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ABSTRACT 
An important global research topic is the analysis of the crop status, 

viability, and disease status of vegetables, fruits, and plants in agricultural 

areas. The Normalized Vegetation Difference Index (NDVI) is commonly 

used to analyze these conditions by using near-infrared (NIR) features in 

satellite images or multispectral cameras, such as Lansat-8, to produce 

NDVI maps. However, these methods have limitations such as high cost 

and difficulty in accessing images. To address these limitations, this study 

proposes a new neural network-based index called nNDVI, which uses a 

Multi-Layer Perceptron (MLP), an Artificial Neural Network (ANN), to 

convert the NDVI value from standard RGB images. The nNDVI allows 

for the analysis of vegetation in agricultural areas using low-cost RGB 

cameras. The MLP model was trained with R (red), G (green), and B 

(blue) values as input, and real NDVI values for the Swiss forest and Togo 

farm images were obtained with the MicaSenseAltum camera. The results 

of testing the model on the dataset showed an accuracy of 92.013% when 

comparing the nNDVI values obtained with the RGB cameras to the 

actual NDVI values. Thus, the proposed method demonstrates the ability 

to use nNDVI maps obtained using low-cost RGB cameras as an 

alternative to NDVI maps obtained using high-cost multispectral 

cameras. Overall, this study makes a valuable contribution to the field of 

agricultural research by presenting a cost-effective and accessible method 

for analyzing vegetation in agricultural areas. 
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1. Introduction 
 

Vegetation indices (VIs) are widely used in agricultural research, remote sensing, and environmental monitoring to assess the 

health, biomass, and vegetation coverage. These indices are mathematical combinations of reflectance values from different 

spectral bands that help distinguish vegetation from other objects such as soil, water, and built environments (Mckinnon & Hoff 

2017). Through the analysis of reflectance in the visible and near-infrared (NIR) bands, vegetation indices allow for the detection 

of plant stress, disease, water deficiency, and overall plant vigor, as summarized in Table 1. 
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Table1-Vegetative indices used for disease detection in spectroscopic studies (Sankaran et al. 2010) 

 

Vegetative Index Formula Reference 

Disease index (fD) 
𝑓𝐷 =

𝐼550 𝑛𝑚

𝐼550 𝑛𝑚 + 𝐼690 𝑛𝑚
 

Moshou & et al. (2005) 

Normalized difference vegetation index 

(NDVI) 
𝑁𝐷𝑉𝐼 =

𝑅𝑁𝐼𝑅 − 𝑅𝑅𝐸𝐷

𝑅𝑁𝐼𝑅 + 𝑅𝑅𝐸𝐷
 

Yang & Cheng (2001), Bravo et al. 

(2004), Yang et al. (2007), Naidu et al. 

(2009) 

Green normalized difference vegetation 

index (Green NDVI) 
𝐺𝑟𝑒𝑒𝑛𝑁𝐷𝑉𝐼 =

𝑅𝐺𝑅𝐸𝐸𝑁 − 𝑅𝑅𝐸𝐷

𝑅𝐺𝑅𝐸𝐸𝑁 + 𝑅𝑅𝐸𝐷
 

Yang et al. (2007) 

Water Band Index (IWB) 
𝐼𝑊𝐵 =

𝑅950 𝑛𝑚

𝑅900 𝑛𝑚
 

Xu et al. (2007) 

Soil-adjusted vegetation index (SAVI) 
𝑆𝐴𝑉𝐼 =

(𝑅𝑁𝐼𝑅 − 𝑅𝑅𝐸𝐷)(1 + 𝐿)

𝑅𝑁𝐼𝑅 + 𝑅𝑅𝐸𝐷 + 𝐿
 

L=0.5 

Yang et al. (2007) 

Photochemical reflectance index (PRI) 
𝑃𝑅𝐼 =

𝑅531 𝑛𝑚 − 𝑅570 𝑛𝑚

𝑅531 𝑛𝑚 + 𝑅570 𝑛𝑚
 

Huang et al. (2010, Naidu et al. (2009) 

Red-edge vegetation stress index 

(RVSI) 
𝑅𝑉𝑆𝐼 =

𝑅714 𝑛𝑚 + 𝑅752 𝑛𝑚

2 − 𝑅733 𝑛𝑚
 

Naidu et al. (2009) 

Water Index (WI) 
𝑊𝐼 =

𝑅900 𝑛𝑚

𝑅970 𝑛𝑚
 

Naidu et al. (2009) 

Visible atmospheric resistance index 

(VARI) 
𝑉𝐴𝑅𝐼 =

𝑅𝐺𝑅𝐸𝐸𝑁 − 𝑅𝑅𝐸𝐷

𝑅𝐺𝑅𝐸𝐸𝑁 + 𝑅𝑅𝐸𝐷 − 𝑅𝐵𝐿𝑈𝐸
 

Naidu et al. (2009) 

 
I: fluorescence intensity, R: reflectance, L: denotes a constant, which is related to the slope of the soil line in a feature-space plot. 

