
RESEARCH ARTICLE  

Design of Cardiac Pacemaker Controller Based on 
Reinforcement Learning 

Kağan Orbay 
a       

, Mehmet Sağbaş 
a†

     , Murat Demir 
a        

  

a 
Department of Electrical and Electronics Engineering, İzmir Bakırçay University, İzmir, Türkiye 

† sagbasm@gmail.com, corresponding author 

RECEIVED DECEMBER 23, 2024 

ACCEPTED  APRIL 9, 2025 

CITATION  Orbay, K., Sağbaş, M. & Demir, M. (2025). Design of cardiac pacemaker controller based on reinforcement 

learning. Artificial Intelligence Theory and Applications, 5(1), 29-41. 

 

Abstract 

This study investigates the derivation of PID controller parameters, commonly used for 

pacemaker control, using both genetic algorithm (GA) and reinforcement learning (RL) methods. 

We compare the PID parameters obtained by RL with those obtained by GA, a well-known and 

often preferred method in literature. The aim of the study is to analyze the performance of the 

control parameters obtained by both methods and to determine which approach is more effective 

in pacemaker applications. In particular, comparisons on important control criteria such as settling 

time, rise time and overshoot of the system will reveal the advantages and disadvantages of these 

methods. 

Keywords: heart rhythm regulation, pacemaker control system, PID controller optimization, 

reinforcement learning 

 

1. Introduction 

Cardiovascular diseases, including heart attacks and arrhythmias, are among the 
leading causes of death worldwide [1-2]. Arrhythmias disrupt the normal electrical activity 
of the heart and often require medical intervention. One of the most effective solutions 
for regulating heart rhythm is the cardiac pacemaker, which delivers controlled electrical 
impulses to the heart [3]. Pacemakers continuously monitor cardiac activity and correct 
irregularities by providing appropriate electrical stimulation [4]. This regulation is crucial 
for preventing complications that can arise from untreated arrhythmias, such as stroke 
or heart failure. Additionally, advancements in technology have led to the development 
of more sophisticated pacemakers that can adapt to a patient's activity level, further 
improving overall cardiac health. 

To improve the efficiency of pacemakers, researchers have developed advanced control 
strategies to optimize their performance. A key aspect of this optimization is the use of 
Proportional-Integral-Derivative (PID) controllers, which provide precise regulation of the 
heart rhythm. The PID controller has three components. The proportional (P) component 
provides a correction proportional to the current error, allowing a fast and accurate 
response to instantaneous changes in heart rate. This accuracy ensures that the heart 
rate is maintained at the desired level. The integral (I) component accounts for the 
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accumulation of error over time and provides long-term corrections. This prevents the 
accumulation of continuous errors and helps the pacemaker maintain a more stable heart 
rhythm over time. Provides long-term performance improvements. The derivative (D) 
component analyzes the rate of change of the error and reacts quickly to instantaneous 
changes. This quickly compensates for sudden changes in heart rate and prevents the 
system from overreacting. It improves overall system performance by adapting to 
dynamic changes. Proper tuning of these parameters is critical to achive the desired 
control system behavior. However, determining optimal PID parameters remains a 
challenge, leading researchers to explore advanced optimization techniques such as 
Genetic Algorithms (GA) and Reinforcement Learning (RL) [5-6]. 

Several mathematical models have been proposed to describe cardiac dynamics, which 
are crucial for developing pacemaker control strategies. Biswas et al. (2006) modeled 
the cardiovascular system using a closed-loop negative unit feedback system based on 
transfer functions [7]. Additionally, mathematical models such as the Noble model for 
Purkinje fibers and the Beeler-Reuter model for ventricular myocardial cells have been 
widely used to simulate cardiac activity [8-9]. 

This study investigates the effectiveness of GA and RL in optimizing pacemaker PID 
controller parameters. By comparing these approaches, we aim to identify the most 
efficient method based on performance criteria such as settling time, rise time, and 
overshoot. The results provide insights into the advantages and limitations of AI-driven 
optimization strategies in biomedical control applications. 

Traditional PID tuning methods, such as Ziegler-Nichols and Cohen-Coon, are widely 
used but often struggle with adaptability in dynamic physiological conditions [10-11]. To 
overcome this limitation, evolutionary algorithms and machine learning-based 
optimization techniques have been explored. 

