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1. Introduction  
The Maximum Clique Problem (MCP) involves 
identifying the largest complete subgraph in a given 
graph, representing the largest set of nodes that are 
directly connected to each other. These fully connected 
subsets are widely utilized in various domains, including 
social network analysis, bioinformatics, chemical 
information systems, and communication networks [1]. 
For instance, in social networks, the largest group of 
individuals who all know each other forms a clique, 
representing mutual friend groups [2]. Due to the lack of 
general solutions across different graph types in the 
literature, MCP is classified as a challenging NP-
complete problem [3]. 

As an NP-complete problem, MCP solutions often rely 
on heuristic algorithms or approximation methods. 
Additionally, certain problem formulations within the 
domain of clique problems focus on identifying specific 
subsets, such as finding the largest clique, determining 
the largest weighted clique in weighted graphs, 
identifying all maximal cliques, or verifying whether a 

graph contains cliques above a certain size. These 
problems necessitate determining the maximum clique 
in many applications and graph types. 

Numerous methods have been proposed in the literature 
to solve the MCP [1]. However, these approaches often 
fail to produce effective solutions for large-scale graphs 
or to provide general solutions applicable to diverse 
graph types. Due to its complexity and intractability on 
large and complex graphs, MCP remains NP-complete. 
Consequently, heuristic or approximate solutions are 
commonly employed, though these methods may 
produce suboptimal or non-optimal results. Furthermore, 
these solutions are often influenced by the algorithm’s 
performance, as well as the structure and type of the 
graph. Some methods may require extensive memory 
usage or lack scalability, particularly when applied to 
large datasets. Exact methods, while offering precise 
solutions for specific graph types, are typically ineffective 
across diverse graph structures [4]. As such, MCP 
solutions are often tailored to specific use cases and 
graph structures, highlighting the need for scalable and 
effective approaches applicable to diverse graph types. 
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In this study, we demonstrate the effectiveness of our 
previously proposed maximum clique method [5] on 
benchmark graphs and random graphs generated using 
various models. The proposed method begins by 
computing the complement of the original graph. 
Subsequently, the maximum independent set is 
determined in the complement graph using the Malatya 
Independent Set Algorithm (MISA), which is based on 
the Malatya Centrality Algorithm (MCA). The maximum 
independent set identified in the complement graph is 
then used to derive the maximum clique in the original 
graph, as the nodes in the maximum clique correspond 
to those of the maximum independent set in the 
complement graph. 

To validate the proposed method, tests were first 
conducted on DIMACS benchmark graphs widely cited 
in the literature. Additionally, to assess the method’s 
performance on unpredictable graphs, tests were 
performed on random graphs of varying complexity and 
density generated using different models. The 
successful results obtained from tests on DIMACS 
benchmark graphs and random graphs of varying 
densities confirm that the proposed method provides 
effective solutions for these graph types. 

This paper is organized as follows: Section 2 reviews the 
literature on MCP. Section 3 details the proposed 
method. Section 4 presents evaluations and 
experimental results. Finally, Section 5 discusses the 
conclusions and implications of this study. 

2. Literature 
Numerous methods have been proposed in the literature 
to solve the MCP. These methods can generally be 
categorized into three main classes: exact algorithms, 
heuristic methods, and approximation algorithms [6]. 
Exact algorithms, while effective for specific types of 
graphs, often fail to provide efficient solutions across 
diverse graph types. Techniques such as backtracking 
and branch-and-bound, for example, produce precise 
solutions for small to medium-sized graphs but may 
struggle with large and complex graphs. Heuristic 
algorithms, on the other hand, leverage techniques such 
as local search, tabu search, and genetic algorithms, 
enabling them to handle large-scale graphs effectively. 
However, the performance of heuristic algorithms is 
often dependent on parameters such as the number of 
iterations, and the resulting solution set can vary across 
runs of the algorithm. Approximation algorithms are 
typically employed to reduce computational costs for 
large graphs, trading off some accuracy for scalability. 
The choice of solution approach for MCP depends on the 
specific graph structures and application requirements. 
While exact algorithms guarantee accurate results, 
heuristic and approximation methods offer practical 
solutions for large-scale problems. Consequently, 
different solution strategies are suitable for varying 
application domains and resource constraints. 

For instance, Wang et al. proposed two efficient local 
search algorithms for the maximum weighted clique 

problem, utilizing strong configuration checking and 
perturbation strategies. Their methods achieved notable 
success on benchmark graphs such as DIMACS and 
BOLISH [1]. Similarly, Peng et al. developed a hybrid 
artificial bee colony algorithm for solving the maximum 
semi-clique problem. Their experimental results showed 
that the algorithm improved the best-known solutions for 
46 out of 112 problem instances and matched the best 
solutions for 63 instances, demonstrating its 
effectiveness [7]. Moreover, Yu et al. introduced a local 
density-based heuristic algorithm designed for large-
scale applications, which outperformed traditional 
methods in terms of accuracy and computational speed 
[4].  

