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Abstract

In this study, the addition of samarium (Sm) and boron (B) to indium oxide (In,Os3) thin
films at rates of 5%, 10%, and 20% was investigated, and radiation properties were determined
using the Monte Carlo N-Particle (MCNP6.2) simulation program. The reason for choosing In,O3
in the study is that In,Os3 has high chemical stability, optical transparency, excellent electrical
properties, and semiconductor properties. It is also widely used in various applications, including
displays, solar cells, and sensors. Since In,Os is used in sensors, it is aimed to be investigated for
integration into radiation detector systems. At this point, it will provide a new idea. The simulation
results obtained were compared with the values in the National Institute of Standards and
Technology (NIST-XCOM) database, and it was observed that the simulation gave efficient
results. According to the simulation analyses, it was observed that Sm provided better radiation

shielding properties than B.
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Samaryum ve Bor Katkili indiyum Oksit ince Filmin Radyasyon Karakteristiklerinin

Simiilasyon Yontemiyle Belirlenmesi
Oz

Bu ¢alismada, indiyum oksit (In,Os3) ince filmine %5, %10 ve %20 oranlarinda samaryum
(Sm) ve bor (B) katkilanarak radyasyon oOzellikleri Monte Carlo N-Particle (MCNP6.2)
simiilasyon programiyla belirlenmeye calisilmistir. Calismada In,Os’lin secilmesinin sebebi;
In,O3’1in yiiksek kimyasal kararliliga, optik seffafliga, miikemmel elektriksel 6zelliklere ve yari
iletken Ozelliklere sahip olmasidir. Aym1 zamanda ekran, giines pilleri ve sensorler gibi bircok
alanda yaygin olarak kullanilmaktadir. InoO3’lin sensorlerde kullanildigi i¢in radyasyon dedektdr
sistemlerine entegrasyonu amaciyla arastirilmasi amaglanmaktadir. Bu noktada yeni bir fikir
sunmus olacaktir. Elde edilen simiilasyon sonuglar1 Ulusal Standartlar ve Teknoloji Enstitiisii
(NIST-XCOM) veri tabanindaki degerlerle karsilagtirilarak yapilan simiilasyonun verimli
sonuglar verdigi gozlenmistir. Simiilasyon analizlerine gére Sm’nin B’den daha iyi radyasyon

zithlama 6zelligi kazandirdigi gézlenmistir.
Anahtar Kelimeler: Bor; Ince film; Indiyum oksit; MCNP; Radyasyon; Samaryum.
1. Introduction

Todays, it is important to minimize the effects of radiation in environments where radiation
is used. For this purpose, there are intensive studies on technological developments in various
sectors, such as medicine, materials science, and energy, in order to protect against radiation or
to utilize radiation more efficiently. One of these is the design and improvement of thin films. In
some studies, different elemental additives can be used to improve the physical properties of thin
films. Radiation and particles, including electromagnetic waves and transmissions from nuclear
inter-level transitions, are a pervasive and fundamental aspect of our time. These radiation and
particles are emitted from a variety of sources, both natural and artificial, and play a crucial role
in people's lives, particularly in scientific, industrial, and medical practices. The need for
protection has necessitated extensive research into materials that can reduce the harmful effects
of radiation. onizing radiation, with its ability to remove tightly bound electrons from atoms, can
also cause unwanted damage to the cell structures of living organisms. The necessity to protect
against these potential hazards has led to the research and development of materials that function

as shielding [1-4].

Natural sources of ionizing radiation include external cosmic rays. In addition, terrestrial

radiation from the Earth's crust, radioactive isotopes in the environment, and artificial sources
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used for diagnostic purposes in medicine are also in this category [5]. On the other hand, industrial
processes and nuclear energy production also involve the use of ionizing radiation. Of course, in
energy production, concrete and lead are used for shielding structures. However, transparent
materials with high MAC (mass attenuation coefficient) (non-toxic like lead) are of interest to
researchers [6—9]. Glass compositions play a very important role in various industrial
applications, especially in the field of radiation protection due to specific properties of the
materials [10]. One of them is the MAC values for glass compositions, which are crucial for
optimizing glass in radiation protection applications [11]. On the other hand, numerous questions
remain unanswered regarding the use of transparent materials for this purpose, and further studies
are needed in these areas. This study aims to utilize glass as an alternative and environmentally

friendly material for gamma radiation shielding applications.