Various control techniques have been explored to improve the performance of 
pacemakers. Apart from classical methods, the following approaches have been utilized:  

•    Studies using optimization algorithms [2], [12-13] 

•    Embedded designs using microcontrollers and FPGAs [14-15] 

•    Machine learning based designs using various machine learning algorithms [16-17] 

•    Studies using analogue circuits [18-19] 

Several studies have demonstrated the effectiveness of Genetic Algorithms (GA) in 
optimizing PID controllers for pacemakers. Bajpai et al. (2017) showed that GA-based 
tuning minimizes overshoot and improves transient response [2]. Similarly, Momani et 
al. (2019) examined fractional-order PID controllers tuned via GA and found improved 
accuracy in heart rate regulation [4]. These findings highlight GA’s ability to efficiently 
explore solution spaces and optimize control parameters. 

However, GA has limitations [20]: 

•    It relies on heuristic search mechanisms that may converge to local optima. 

•    Its performance is highly dependent on mutation and crossover rates. 

•    It does not adapt well to real-time physiological variations. 

In contrast, Reinforcement Learning (RL) has gained attention for adaptive control 
systems [21-22]. In contrast to GA, RL continuously learns from the environment, thereby 
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improving decision-making over time [5]. Lima et al. (2023) applied RL to cardiac rhythm 
regulation, demonstrating its ability to dynamically adjust pacing parameters with high 
accuracy [16]. 

Despite its advantages, RL also has challenges [23-24]: 

•    It requires extensive training episodes to achieve convergence. 

•    Traditional RL methods struggle in high-dimensional continuous spaces. 

•    Computational complexity can be high, requiring deep RL techniques for scalability. 

Although GA and RL have been studied separately, a direct comparative analysis of 
these methods in pacemaker control is still lacking. This study aims to bridge this gap by 
evaluating GA and RL in optimizing PID parameters for pacemaker applications. The key 
contributions are: 

1.  A comparative analysis of GA and RL for PID tuning in pacemakers, assessing their 
effectiveness in optimizing heart rhythm control. 

2.  A structured performance evaluation based on key control metrics (settling time, rise 
time, overshoot, and peak response). 

3.  An RL-based adaptive tuning framework, demonstrating its potential advantages 
over GA in reducing overshoot and improving stability. 

4.  A scalable optimization methodology that can be extended to other AI techniques 
such as Particle Swarm Optimization (PSO) and Model Predictive Control (MPC). 

By integrating modern AI-driven techniques with traditional evolutionary algorithms, this 
study provides a novel perspective on cardiac pacemaker controller design. The findings 
of this study suggest that GA is more effective in achieving rapid responses, while RL 
offers superior long-term adaptability, making it a promising solution for real-world 
applications. 

2. Modelling of Pacemaker  

Mathematical models of the heart have been developed to facilitate understanding of 
cardiac function. Noble described the Purkinje fiber cell action potential in 1962 with the 
Noble model [8]. Beeler and Reuter introduced an electrical activity model of the 
ventricular myocardial cell in 1977 [9]. The mathematics of cardiac dynamics helped to 
design pacemaker control systems for artificial and implanted devices. Biswas et al. 
proposed a transfer function-based cardiovascular system mathematical model [7]. The 
cardiovascular system is depicted as closed loop negative unit feedback with filter and 
controller. Figure 1 depicts the cardiovascular closed-loop control system block diagram. 
Equations. (1) and (2) provide the pacemaker and heart transfer functions 𝐺𝑃𝑎𝑐𝑒𝑚𝑎𝑘𝑒𝑟(𝑠) 
and Gheart(s), for the configuration depicted in Figure 1. The closed loop system receives 
the real heart rate R(s) and produces the target heart rate Y(s). The function of 𝐺𝐾(𝑠) is 
to serve as the controller. 

𝑮𝑷𝒂𝒄𝒆𝒎𝒂𝒌𝒆𝒓(𝒔) =
𝝎𝒍𝒑𝒇

𝒔+𝝎𝒍𝒑𝒇
                         (1) 

𝑮𝑯𝒆𝒂𝒓𝒕(𝒔) =
𝟏

𝑴𝒔𝟐+𝑩𝒔+𝑲
                       (2) 
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The cut-off frequency of the low-pass filter representing the pacemaker is ωlpf, while the 
mass of the heart muscle is M, the viscous drag of the heart myocardial cell is 𝐵, and the 

torsional drag is 𝐾. 