 

Normalized Difference Vegetation Index (NDVI) is one of the most widely used and studied vegetation indices (Rouse et al. 

1973). The NDVI has been used for many different purposes, such as spatial referencing, crop and climate monitoring, feature 

mapping, and various decision support systems (Panda et al. 2010; Abdulridha et al. 2018). 

 

Plants absorb the red band by chlorophyll and mostly reflect the Near-infrared (NIR) band. Thus, plants are separated from 

other materials such as soil, water, and objects (Rabetel et al. 2014). Based on this feature, the Normalized Difference Vegetation 

Index (NDVI) was calculated using the values in the red band and the NIR reflection to monitor plant health. Since the 1970s, 

the NDVI has been widely used in remote sensing to distinguish vegetation from other materials in satellite images (Sannier et 

al. 2002; Kumar et al. 2012). Usually, NDVI is obtained from images captured by a multispectral or hyperspectral camera that 

captures the correct red and NIR reflection of plants (Thenkabail et al. 2000; Deng et al. 2018; Wang et al. 2020). However, 

multispectral and hyperspectral cameras are heavy, expensive, and require professional operation to acquire images (Li et al. 

2014). 

 

NDVI analysis is commonly used in agriculture worldwide to monitor drought, predict agricultural productivity, detect if 

plants are sick, detect vegetation destruction in fire zones, etc.. An NDVI map of a terrain or location can be obtained from 

satellite images via remote sensing, or from an unmanned aerial vehicle equipped with a multispectral sensor operating at the 

NIR wavelength. Obtaining these values instantly from satellite images is costly and depends on weather conditions. Acquiring 

an NDVI map with a multispectral sensor integrated into a drone is a more effective method. However, multispectral cameras 

are much more expensive than standard RGB-based cameras, and the calibration processes take time to be ready for use. 

Currently, high-resolution conventional RGB cameras are available from different manufacturers, and most Unmanned Aerial 

Vehicles (UAVs) are equipped with these RGB cameras (Rabatel et al. 2011). Therefore, it is possible to come across studies in 

the literature suggesting different plant indices with approximately the same performance as an alternative to these expensive 

methods.  

 

Costa et al. (2020) estimated NDVI using RGB images with a genetic algorithm for three different crops (citrus, grapes, and 

sugarcane). Using this method, they obtained an average error of 0.052 and average error rate of 6.89%. Picon et al. (2022) 

proposed an end-to-end method for powerful vegetation segmentation via RGB images that can divide vegetation appropriately 

without the need for an infrared-capable camera, even under vegetation-damaged conditions. They used a convolutional semantic 

regression network to predict a virtual near-infrared channel from an RGB image (RGB2NIR). They obtained values of R=0.93, 

MAE = 0.05. Rabatel et al. (2011) replaced the near-infrared blocking filter in the NIR and R bands, which is required to calculate 

NDVI, with a low-pass filter. As a result of this change, they showed that NDVI can be achieved NDVI with an RGB-based 

camera. Wang et al. (2020) have integrated a NIR sensitive sensor into a Raspberry Pi with RGB camera. This integrated sensor 

is much more affordable than multispectral cameras. They achieved high performance (R2 = 0.96, RMSE = 0.0079) in estimating 

the real NDVI value and NDVI values using the proposed method. Houborg & McCabe (2016) used NDVI and RGB images from 