Indium oxide (In,0;), studied as a thin film, is an n-type semiconductor with a bandgap of
3.5-3.7 eV [12]. It also has high electrical conductivity and outstanding optical transparency [13].
In,O; thin films can be synthesized using various techniques, including sol-gel dip coating, RF
and DC sputtering, chemical vapor deposition, and spray pyrolysis [14]. Of these, the spray
pyrolysis method is easy, low-cost, and suitable for industry as large areas can be coated with this
method. In addition, the phase, size, and morphology of the thin film can be controlled [15]. It is
crucial to obtain ultrafine powders with high purity, high porosity, and a large surface area through
spray pyrolysis [16]. The electrical resistance and optical transmission of this film have been
studied [17]. The physical properties of In,Os thin film have been reported to be extensively
improved by iron doping [18]. In,O5 is widely preferred in thin film designs due to its high
semiconductor properties. At the same time, some physical properties can be created by doping
various elements to In,Os. In thin film designs, it is also important for it to be transparent for use
in sensors and detectors. For example, molybdenum element is doped into In,O; to increase its

conductivity and transparency properties [19].

Various elements are being tested to increase the physical properties of devices used in
nuclear technologies. One of these is Sm. Since Sm is a high-purity element, it is the focus of the
studies [20]. Stainless steels are also used for radiation protection in nuclear applications.
According to the researches, Sm doping has also been tried to strengthen the shielding properties
of stainless steel used in radiation shielding processes. The results indicate that Sm has positive
contributions to radiation shielding [21]. There are also studies on the radiation properties of Sm-
doped compounds. In one of these studies, radiation permeability coefficients were investigated
Sm doped zinc bismuth silicate. The change in radiation shielding properties under the influence

of silica at low photon energies was investigated [22].
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Another element widely used in research on the radiation properties of compounds is B.
Boron has a positive effect in slowing down radiation types such as thermal neutrons. Therefore,
when examining studies on B-containing compounds, it is evident that high performance is
achieved in terms of radiation shielding [23]. When we examine the studies investigating the
radiation properties of alloys composed of iron and B, it has been observed that there is a positive
correlation between the photon shielding property and the amount of B. This shows that B-

containing samples can be used for radiation shielding [24].

The main objective of this study is to determine the radiation protection properties of In,O3
thin films by obtaining other parameters, such as MAC, LAC, and HVL for different types of
glasses produced by doping In,Oj3 thin films with different proportions of Sm and B at 5%, 10%
and 20%. The reason for choosing In»Ojs is that it has high chemical stability, optical transparency,
excellent electrical properties, and semiconductor properties. Due to these properties, it offers the
opportunity to be used in nuclear applications. Sm, one of the elements doped in In,Os, provides
a high density to In»Os;. At the same time, it increases its high-purity feature. The other element

doped in In,Os3, B, contributes to the increase in radiation shielding feature.
2. Materials and Methods

In this study, Indium oxide doped with different ratios of Sm and B was investigated as a
radiation shielding material. The individual doping rates of Sm and B materials were decided as

5%, 10%, and 20%. The values of the related shielding materials are given in Table-1.

Table 1: Percentage ratios and densities of the samples.

Sample Name | Doped Material | Main Material | Density (g/cm”3)
Sm (%) In203 (%) (g/cm”3)
sml 0 100 7.13
sm2 5 95 7.12
sm3 10 90 7.09
sm4 20 80 7.00
Sample Name | Doped Material | Main Material | Density (g/cm”3)
B (%) In203 (%) (g/cm”3)
bl 0 100 7.13
b2 5 95 6.92
b3 10 90 6.70
b4 20 80 6.30

The Monte Carlo N-Particle (MCNP6.2) simulation program, a Monte Carlo-based tool,
was utilized in this study. MCNP is a radiation transport program that is frequently used and

preferred in radiation modeling in the scientific world. Input files were prepared, and calculations
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were performed using the experimental setup shown in Fig. 1. The experimental setup consists of
a source emitting radiation at various energy levels (0.284 MeV, 0.347 MeV, 0.511 MeV, 0.662
MeV, 0.826 MeV, 1.17 MeV, 1.33 MeV, and 2 MeV), 0.0002 cm-thick thin film samples, and a
detector system that detects gamma rays passing through the samples. f4 (Average photon flux
n/cm2) was used for the detector tally card. The simulation was performed with 10 million stories

for each sample and each energy value.