 

Figure 1. The block diagram of the cardiovascular system. 

If the numerical values of the parameters given in Eqs. (1) and (2) are substituted in the 
studies in the literature, GP(s) is obtained as follows [7]. 

𝐺𝑃(𝑠) =
1352

𝑠(𝑠+8)(𝑠+20.8)
            (3)     

Given the closed loop system shown in Figure 1, its closed loop transfer function is as 
follows: 

(𝑠) =
𝑌(𝑠)

𝑅(𝑠)
=

𝐺𝐾(𝑠)𝐺𝑃(𝑠)

1+𝐺𝐾(𝑠)𝐺𝑃(𝑠)
                       (4) 

3. PID Controllers 

PID controllers are used to improve pacemaker efficiency. The PID controller improves 
pacemaker performance and cardiac rhythm management. The PID controller can adjust 
the pacemaker's output to target heart rate for accurate cardiac rhythm regulation. To 
respond quickly and accurately to immediate heart rate changes, the proportional (P) 
component corrects the present mistake. This accuracy keeps the heart rate at the 
correct level. Long-term error fixes were provided via the integral (I) component. Avoiding 
ongoing mistakes helps the pacemaker maintain a steady cardiac rhythm over time. 
Improves long-term performance. The derivative (D) component evaluates error rate and 
reacts swiftly to sudden changes. This swiftly adjusts for unexpected heart rate variations 
and minimizes overreaction. It adapts to dynamic changes to boost system performance. 
PID controller settings can adjust to patient activity and physiological changes. This 
adjustment allows the pacemaker to automatically modify heart rate based on stress or 
physical activity, enhancing performance. 

The PID controller has three parameters: The error signal's current value determines Kp. 
Control action rises proportionately with mistake. The error signal's historical values 
determine the integral term (Ki). Long-term errors activate the integral term, boosting 
control action. The derivative term (Kd) predicts fault signal value. The derivative term 
increases control action if the mistake is rising fast. These three parameters are crucial 
to PID controller performance. To accomplish control system behavior, these parameters 
must be tuned properly depending on the application. 

Equations (5) and (6) respectively provide the time-based response of the output u(t) 
and transfer function of the PID-controller. 
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𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝑇𝑖 ∫ 𝑒(𝜏)𝑑𝜏
𝑡

0
+ 𝑇𝑑

𝑑

𝑑𝑡
𝑒(𝑡),                     (5) 

𝐺𝐾(𝑠) =
𝑈(𝑠)

𝐸(𝑠)
= 𝐾𝑝 +

𝑇𝑖

𝑠
+ 𝑇𝑑𝑠                      (6) 

where E(s) and U(s) denote the Laplace transforms of the error and control signals, 
respectively. 

4. Genetic Algorithm 

Evolutionary search and optimization methods like genetic algorithms address difficult 
optimization issues. These algorithms replicate natural selection, crossover, and 
mutation to efficiently explore the solution space. Genetic algorithms analyse and choose 
the best potential solutions from a population. Each cycle selects the best people and 
assesses them using a fitness function [6, 25]. Crossover and mutation procedures 
expand solution space while retaining population genetic diversity. Traditional 
approaches fail to solve difficult and large-scale optimization issues, but this method can. 
Genetic algorithms' success depends on parameter values and problem-specific design. 

C = {𝐶1, 𝐶2, … , 𝐶𝑛}                        (7) 

In Eq. (8), C represents a chromosome, and Ci represents the i-th gene of the 
chromosome. 

𝑓(𝐶) = Fitness Function (𝐶)                      (8) 

The fitness function in Eq. (8) determines chromosomal (solution) quality. This function 
represents the optimization goal. The objective is usually to maximize fitness. Selection 
ensures that the following generation inherits the finest population members.  

𝑃𝑖 =
𝑓(𝐶𝑖)

∑ 𝑓(𝐶𝑖)𝑁
𝑗=1

                                   (9) 

Pi is the probability of selection of the i-th individual, and f(Ci) is its fitness value. 
Crossover creates a new person from two parental chromosomes. Single-point 
crossover is the most frequent crossover mechanism. Single-point crossover is a typical 
way to make new people from two parental chromosomes. This approach switches 
genes on the two chromosomes from a point. Mutations affect the value of a randomly 
selected gene to preserve genetic variation 

5. Reinforcement Learning 

Machine learning refers to algorithms that acquire knowledge from data. The domains of 
machine learning encompass supervised, unsupervised, and reinforcement learning. RL 
is extensively utilized in supervised issues because of its reward-based learning 
framework. 