Planet Labs from Lansat-8 satellite images and converted them using cubist regression, which is a data mining method. Using 

this method, they obtained an R2 value of 0.97. Arai et al. (2016) found a high correlation between NIR reflectance and green 

colour reflection. Therefore, it has been suggested that it is possible to estimate the NIR reflectance using visible camera data. 
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They used green reflection instead of NIR to obtain the NDVI values. For plant phenotyping, indices to assess plant water status, 

phytosanitary status, or water stress and for disease detection, various vegetation indices (VIs) have been developed from data 

collected by UAV [26,27,28] (Ampatzidis et al. 2017; Abdulridha et al. 2019; Abdulridha et al. 2020). Ayhan et al. (2020) 

performed vegetation detection using CNN and DeepLabV3, which are deep learning methods. However, at the end of the 

experiments, they determined that it was more successful in detecting vegetation using computer vision and machine learning 

with NDVI, without training. In their study, Adamiak et al. (2022) discussed and validated the potential of using conditional 

generative adversarial networks (cGAN) to perform image-to-image translation that can predict NDVI from a single 

panchromatic orthoimage.  

 

Similarly, Davidson (2021) investigated the use of artificial intelligence, specifically a conditional Generative Adversarial 

Network (Pix2Pix), to predict NDVI and the Normalized Difference Red Edge Index (NDRE) from standard RGB aerial imagery. 

This approach offers a cost-effective solution by eliminating the need for expensive multispectral cameras, thus making 

vegetation index estimation more accessible for precision agriculture applications. 

 

There are four sections in the remainder of the study. In the materials and methods in the 2nd section, basic information about 

NDVI and MLP is provided. In the third section, information about the multispectral dataset used in the study and how the 

dataset is generated from these multispectral images for the MLP model is presented. The training and test results of the proposed 

MLP model are presented in section 4. In the last section, the general results of these studies are presented. 

 

2. Material and Methods 
 

This study proposes an MLP model to develop a new neural-network-based index (nNDVI) for predicting NDVI values from 

standard RGB images. The MLP model uses three inputs (R, G, and B) and produces one output (nNDVI) with a structure of 

three hidden layers. For model training and evaluation, MicaSenseAltum multispectral data including six spectral bands were 

used. A total of 40 multispectral images were employed for training and 10 separate images were used for testing. The model 

achieved a mean squared error (MSE) of 0.036, demonstrating high accuracy in NDVI estimation from the RGB data. 

 

The main contributions of this study are as follows: 

 

1- The development of a cost-effective and accessible neural-network-based index (nNDVI) to estimate NDVI using 

standard RGB cameras provides an alternative to expensive multispectral or hyperspectral systems. 

 

2- The high accuracy of the MLP model in predicting NDVI values highlights its potential for agricultural monitoring and 

vegetation analysis. 

 

In summary, this study presents a promising approach for NDVI estimation from RGB images, addressing the key limitations 

of current multispectral-based methods and enhancing accessibility for agricultural research and practice. 

 

2.1. Normalized Difference Vegetation Index (NDVI) 

 

A healthy plant absorbs red and blue light through chlorophyll and reflects green light. Therefore, a healthy plant appears green. 

Plants reflect NIR beams as well as green visible light, and the healthier the plant, the more NIR beams it will reflect. When a 

plant is dehydrated or stressed, its leaves reflect less near-infrared light. To understand the health of a plant, the reflection values 

of the Red and NIR rays should be compared. The Normalized Difference Vegetation Index (NDVI) measures the difference 

between near infrared and red light, giving information about the state of vegetation. The NDVI value was calculated using the 

NIR and Red bands of satellite images or multispectral cameras as follows [17]: 

 

𝑁𝐷𝑉𝐼 =
𝑅𝑁𝐼𝑅 − 𝑅𝑅𝑒𝑑

𝑅𝑁𝐼𝑅 + 𝑅𝑅𝑒𝑑

 
            (1) 

 

Where; RNIR represents the reflectance of the NIR band and RRed represents the reflectance of the red band. NDVI maps were 

created as a result of the analysis of NDVI values obtained from multispectral cameras. Satellite sensors, such as Landsat and 

Sentinel-2, have the required NIR and red bands. The NDVI values range from -1 to +1. There is no separate lower limit for each 

land cover type in this range. Negative NDVI values indicate the presence of water. NDVI values close to +1 most likely indicated 

green-leaved plants. NDVI is a standard method for measuring healthy vegetation. High NDVI values indicate that the plant is 

healthy, whereas low values indicate unhealthy conditions or problems in the plant. Based on the results of the NDVI analysis, 

the ranges shown in Figure 1 were used for plant phenotyping. 
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Figure 1- State of the plant according to the NDVI value ranges 

 

2.2. Multilayer Perceptron (MLP) 

 

Multilayer Perceptron (MLP) networks are a type of artificial neural network that includes at least one hidden layer between the 

input and output layers, enabling them to solve nonlinear problems, unlike single-layer perceptrons (Arıkan Kargı 2014). An 

MLP typically consists of an input layer, one or more hidden layers, and an output layer (Dhamija & Bhalla 2011). The input 

layer contains neurons representing independent variables, hidden layers capture nonlinear relationships, and the output layer 

generates the model’s predictions (Baranoff et al. 2000). 