Radiation source Thin Film Sample Detector

|

f

= 17
m@’

=——"

Collimator

Collimator

Figure 1: MCNP experimental setup.

The Linear Attenuation Coefficient (LAC) (Eqn. (2)), Mass Attenuation Coefficient
(MAC) (Eqn. (3)), Mean Free Path (MFP) (Eqn. (4)), Half Value Layer (HVL) (Eqn. (5)) and
Tenth Value Layer (TVL) (Eqn. (6)) values of each sample were calculated according to the Beer-
Lambert Law stated in Eqn. (1) using the data in the outputs obtained from the simulation [25].

These equations represent the radiation characteristics of the respective samples [26].
I =Ije H* (1)

Where Iy is the intensity from the radiation source, / is the intensity detected by the detector, x is

the sample thickness and u is the LAC.

LAC = u (1/cm) 2)
_uy (m
MAC ="/, e 3)
Here pis the density of the sample.
mrp == 4
=TIc = H(Cm) 4
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In(2) In(2
HVL = ILlj C) - n;i ) (em) )

In(10) B In(10)

TVL =
LAC

(cm) (6)

The LAC, MAC, MFP, HVL, and TVL values were compared with the NIST-XCOM data
using the data from the simulation outputs [27]. This study is simulation-based and experimental
results are not available. Therefore, to verify the accuracy of the simulations, the results obtained
were compared with NIST-XCOM values. The NIST-XCOM program is utilized for calculating
mass attenuation coefficients and cross sections of interaction for different elements, compounds,
and mixtures in the energy range 1 keV—-100 GeV [28,29]. According to the comparison results,

the simulation was found to be efficient.
3. Results and Discussion
3.1. Results for Sm Doped In,O; Samples

The LAC, MAC, MFP, HVL and TVL results obtained using MCNP6.2 simulation

program for Sm doped In,Os thin film are given in Figs. 2-6, respectively.

Encrgy (MeV) | smi LAC (ls/r:;) p— i Linear Attenuation Coefficent
0.284 117824 | 1.17824 | 1.21751 | 1.25679 15
0.347 0.94257 | 0.94257 | 0.94257 | 098184 | &
0511 | 066763 | 0.66763 | 0.66763 | 066763 | = e
0.662 0.54981 | 0.54981 | 0.54981 | 0.54981 | & 05 —e—sm2
0.826 0.47126 | 0.47126 | 0.47126 | 0.47126 . sm3
117 0.39271 | 0.39271 | 0.39271 | 0.39271 3 e 3 18 5 ,g —a—smd
1.33 0.35344 | 0.35344 | 0.35344 | 0.35344 Energy (MeV)
2 0.31417 | 031417 | 0.2749 | 0.2749

Figure 2: LAC values of Sm doped In2O3 samples.

Encrgy (MeV) sm;wAc(C::i/g) 3 pr Mass Attenuation Coefficent
0.284 0.16525 | 0.16548 | 0.17172 [ 0.17726 | _ 02
0.347 01322 | 013238 | 0.13294 | 0.13848 | = 015
0.511 009364 | 0.09377 | 009417 | 009417 | E o et
0.662 007711 | 0.07722 | 0.07755 [ 0.07755 | < /.o —t—sm2
0.826 0.0661 | 0.06619 | 0.06647 | 0.06647 | = . sm3
117 0.05508 | 0.05516 | 0.05539 | 0.05539 0 . ) P 5 ,g —e—smd
1.33 0.04957 | 0.04964 | 0.04985 | 0.04985 Energy (MeV)
2 0.04406 | 0.04412 | 0.03877 | 0.03877