RL simply works to develop a function that produces an output based on feedback 
obtained from the environment utilizing data. Upon structural analysis, it is evident that it 
has three fundamental components: Agent, State, and Environment [26]. The learned 
function is referred to as policy. The policy permits the choice of the action (at) that will 
provide the maximum reward over time, based on the observed state [5]. The strategy 
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may be stochastic or deterministic, contingent upon the chosen RL approach. Figure 2 
depicts the overarching framework for training in RL. 

This research utilizes the Q-learning algorithm, a traditional approach in RL. Q-learning 
is a fundamental RL method designed for systems with a discrete solution space. The 
Q-learning approach is especially appropriate for systems characterized by discrete 
action and state spaces, and in this research, it is employed to optimize the PID 
parameters. 

 

Figure 2. The reinforcement learning training schematic. 

Q-learning is a model-free technique designed for RL tasks characterized by discrete 
state and action spaces. The agent determines the appropriate action to select in each 
environmental state. At each stage, the agent selects an action, obtains a reward for that 
action, and transitions to the subsequent state. The agent aims to select activities that 
optimize the cumulative reward over time. Q-learning creates a table that allocates a Q-
value to each state-action combination and subsequently modifies this table to enhance 
learning. Acts are selected using the Epsilon-Greedy technique, whereby the agent 
occasionally engages in random acts for exploration and at other times opts for the action 
deemed optimal based on the existing Q-values. The updates consider the prospective 
benefits of each action, as dictated by the Bellman Equation. Consequently, the agent 
discerns the action that yields the maximum reward in each scenario. 

6. Simulation Results and Discussion 

Genetic Algorithm Optimization was first used to select the parameters of the PID 
controller used to control the pacemaker. The transfer functions in Equation (4) are used 
for the heart and pacemaker. These transfer functions model the dynamic characteristics 
of the heart and pacemaker systems. 

The objective function of the GA is to measure the performance of the unit step response 
of the system, representing a heart rate of 72 bpm, by determining the parameters (Kp, 
Ki, Kd) of the PID controller. 72 bpm represents the healthy heart rate of an average 
person, and the system aims to approach this reference value with the fastest and least 
oscillation. By punishing changes in system response, rise time, settling time, overshoot, 
and peaks, the objective function tries to minimize the total error for all possible 
combinations of controller parameters. 

The GA optimization process involves defining lower and upper bounds for the 
parameters of the PID controller and configuring the algorithm's operating parameters. 
Table 1. shows the selected parameters. We also chose a Gaussian mutation function 
for mutation and enabled parallel processing to speed up the calculations. 
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Table 1. The parameter used in simulations for GA 

Parameter Genetic Algorithm (GA) 

Population Size 100 

Number of Generations 200 

Mutation Gaussian Mutation 

Crossover Rate 90% 

To properly tune controllers and evaluate their performance, one can consider several 
performance criteria. The performance criteria used in this study are Integral Square 
Error (ISE), Integral Time Absolute Error (ITAE), Integral Time Square Error (ITSE), 
Integral Absolute Error (IAE), and the Discrete Time Integral Sample Based Double 
Square Error (dTISDSE). The following equations illustrate how these performance 
criteria are calculated. 

𝐼𝑆𝐸(𝑒) = ∫ 𝑒2(𝑡)
∞

0
𝑑𝑡         (10a) 

𝐼𝑇𝐴𝐸(𝑒) = ∫ 𝑡|𝑒(𝑡)|
∞

0
𝑑𝑡                              (10b) 

𝐼𝑇𝑆𝐸(𝑒) = ∫ 𝑡𝑒2(𝑡)
∞

0
𝑑𝑡                    (10c) 

𝐼𝐴𝐸(𝑒) = ∫ |𝑒(𝑡)|
∞

0
𝑑𝑡                    (10d) 

𝑑𝑇𝐼𝑆𝐷𝑆𝐸(𝑒) = ∑ 𝑘(𝑒𝑘
2)2𝑛

𝑘=1                     (10e) 

Figure 3 displays the step response of the closed-loop system resulting from GA 
optimization for various performance criteria. Table 2 provides the PID parameter values 
obtained for all performance criteria. 