 

MLPs operate through forward propagation, where input data pass through the network to generate an output, and 

backpropagation, where errors are propagated backward to adjust the weights of the model and minimize the prediction errors. 

Each hidden neuron applies a nonlinear activation function to the weighted sum of its inputs and bias term (Trenn 2008). Figure 

2 illustrates an MLP model with three inputs, three hidden layers, and one output. 

 
 

Figure 2- MLP model with three inputs and one output consisting of three hidden layers 

 

The working structure of multilayer perceptrons consists of two stages: forward computation, where the output of the network 

is calculated, and backward computation, where the weights are updated. The main purpose of forward calculation is to estimate 

the output value for the given input values and calculate the error using the target value (Murtagh 1991).  

 

2.3. A Neural Network-Based Normalized Difference Vegetation Index (nNDVI) 

 

In this study, an MLP model (Figure 3) was designed to estimate NDVI values from RGB images by introducing a new neural-

network-based vegetation index, nNDVI. The model uses red, green, and blue channel values as inputs and predicts the nNDVI 

value as the output. Pixel-level R, G, and B values from each image were used as input data to estimate the corresponding NDVI 

values. 
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Figure 3-A Proposed MLP model for NDVI estimation from RGB images 

 

The numbers of hidden layers and neurons in the proposed MLP model were determined using a trial-and-error approach. As 

shown in Figure 4, the final model consisted of three inputs (R, G, and B), three hidden layers, and one output (nNDVI). The 

hidden layers included eight, thirteen, and nine neurons. To evaluate the model, the RGB2NDVI dataset was split into 70% 

training, 15% validation, and 15% testing. 

 

 
 

Figure 4-MLP model with three inputs (R, G, and B) and one output (nNDVI) 

 

2.4. Evaluation metrics 

 

Evaluation metrics are important tools for measuring and evaluating model performance. In machine learning and statistics, 

various metrics are used to understand how well a model performs and compare different models. These metrics show how 

accurate the model's predictions are, how reliable they are, and what kinds of errors they make. In this study, RMSE and MSE 

evaluation metrics were used. 

 

2.5. MSE (Mean Squared Error) 

 

The MSE is the mean of the squared differences between the predicted and true values. In other words, we squared the prediction 

error for each data point and calculated the mean of these squares. The MSE measures the magnitude of the errors in the model's 
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predictions, and higher MSE values indicate worse performance of the model. It is sensitive to outliers because squaring 

magnifies the effects of large errors. The formula for MSE is as follows: 

 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

    (2) 

Where; n is the number of data points, 𝑦𝑖  is the predicted values, and 𝑦̂𝑖 is the actual values. 

 

2.6. RMSE (Root Mean Squared Error) 

 

RMSE is the square root of the MSE. It carries the same information as MSE but expresses the error values in their original units. 

This makes the RMSE easier to interpret because it shows the magnitude of the error on the scale of the target variable. For 

example, if you are making temperature forecasts, the RMSE indicates how many degrees the forecast error is, on average. 

RMSE is as sensitive to outliers as MSE. The RMSE is calculated as follows:  

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

  (3) 

 

2.7. Dataset 

 

2.7.1. RGB and multispectral dataset 

 

A raw image dataset from multispectral cameras was required for the proposed RGB2NDVI model. Multispectral cameras are 

neither ubiquitous nor inexpensive. To train and test this model, data obtained with a camera that captures images in the Red, 

Green, Blue and NIR bands of the same region are required. Therefore, a free dataset is obtained using Wingtra. In this study, 

we used data obtained from MicaSenseAltum, a multispectral camera available on the Wingtra website (Switzerland 2022).  