Figure 3: MAC of Sm doped In203 samples.
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MFP (cm)
Energy (MeV) sm1 sm2 sm3 sm4 Mean Free Path
0.284 0.84873 | 0.84873 | 0.82135 | 0.79567 4
0.347 1.06093 | 1.06093 | 1.06093 | 1.01849 [ = 3 I
0.511 1.49783 | 1.49783 | 1.49783 | 149783 | =<, :
0.662 181881 | 1.81881 | 181881 | 181881 | £ | —s—sm2
0.826 212197 | 2.12197 | 2.12197 | 2.12197 . —&—sm3
1.17 254638 | 2.54638 | 2.54638 | 2.54638 05 ) 1c 5 ,g  —e—smd
1.33 2.82932 | 2.82932 | 2.82932 | 2.82932 Energy (MeV)
2 3.183 3.183 | 3.63773 | 3.63773
Figure 4: MFP of Sm doped In203 samples.
HVL (cm)
Energy (MeV) smil sm2 sm3 sm4 Half Value Layer
0.284 0.58829 | 0.58829 | 0.56931 | 0.55152 3
0.347 0.73538 | 0.73538 | 0.73538 | 0.70596 |
E 2 ——sm1
0511 1.03822 | 1.03822 | 1.03822 | 1.03822 | ©
0.662 126071 | 126071 | 126071 | 126071 | = 1 —t—5m2
0.826 1.47084 | 1.47084 | 1.47084 | 1.47084 . —&—sm3
117 1.76502 | 1.76502 | 1.76502 | 1.76502 05 N e ) sg —e—smé
1.33 196114 | 196114 | 1.96114 | 196114 Energy (MeV)
2 2.20629 | 2.20629 | 2.52148 | 2.52148
Figure 5: HVL of Sm doped In2O3 samples.
TVL (cm)
Energy (MeV) sml sm2 sm3 sm4 Tenth Value Layer
0.284 1.95427 | 1.95427 | 1.89122 | 1.83211 10
0.347 244289 | 2.44289 | 2.44289 | 2.34516 . 8
0511 344888 | 3.44888 | 3.44888 | 3.44888 | o °© et
0.662 418797 | 418797 | 4.18797 | 418797 | = ; —4—sm2
0.826 438601 | 4.88601 | 4.88601 | 4.88601 . —&—sm3
117 5.86326 | 5.86326 | 5.86326 | 5.86326 . ) ic ) ,g —e—smd
1.33 6.51476 | 6.51476 | 6.51476 | 6.51476 Energy (MeV)
2 7.32913 | 7.32913 | 8.37618 | 8.37618

Figure 6: TVL of Sm doped In2O3 samples.

When the LAC values of the Sm-doped In,O3 samples were examined, it was observed that
the LAC values increased as the doping ratio increased. Only at an energy of 2 MeV, a deviation
was observed in the LAC values of the sm3 and sm4 coded samples. For this reason, Sm-doped
In,0; thin films do not give the desired results at very high energies. When the obtained results
are compared with XCOM, the fact that the error rates are higher than the others support this
situation. When the MFP values are examined, it is seen that the values deviate as the doping ratio
increases at high energies. Since the MFP values of the samples express the amount of radiation
passing through the substance without interacting, these results show that Sm-doped In,Os thin

films are not efficient at high energies.
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3.2. Results for B Doped In,Os Samples

LAC, MAC, MFP, HVL and TVL results obtained using MCNP6.2 simulation program for
B doped In»Os thin film are given in Figs. 7-11, respectively.

LAC (1/cm)

Energy (MeV) bl b2 b3 b4
0.284 1.17824 | 1.09968 | 1.0604 | 0.94257
0.347 0.94257 | 0.90329 | 0.82474 | 0.78546
0.511 0.66763 | 0.62836 | 0.62836 | 0.54981

Linear Attenuation Coefficent

-
in

e b 1

LAC (1/cm)

0.662 0.54981 | 0.51053 | 0.51053 | 0.47126 =e=hz
0.826 0.47126 | 0.47126 | 0.43199 | 0.43199 . —+—b3
1.17 0.39271 | 0.39271 | 0.35344 | 0.35344 o o0s s .5 5 55 —e—ba
1.33 0.35344 | 0.35344 | 0.35344 | 0.31417 Energy (MeV)
2 0.31417 | 0.2749 | 0.2749 | 0.2749

Figure 7: LAC of B doped In2O3 samples.

Energy (MeV) MMAC(m:;ZIg) w3 o4 Mass Attenuation Coefficent
0.284 0.16525 | 0.15891 | 0.15827 | 0.14961 | _ ©2
0.347 0.1322 | 0.13053 | 0.12309 | 0.12468 §o.1s -
0.511 0.09364 | 0.0908 | 0.09378 | 0.08727 | E o
0662 | 007711 0.07378 | 0.0762 | 0.0748 | 9 .. . b
0.826 00661 | 00681 | 0.06248 | 0.06857 | = ; ——b3
1.17 0.05508 | 0.05675 | 0.05275 | 0.0561 o s ) s 5 .5 —e—ba
1.33 0.04957 | 0.05108 | 0.05275 | 0.04987 Energy (MeV)
2 0.04406 | 0.03972 | 0.04103 | 0.04363

Figure 8: MAC of B doped In2O3 samples.