 

Figure 3. PID-controller responses for various performance criteria 
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Table 2. PID parameter values obtained using different error functions 

Error Functions Kp Ki Kd 

  ISE  4.779060 3.148517 1.487819 

  ITAE  6.437423 3.612167 3.090703 

  ITSE  7.601399 2.917295 4.871950 

  IAE  4.266956 2.623989 1.387273 

 dTISDSE  6.419923 3.476024 3.076429 

Figure 4 displays the step response for ISE, yielding the best result among the used 
performance criteria. Table 3 shows the performance metrics for the step response 
obtained for ISE. Figures 3 and 4 demonstrate that the controlled system, utilizing PID 
parameters from the genetic algorithm, achieved the target heart rate of 72 bpm more 
quickly and with fewer oscillations than the uncontrolled system. As can be seen from 
Table 3, significant improvements are observed, especially in performance criteria such 
as response time, settling time, overshoot, and peak values.  

Table 3. GA Optimization results for ISE performance criteria 

Performance Metrics Controlled System Uncontrolled Closed-loop System Step 

Response 

Rise Time (s) 0.035707 0.1908 

Settling Time (s) 0.342283 1.5414 

Overshoot (%) 28.820775 34.6568 

Peak 92.750958 96.9529 

 

 

Figure 4. The step responses of the controlled system for ISE 
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Secondly, the PID controller parameters determined through Q-learning-based 
reinforcement learning (RL) are as follows: Kp = 1.3819, Ki = 0.12864, Kd = 0.26231. 
We use the transfer functions in Eq. (4) for heart and pacemaker dynamics. In this study, 
a Q-learning based PID tuning algorithm is used to find the PID parameters of the system 
through reinforcement learning as follows. 

Algorithm: Q-learning based PID parameter optimization: 
Step 1: Initialization: 

• Initialize PID Parameter Ranges: Define the ranges for Kp, Ki, and Kd and initialize the Q-table 
with small random values. 

• Set Learning Parameters: Define the learning rate (α), decay factor (γ), exploration rate (ϵ), and 
number of episodes. 

• Set Random Seed: Use the rng() function to set a fixed seed value for reproducibility of simulations. 
Step 2: Start the Loop (for each episode): 

• Initial State: Choose a random combination of Kp, Ki, Kd . 
For each step: 

1. Select Action:  
o Use the Epsilon-Greedy strategy to select an action: 

▪ If a random number is less than ϵ\epsilonϵ, choose a random action (exploration). 

▪ Otherwise, select the best action based on the current Q-values (exploitation). 
2. Action Implementation:  

o Apply the selected PID parameters (Kp, Ki, Kd ) to the system. 
3. Simulate the System: 

o Create the feedback loop according to the system's transfer function and obtain the 
system response (e.g., step response). 

4. Calculate Reward: 
o Calculate the reward based on the system's performance metrics such as error, 

overshoot, and settling time. The reward can include penalties for these metrics. 
𝑟𝑒𝑤𝑎𝑟𝑑 = −𝑒𝑟𝑟𝑜𝑟 − 0.1 ∗ 𝑜𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 − 0.01 ∗ 𝑠𝑒𝑡𝑡𝑙𝑖𝑛𝑔_𝑡𝑖𝑚𝑒 

5. Update Q-Table: 
o Update the Q-value using the Bellman equation: 

 𝑄(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛) = 𝑄(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛) + 𝛼(𝑟𝑒𝑤𝑎𝑟𝑑 + 𝛾. max(𝑄(𝑛𝑒𝑥𝑡𝑠𝑡𝑎𝑡𝑒 , 𝑛𝑒𝑥𝑡𝑎𝑐𝑡𝑖𝑜𝑛)) − 𝑄(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛)) 

6. Transition to New State: 
o Determine the new state based on the selected PID parameters and continue the loop for 

the next step. 
7. Epsilon Decay: 

o Decrease the exploration rate (ϵ) at the end of each episode according to the decay factor 
(𝛾): 𝜖 = max (0.1, 𝜖. 𝑑𝑒𝑐𝑎𝑦_𝑓𝑎𝑐𝑡𝑜𝑟) 

8. Complete the Loop: 
o End the episode if the error, overshoot, and settling time are within specified limits. 

𝑒𝑟𝑟𝑜𝑟 < 0.005 && 𝑜𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 < 0.05 && 𝑠𝑒𝑡𝑡𝑙𝑖𝑛𝑔_𝑡𝑖𝑚𝑒 < 3  
Step 3: Result: Select the optimal Kp, Ki, and Kd  parameters from the Q-value with the best reward. 
Step 4: End of Loop: 

• Terminate the algorithm when the desired performance criteria are met. 