 

Two regional datasets were used from the multispectral data presented by Wingtra. In the first region, Switzerland, 50 

hectares of farmland were mapped using the WingtraOne Micasense Altum system. Maps were created with a GSD of 4.0 cm/px 

in the multispectral layers and 61 cm/px in the thermal LWIR layer (flight altitude of 90 m AGL). The bands of the sample image 

obtained from agricultural land in Switzerland are shown in Figure 5. The second region, Togo, was mapped using the 

WingtraOne MicasenseAltum system on a 210-hectare farm (Togo 2022). Maps were created with a GSD of 9.0 cm/px in 

multispectral layers. The bands of a sample image obtained from the farm field in Togo are shown in Figure 6. 
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Figure 5- Multispectral sample data (agricultural fields in Switzerland) 

 

 
 

Figure 6- Multispectral sample data (Farm in Togo) 
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By combining the red, green, and blue band values from the 5-channel images taken from the multispectral dataset, the RGB 

image is obtained, and the NDVI image is obtained using Eq.1 from the red and NIR band values. Figure 7 shows the RGB, raw 

NDVI, and colored NDVI images obtained from the multispectral dataset used in this study. 

 

 
 

Figure 7- RGB, raw NDVI, and colored NDVI images from multispectral data 

 

2.8. Creating the dataset 

 

In this subsection, the images in the dataset described in the data collection section are adapted to the use of the MLP model. 

Red, green, and blue band values were assigned to the input of the MLP model to determine the nNDVI value. A MATLAB 

script was written to generate a raw and colored NDVI map from RGB data. In model training, the NDVI data were calculated 

for each dataset and used as the target values in the model output. Figure 8 shows how to create a dataset to be used in the training 

and testing stages of the MLP model from multispectral data. 

 

A dataset was created for use in the training and testing stages of the proposed MLP model to predict NDVI data from 

standard RGB images. As can be seen in Figure 8, the size of each image added to the input dataset from the multispectral images 

taken was 1,228,800 (1280 × 960 × 1) pixels in total. This pixel value also indicates the size of each input data point to be 

assigned to the MLP model. Because the proposed MLP model has three inputs (R, G, and B), the RGB data were converted into 

a three-column matrix (1,228,800 × 3) with a script written in MATLAB. For each multispectral image added to the dataset, the 

RGB data were added to the input matrix as a three-column matrix. To obtain the output dataset, NDVI values were calculated 

using the red and NIR bands from the multispectral data.  

 
 

Figure 8- Input and output dataset creation scheme 

 

Table 2 summarizes the information from the RGB2NDVI dataset created for use in the proposed MLP model to estimate 

the NDVI value. Table 3 shows some sample values of 49,152,000 datasets consisting of 40 images used for training the model. 
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Table 2-RGB2NDVI dataset information for MLP model 

 

Number of images 
Input matrix size 

[Red; Green; Blue] 

Output matrix size 

[NDVI] 
Dataset Size 

1 image [1228800; 1228800; 1228800] [1228800] 1280x960x1=1228800 

40 images [49152000; 49152000; 49152000] [49152000] 1280x960x40=49152000 

 
Table 3- Some RGB2NDVI dataset pixel values 

 

Number of datasets Red value Green value Blue value Calculated NDVI value 

1 0.2017 0.1887 0.6624 0.4449 

. - - - - 

. - - - - 

816,341 0.2302 0.2927  0.5134 0.2684 

816,342 0.1821 0.2915  0.4856 0.3549 

816,343 0.2094 0.2905 0.5087 0.2741 

816,344 0.1796 0.2695 0.4890 0.3437 

. - - - - 

. - - - - 

49,152,000 0.2376 0.5601  0.3042 0.4338 

 

3. Results and Discussion 
 

In this section, the training results of the MLP model that estimated the NDVI values are presented. Then, tests of the model 

were carried out with different test images that were not included in the training set. The dataset prepared for training the MLP 

model consisted of 40 images of 1280x960 sizes. The red, green, and blue bands in this dataset are the inputs to the MLP model. 

The target NDVI values at the output of the model were obtained using the NIR and red band values in the dataset. 

 

There are several training methods for optimizing the parameters of a neural network model. In the first stage, we discuss the 

training methods. A comparison of the results of the standard neural network training methods for the nNDVI estimation model 

is presented in Table 4. The training methods used in this table are the Levenberg-Marquardt (LM), BFGS quasi-Newton (BFG), 

Resilient Backpropagation (RP), Scaled Conjugate Gradient (SCG), Conjugate Gradient with Powell-Beale restarts (CGB), 

Conjugate Gradient with Fletcher-Reeves (CGF), Conjugate Gradient with Polak-Ribie´re (CGP), One-Step Secant (OSS), 

Gradient Descent with momentum and adaptive learning rate (GDX). 