MEP (cm)

Energy (MeV)| bl b2 b3 b4 Mean Free Path
0.284 0.84873 | 0.90936 | 0.94304 | 1.06093 4
0.347 1.06093 | 1.10707 | 1.21251 ) 1.27314 | & 3 / .
0.511 1.49783 | 1.59145 | 1.59145 | 1.81881 | =
0.662 1.81881 | 1.95873 | 1.95873 | 2.12197 | %, ——
0.826 212197 | 2.12197 | 2.31488 | 2.31488 . —+—b3
1.17 2.54638 | 2.54638 | 2.82932 | 2.82932 0 . S . 5 55 —A—bs
1.33 2.82932 | 2.82932 | 2.82932 | 3.183 Enerzy (MeV)
2 3.183 | 3.63773 | 3.63773 | 3.63773

Figure 9: MFP of B doped In2O3 samples.

HVL (cm)

Energy (MeV)] bl b2 b3 ba Half Value Layer
0.284 0.58829 | 0.63032 | 0.65367 | 0.73538 3
0347 | 0.73538 | 0.76736 | 0.84045 | 0.88247 gz'z -
0.511 1.03822 | 1.10311 | 1.10311 | 1.26071 | = 45
0.662 1.26071 | 1.35769 | 1.35769 | 1.47084 | = 1 —t—hz
0.826 1.47084 | 1.47084 | 1.60455 | 1.60455 02 ——b3
1.17 1.76502 | 1.76502 | 1.96114 | 1.96114 0 os . . 5 .5 —e—ba
1.33 196114 | 1.96114 | 1.96114 | 2.20629 Energy (MeV)
2 2.20629 | 2.52148 | 2.52148 | 2.52148

Figure 10: HVL of B doped In2O3 samples.
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TVL (cm)

Energy (MeV)| bl b2 b3 ba Tenth Value Layer
0.284 185427 | 2.09387 | 2.17143 | 2.4428% 10
0.347 244289 | 2.54911 | 2.79191 | 2.93151 3 8 — b
0.511 3.44888 | 3.66445 | 3.66445 | 418797 g °
0.662 418797 | 451012 | 451014 | 2488601 | £ ° S=—ha
0.826 488601 | 4.88601 | 5.33021 | 5.33021 ; b3
117 5.86326 | 5.86326 | 6.51476 | 6.51476 0 05 1 15 2 25 —e—bs
1.33 6.51476 | 6.51476 | 6.51476 | 7.32913 Energy (MeV)
2 7.32913 | 8.37618 | 8.37618 | 8.37618

Figure 11: TVL of B doped In2O3 samples.

When the LAC values of the B-doped In,O3 samples were examined, it was observed that
the LAC values decreased as the B ratio increased. This situation demonstrates that doping with
B did not have a positive effect on the radiation properties. When compared with the XCOM
values, it was seen that the error rates were below 5%. This situation demonstrates that the
simulation outputs were not erroneous and that doping B into In,Os did not contribute to the
radiation shielding properties. Similarly, when the MFP values were examined, it was seen that

the values for each sample at each energy increased.

According to the results obtained in this study, if a comparison is desired between Sm and

B, it can be said that Sm is more efficient in radiation shielding due to its higher density than B.
4. Conclusion

In this simulation-based study, an attempt was made to obtain data for the most frequently
used energy values in nuclear applications. It can be considered a study that is recommended for
glass forms suitable for use in nuclear applications. When the MAC values obtained in the study
are compared with the NIST-XCOM data, the difference rates do not exceed 5%. These difference
rates indicate that the simulation is efficient (available upon request). In this study, Sm has a
higherdensity when compared with B. Therefore, it is seen that Sm is more efficient in terms of
radiation shielding. Additionally, Sm can be preferred for glass components worldwide due to its
abundant presence. Upon examining the literature, it becomes apparent that numerous studies
have been conducted on samples in glass form. The study conducted is simulation-based only and
cannot be compared with experimental data. At this point, experimental studies can be
recommended for Sm-doped In,O; glass samples. In addition, experimental studies of other

elements with high densities, electrical and optical properties, such as Sm, are also recommended.
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