The Q-learning parameters were set in shown in Table 4. The ranges for the PID 
parameters utilized in the simulations were established as follows: Kp spans from 1 to 
20, while both Ki and Kd range from 0.1 to 2. Each parameter was divided into 200 
linearly spaced values for optimization. Additionally, a fixed seed value was used to 
ensure reproducibility, which was implemented using MATLAB's RNG function. 

Table 4. The parameter used in simulations for RL 

Parameter Reinforcement Learning (RL) 

Learning Rate 0.1 

Decay factor 0.9 

Exploration Rate  0.1 

Number of Episodes 1000 
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The step response of the closed-loop system optimized with RL is illustrated in Figure 5. 
The optimum PID parameters obtained by reinforcement learning using the above 
parameters and 100 and 123 as fixed seeds are Kp = 1.3819, Ki = 0.12864, Kd = 0.26231 
and Kp = 1.0955, Ki = 0.10955, Kd = 0.45327, respectively. In this case, the step response 
of the system is given in Figure 5. In Figure 5, Simulation I is obtained when the fixed 
seed is 100 and Simulation II is obtained when the fixed seed is 123. 

 

Figure 5. The simulation results of the pacemaker control system using RL. 

To better understand the difference between Reinforcement Learning and Genetic 
Algorithm, the step response of the closed-loop system generated using the PID 
parameters obtained with both algorithms is shown in Figure 6. Table 5 presents a 
comparison of the performance metrics of GA, RL, and the uncontrolled system. As can 
be seen from Table 5, the step response of the pacemaker controlled with the PID 
controller obtained with RL. 

The simulation results of the pacemaker control system in Table 5 show that the step 
response obtained with the control parameters optimized by both RL and GA have lower 
overshoot values compared to the system without controller. The overshoot value and 
the maximum peak value of the step response of the system controlled with PID 
parameters obtained by RL (1.14% and 72.83) are significantly lower than those of the 
system controlled with PID parameters obtained by GA (28.82% and 92.75). However, 
the step response of the system controlled with PID parameters generated by genetic 
algorithms shows much better performance for both rise time and settling time. 

Tablo 5. Comparison of the performance metrics 

Performance 

Metrics 

PID Controlled System 

with RL 

PID Controlled System with 

GA 

Uncontrolled System  

Rise Time (s) 0.1101 0.035707 0.1908 

Settling Time (s) 0.4555 0.342283 1.5414 

Overshoot (%) 1.1413 28.820775 34.6568 

Peak (bpm) 72.8217 92.750958 96.9529 
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Figure 6. Comparison of the step responses 

 

 

7. Conclusion 

In this study, the effectiveness of Genetic Algorithm (GA) and Reinforcement Learning 
(RL) in optimizing PID controller parameters for pacemaker applications was 
investigated. The simulation results demonstrate that both methods improved the step 
response of the system compared to the uncontrolled closed-loop system. However, their 
advantages and limitations vary significantly. 

Table 5 presents the performance comparison of the optimized PID parameters using 
both methods. The results indicate that RL-based tuning yielded significantly lower 
overshoot (1.14%) and peak value (72.82 bpm) compared to GA-based tuning (28.82% 
overshoot and 92.75 bpm peak value). This suggests that RL provides a more stable 
and accurate response, minimizing unwanted oscillations in heart rate regulation. 

However, GA-based tuning outperformed RL in terms of rise time and settling time. The 
rise time for GA (0.0357 s) was significantly lower than RL (0.1101 s), and the settling 
time was also shorter (0.342 s for GA vs. 0.455 s for RL). This implies that GA is more 
effective for achieving a rapid response, which may be beneficial in scenarios requiring 
immediate stabilization of heart rate. 

To further validate the effectiveness of these approaches, future studies could compare 
GA and RL with additional optimization techniques such as Particle Swarm Optimization 
(PSO) or Model Predictive Control (MPC). Additionally, real-time implementation and 
hardware validation on an actual pacemaker system would provide deeper insights into 
the practical feasibility of these methods. 
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The parameter settings for both GA and RL were carefully selected to ensure optimal 
performance in PID controller tuning. The following table summarizes the key parameters 
used in the simulations: 
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