2≤1.00 

Good 0.65<NSE≤0.75 0.50<RSR≤0.60 0.75≤R2<0.90 

Satisfactory 0.50<NSE≤0.65 0.60<RSR≤0.70 0.50≤R2<0.75 

Unsatisfactory NSE≤0.50 RSR>0.70 0.50>R2 

 
Table 4 

KGE performance evaluation table (Towner et al., 2019). 
Performance KGE 

Good KGE>0.75 

Intermediate 0.5<KGE<0.75 

Poor 0<KGE< 0.5 

Very poor KGE<0 

 

3. Result and discussion 

 

This study evaluated PLS regression prediction models for 

their ability to predict average monthly solar radiation at seven 

different stations in the Mediterranean region of Türkiye under 

five different input scenarios. In the models created using 

variables obtained from the ERA5-AG reanalysis dataset, 70% 

of the dataset (2005-2017) was used as training and 30% (2018-

2023) as a test dataset. The performance results of the test 

period, monthly average daily global solar radiation predictions 

obtained from the models for all stations, are given in Table 5. 

Table 5 shows that the models generally have high values 

for KGE and NSE and low values for RSR. This indicates that 

the error rate of the models is low, and they have a good 

prediction performance. The M1 model showed the best 

performance in most of the stations. This is since model includes 

all variables (Tmax, Tmin, Tdew, P, WS, VP) and therefore 

represents the atmospheric conditions most comprehensively. 

The fact that M1 has higher KGE and NSE values emphasizes 

the importance of considering meteorological components 

together. Among the other models, performance decreases were 

generally observed when the number of variables was reduced. 

The model M2 with only temperature variables typically 

produced lower KGE and NSE values. 

Considering the results obtained on a station basis, the M4 

model stands out with the highest KGE (0.907) and NSE (0.854) 

values at Adana station. Moreover, the lowest RSR value (0.356) 

shows that the model minimizes the error rate. This result can be 

attributed to Adana’s high humidity and low wind speed 

variability. Therefore, VP is considered to be more critical in 

solar radiation prediction. On the other hand, the results show 

that the exclusion of WS and P variables from the prediction 

model may be less effective for Adana.  

 
Table 5 

Prediction performances of the models based on different input 

scenarios. 
Stations MODELS KGE NSE RSR 

Adana 

M1 0.911 0.851 0.363 

M2 0.892 0.842 0.365 

M3 0.906 0.843 0.372 

M4 0.907 0.854 0.356 

M5 0.878 0.833 0.369 

Antalya 

M1 0.873 0.760 0.459 

M2 0.851 0.725 0.480 

M3 0.875 0.758 0.465 

M4 0.863 0.743 0.471 

M5 0.861 0.748 0.462 

Burdur 

M1 0.937 0.901 0.322 

M2 0.914 0.832 0.398 

M3 0.929 0.859 0.367 

M4 0.921 0.843 0.389 

M5 0.933 0.879 0.349 

Hatay 

M1 0.927 0.928 0.249 

M2 0.818 0.685 0.496 

M3 0.808 0.660 0.514 

M4 0.792 0.665 0.495 

M5 0.935 0.902 0.296 

Isparta 

M1 0.875 0.816 0.390 

M2 0.873 0.778 0.434 

M3 0.871 0.776 0.435 

M4 0.879 0.786 0.429 

M5 0.917 0.861 0.353 

Mersin 

M1 0.901 0.862 0.346 

M2 0.872 0.852 0.346 

M3 0.890 0.844 0.366 

M4 0.910 0.861 0.357 

M5 0.844 0.854 0.331 

Osmaniye 

M1 0.907 0.881 0.318 

M2 0.898 0.848 0.360 

M3 0.899 0.846 0.363 

M4 0.899 0.848 0.361 

M5 0.912 0.884 0.316 

 

The most successful model at Antalya station was M1 

(KGE=0.873, NSE=0.760, RSR=0.459). This model, in which 

all inputs were included, was able to reflect the complex 

meteorological structure of Antalya in the best way. Because 

Antalya is in a geography, where coastal and mountainous areas  
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Fig. 2. Scatter plots of monthly average daily global solar radiation predictions obtained for each station for the test period. 
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merge, parameters such as wind speed and precipitation are 

important factors affecting solar radiation. Therefore, the 

inclusion of all parameters in M1 provided better performance 

of the model.  

In Burdur station, the M1 model showed the best 

performance (KGE=0.937, NSE=0.901, RSR=0.322). It is 

known that Burdur is under the influence of a terrestrial climate 

and has low humidity levels. Therefore, the effect of parameters 

such as Tdew, VP, and WS on solar radiation becomes more 

noticeable. Because M1 includes all parameters, it provided high 

accuracy at this station. The most successful model at Hatay 

station was M1 (KGE=0.927, NSE=0.928, RSR=0.249). 