 
Table 4- Comparison results of training functions for the nNDVI estimation model 

 

Training Method   Test Accuracy 

 Rate (%) 

Training Method   Test Accuracy  

Rate (%) 

LM 92.013 CGB 91.870 

BFG 91.875 CGF 91.687 

RP 91.122 CGP 91.215 

SCG 91.770 OSS 91.416 

GDX 87.515   

 

To obtain the results in this table, the weight parameters of the proposed nNDVI estimation model were optimized using each 

training method, and then the accuracy rates of the model were determined for the test data. As shown in Table 4, the best 

accuracy rate was obtained for the LM (Levenberg-Marquardt) training method. As can be seen from these results, the LM 

method was used for parameter optimization of the proposed nNDVI estimation model. 

 

The correlations between the nNDVI predictive values obtained with the proposed MLP model and the actual NDVI values 

for training, validation, testing, and all phases are shown in Figure 9. 
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Figure 9- Regression curves of the nNDVI estimation model: R=92.017 for training, R=91.999 for validation, R=92.013 for 

testing, and R=92.012 for all stages 

 

In these figures, target labels represent the real NDVI data, output labels represent the output of the nNDVI estimation model. 

In these correlation results, data of 34,406,400 pixels were used for the training stage and 7,372,800 pixels for the validation and 

testing stages. However, due to the large dataset used, the interpretation of the regression plots became difficult. The graphical 

results of 44-pixel values selected randomly from the dataset used to compare the nNDVI estimation values and real NDVI 

values are shown in Figure 10. As can be seen from these figures, it is clearly seen that there is a good correlation between the 

nNDVI produced by the model estimating the NDVI data from the standard RGB image and the actual NDVI value calculated 

from the multispectral data. 

 

 
 

Figure 10- (a) Test comparison between nNDVI and NDVI, (b) MSE for each pixel, and (c) correlation between nNDVI and 

NDVI for 44 random pixels from an image in the dataset 

 

To evaluate the proposed MLP model for estimating the NDVI value, we used 10 different multispectral images from the 

dataset that were not used in the training phase. The output nNDVI data were obtained by applying the red, green, and blue bands 

of these images to the trained network model. The nNDVI results obtained for the three images from the multispectral dataset 
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are shown in Figure 11. These subfigures consist of the estimated raw nNDVI images, original raw NDVI images, original 

colored NDVI images, and the estimated colored nNDVI images for the three test images. To measure the performance of the 

nNDVI estimation model in the test results, the Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) were 

calculated for each test image. The results are summarized in Table 5.  

 

  
 

Figure 11- Comparison test results of nNDVI estimated from RGB and NDVI from multispectral data 

 

Table 5- MSE and RMSE results of the test images 

 

Test No MSE RMSE 

Test #1 0.0532 0.2307 

Test #2 0.0356 0.1888 

Test #3 0.0258 0.1607 

Test #4 0.0260 0.1611 

Test #5 0.0347 0.1862 

Test #6 0.0180 0.1342 

Test #7 0.0359 0.1895 

Test #8 0.0277 0.1664 

Test #9 0.0794 0.2817 

Test #10 0.0236 0.1537 

 

The mean MSE value of the nNDVI estimation model for the ten test images was 0.036, and the mean RMSE value was 

0.1853. The error metrics in this table show that the proposed neural network-based index (nNDVI) to estimate NDVI data from 

RGB data can be a helpful alternative to multispectral cameras. 
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3.1. Comparison with existing NDVI estimation methods 

 

The proposed neural network-based index (nNDVI) was compared with existing approaches in the literature to estimate the 

NDVI from RGB images. Costa et al. (2020) used a genetic-algorithm-based method and achieved an average error of 0.052 and 

an error rate of 6.89%. Although effective, genetic algorithms require high computational effort, whereas our MLP-based model 

achieved a lower mean squared error (MSE) of 0.036 and 92.013% accuracy, offering a more efficient solution. 

 

Rabatel et al. (2014) estimated NDVI by modifying camera filters to capture NIR data indirectly. However, this approach 

requires hardware modifications, which limit its practical use. In contrast, our model works directly with unmodified RGB 

images, thereby increasing its applicability in real-world agricultural scenarios. 