Although Hatay has a Mediterranean climate similar to Adana, 

the inclusion of all parameters produced a more successful result 

due to geographical differences. Including all inputs in M1 

improved the performance of the model, particularly if factors 

such as precipitation and wind speed affect solar radiation. 

The M5 model provided the highest performance at Isparta 

station (KGE=0.917, NSE=0.861, RSR=0.353). The M5 model 

considered WS instead of VP. Although Isparta is under the 

influence of a continental climate, it is seen that the land 

structure makes the changes in wind speed more important for 

solar radiation prediction. This shows that WS is a more 

effective parameter for predicting solar radiation in this region.  

The M4 model provided the best performance at Mersin 

station (KGE=0.910, NSE=0.861, RSR=0.357). The inclusion 

of vapor pressure in M4 indicates that humidity levels in Mersin 

are a determining factor in solar radiation prediction. The most 

successful model at Osmaniye station was M5 (KGE=0.912, 

NSE=0.884, RSR=0.316). The inclusion of wind speed in the 

M5 model indicates that the meteorological conditions in 

Osmaniye play a determining role in solar radiation. The main 

reason for the differences in the performance of the models is 

the variations in each station’s meteorological, geographical, 

and environmental conditions. In humid and hot regions such as 

Adana, vapor pressure is critical for prediction performance. In 

contrast, the effect of wind speed may be more pronounced in 

areas with terrestrial climate characteristics, such as Burdur. 

Similarly, in coastal regions such as Antalya and Hatay, the 

effect of high humidity and wind speed should be considered 

together. Scatter plots generated according to the predictions 

obtained from the most successful models for each station are 

given in Fig. 2. The performance differences among stations 

may be linked to their geographical and meteorological 

characteristics. For instance, Burdur’s stable conditions 

enhanced model accuracy, whereas Antalya’s coastal variability 

led to slightly lower performance. 

In general, the predicted values are in good agreement with 

the measured data. In particular, the predictions obtained for the 

models at Hatay, Mersin, and Burdur stations are very close to 

the 1:1 line, indicating that over- or under-predicted values are 

limited. According to the scatter plots, it is concluded that the 

predicted values of monthly average global solar radiation have 

a high level of accuracy. 

The R2 values obtained from the models (0.79-0.94) show 

that the model predictions are highly accurate. According to the 

RMSE results (0.57-0.95), it was determined that the models 

predicted the monthly average daily global solar radiation with 

a very low error amount. In similar modelling studies where 

solar radiation prediction models were evaluated, Mohammadi 

et al. (2015) calculated the performance of the regression 

prediction model as R2=0.84 in their research in Iran. 

Shamshirband et al. (2016) calculated R2=97.37 and 

RMSE=0.18 in their study using machine learning in Iran. 

Karaman et al. (2021) calculated the RMSE value as 0.0297 and 

the R2 value as 0.99 in their prediction model using ANN in 

Karaman province in Türkiye. Soria et al. (2022) used a multiple 

linear regression model in their study in Peru and found the R2 

value as 0.556. These results show that the PLS regression 

model method is much more successful than the models created 

with traditional regression approaches, although not as 

successful as ANN and machine learning based approaches. In 

addition, the findings of this study show that the ERA5-AG 

reanalysis dataset can be used for solar radiation prediction in 

developing countries such as Türkiye, where the meteorological 

observation gauge network is sparse. 

 

4. Conclusion 

 

This study created models for solar radiation prediction 

using PLSR from climate variables of ERA5-AG reanalysis 

datasets in different scenarios. The prediction success of these 

models was evaluated based on various criteria. The study 

conducted in the seven Türkiye’s Mediterranean Region stations 

found that PLSR models effectively processed high-dimensional 

and multicollinear climate data. Among all the evaluated 

models, those that included all features (temperature, dew point, 

wind speed, and vapor pressure) provided the best predicted 

solar radiation accuracy as indicated by KGE, NSE, R², and low 

RSR values. The findings also highlight the role of local climate 

and topographic features in the prediction model developing 

process. Indicating this, including wind speed and precipitation 

variables, is essential in coastal regions such as Antalya and 

Hatay. In contrast, wind speed data has become particularly 

important in Isparta, which has a more continental climate. This 

study underscores PLSR models’ versatility in fitting regional 

datasets, which provide a reasonable balance between precision 

and model complexity when combined with classical regression 

and sophisticated machine learning techniques. According to 

study results, the ERA5-AG dataset can be a valid resource for 

predicting solar radiation in regions with limited data 

availability. This research helps to reduce the gaps created by 

insufficient meteorological observation networks, while also 

helping to maximize solar energy use and improve agricultural 

productivity. These results are crucial in optimizing photovoltaic 

energy use in areas where data is scarce. Accurate solar radiation 

prediction also helps support climate resilience strategies and 

enhances agricultural planning by predicting the potential crop 

yields. 
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