 

Additionally, Picon et al. (2022) proposed a deep convolutional neural network (CNN) to predict NIR channels from RGB 

images, achieving a correlation (R) of 0.93 and an MAE of 0.05. Although successful, CNN-based models are computationally 

demanding and require large datasets. Our simpler MLP model achieved comparable accuracy without such requirements, 

making it more practical for field applications. 

 

Finally, Houborg & McCabe (2016) used cubist regression to estimate NDVI from RGB images with R² = 0.97, but this 

method often requires manual tuning. In contrast, MLP models, such as ours, learn complex patterns automatically from the data. 

 

As a result, the proposed nNDVI model provides a cost-effective, accessible, and accurate alternative to existing methods for 

estimating NDVI from RGB images, making it particularly suitable for agricultural monitoring where low-cost and efficient 

solutions are required (Rabatel et al. 2011; Houborg & McCabe 2016; Costa et al.2020; Picon et al. 2022). 

 

3.2. Real-time applicability and environmental factors 

 

The feasibility of deploying the proposed nNDVI model in real-time drone applications depends on the computational efficiency 

and processing time. In drone-based remote sensing, the onboard processing capabilities are often limited, necessitating 

lightweight models or external ground-based processing. Our nNDVI model, based on MLP, has a relatively low computational 

cost compared to deep learning architectures, making it suitable for real-time or near-real-time applications. 

 

To assess real-time feasibility, we evaluated the average processing time of the nNDVI estimation on a workstation equipped 

with an Intel Core i7 processor and an NVIDIA RTX 3060 GPU. The model processed a 1280×960 image in approximately 1 s. 

For embedded systems such as NVIDIA Jetson or Raspberry Pi, the processing time is expected to be higher owing to hardware 

constraints; however, further optimizations, such as model quantization or GPU acceleration, could improve performance. Future 

work will focus on directly deploying and testing the model on UAV platforms to validate its operational efficiency under field 

conditions. 

 

Another critical factor affecting the reliability of nNDVI is the effect of varying lighting conditions and shadows. Unlike the 

traditional NDVI, which utilizes near-infrared reflectance, RGB-based indices are more susceptible to illumination changes. In 

outdoor environments, variations in sunlight intensity, cloud cover, and object shadows can lead to inconsistencies in RGB 

values, thereby affecting nNDVI predictions. To mitigate these effects, preprocessing techniques, such as histogram equalization, 

white balance correction, or adaptive exposure adjustments, can be applied before feeding the images into the model. 

Additionally, integrating multiple images captured under different lighting conditions during training can improve the robustness 

of the model. 

 

Future research should focus on incorporating shadow detection and compensation algorithms to further enhance the 

reliability of the nNDVI under dynamic environmental conditions. Implementing real-time adjustments based on ambient 

lighting sensors or high dynamic range (HDR) imaging techniques could also provide more stable estimations across different 

times of the day and varying weather conditions. 

 

4. Conclusions 
 

The use of Normalized Difference Vegetation Index (NDVI) maps for crop assessment, viability, and disease detection is a well-

established agricultural research topic. However, generating these maps using methods such as satellite images or multispectral 

cameras poses several challenges, including high cost and limited accessibility. Furthermore, the effectiveness of remote-

sensing-based methods is often affected by adverse weather conditions, such as cloud cover. As an alternative, multispectral 

cameras mounted on drones or Unmanned Aerial Vehicles (UAVs) have been utilized to create NDVI maps in agricultural areas. 

However, the cost of these camera systems is still comparatively high, limiting their widespread adoption. 

 

To address this issue, a new neural network-based index (nNDVI) is proposed in this study, which utilizes a Multi-Layer 

Perceptron (MLP) model with three hidden layers to estimate NDVI values from RGB images. The proposed nNDVI was shown 

to accurately predict NDVI values obtained from multispectral cameras in ten test images taken from MicaSenseAltum, with an 
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average mean squared error (MSE) of 0.036 and root mean squared error (RMSE) of 0.1853. This new method allows the 

production of NDVI maps of agricultural lands using low-cost RGB cameras mounted on drones. 

 

Future research should aim to develop pre-trained Convolutional Neural Network (CNN) models for the early detection of 

rice plant diseases by converting images of rice plant leaves taken with an RGB camera to nNDVI values. The proposed nNDVI 

estimation model with a standard RGB camera can serve as an alternative to NDVI data for various agricultural products. 

Furthermore, the estimation of NDVI from RGB data can be further improved in future studies by exploring alternative models 

and methods. 
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