Pattabiraman and Patwary introduced an algorithm 
leveraging innovative pruning techniques to efficiently 
identify maximum cliques in large sparse graphs [8]. 
Douik et al. proposed a framework incorporating various 
optimal and heuristic solutions based on clique problems 
to address challenges in communication and signal 
processing [9]. Belachew and Gillis developed and 
validated a novel solution algorithm for the MCP using a 
continuous characterization grounded in the symmetric 
rank-one non-negative approximation of a given matrix 
[10]. Zhou et al. presented SMC-BRB, a branch-and-
bound algorithm designed for solving the MCP in large 
and sparse graphs. Experimental results demonstrate 
that SMC-BRB outperforms state-of-the-art algorithms in 
both efficiency and accuracy [11]. Pelofske achieved 
precise MCP solutions for graphs with 120 nodes and 
6395 edges using a hybrid method combining parallel 
quantum annealing with graph decomposition [12]. 
Hasan et al. employed a metaheuristic algorithm, 
Chemical Reaction Optimization, to achieve superior 
results compared to state-of-the-art methods on three 
benchmark datasets. Their approach involved tuning 
initial parameters, redesigning reaction operators, and 
incorporating an additional repair operator to enhance 
performance [13]. 

Seda applied integer programming models integrated 
with exact methods and advanced heuristics to solve the 
MCP efficiently for large-scale instances, delivering both 
optimal solutions and high-quality approximations within 
reasonable timeframes [14]. Segundo et al. developed a 
new exact algorithm for the MCP, which improves 
branching schemes and bounding techniques, 
demonstrating superior performance in identifying 
maximum cliques within complex graph structures [15]. 
Reba et al. enhanced the MaxCliqueDyn algorithm, 
originally designed for finding maximum cliques in 
protein graphs, by integrating machine learning-based 
improvements. This augmented approach doubles the 
search speed in molecular docking graphs used in drug 
design and outperforms existing methods in specific 
graph types [16]. 

Jiang et al. proposed a variant of the Branch-and-Bound 
algorithm that incorporates upper-bound and shared 
lower-bound mechanisms, providing highly scalable and 
efficient solutions to the MCP. Their approach achieves 
near-linear and, in some cases, super-linear speedup, 
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particularly on DIMACS and BHOSLIB datasets [6]. 
Marinelli introduced a novel mathematical model for 
solving the maximum semi-clique problem, 
demonstrating its effectiveness on large and dense 
graphs [17]. Abello et al. proposed approximate solutions 
for computing cliques and quasi-cliques in large multi-
digraphs by employing graph decomposition and a semi-
external GRASP method. Their approach was tested on 
telecommunication datasets, demonstrating its practical 
applicability [18]. Ertem et al. analyzed the complexity of 
the Maximum Independent Union of Cliques Problem 
across various graph types and developed an integer 
programming formulation, complemented by an exact 
combinatorial branch-and-bound algorithm to solve this 
problem [19]. Chang introduced a novel algorithm for 
finding maximum cliques in large sparse graphs, 
showcasing its effectiveness through extensive empirical 
evaluations on real-world datasets [20]. Smith et al. 
presented a tabu search algorithm for solving the MCP, 
which incorporates an exact algorithm for subproblems. 
Comparative analysis revealed that their method not only 
achieves faster results but also identifies larger cliques 
in certain cases compared to existing algorithms [21]. Jin 
et al. developed an algorithm based on the Bron-
Kerbosch framework to enumerate all maximal cliques in 
large social networks. Additional experiments 
demonstrated its competitiveness with existing methods, 
particularly for solving maximal clique variants in very 
large graphs [22]. 

Solutions proposed in the literature for solving the MCP 
offer various advantages depending on specific graph 
types or application contexts. Exact algorithms are 
effective for certain graph types but often fail to deliver 
efficient solutions across diverse graph structures. 
Heuristic and approximation methods, while capable of 
addressing large-scale problems and graphs, can be 
sensitive to parameters such as initial conditions and the 
number of iterations. Depending on the graph type or 
problem characteristics, the appropriate approach can 
be selected based on application requirements and 
resource constraints. There is a critical need in the 
literature for a general approach that can be applied to 
various graph types and deliver effective solutions within 
a reasonable timeframe. Moreover, the development of 

methods that are independent of graph structure or other 
variables, and that produce optimal or near-optimal and 
robust solutions, could significantly impact both graph 
theory and its practical applications. 

3. Material and Method 
To demonstrate the effectiveness of the MCA-based 
maximum clique method [5], the approach was tested on 
numerous graphs for which analytical proofs are 
unknown. This method identifies the set of nodes that 
constitute the solution to the MCP on unweighted and 
undirected graphs. The proposed method produces 
solution sets independent of graph type, and the results 
are optimal or near-optimal. The testing process in this 
study is summarized in five stages, as illustrated in 
Figure 1. 

In Stage 1, unweighted and undirected random and 
benchmark graphs, composed of nodes and edges, are 
used as inputs to the method. The random graphs are 
generated using the Erdos-Renyi, Forest Fire, Watts-
Strogatz, and Regular Random models [23]. Benchmark 
graphs are selected from the popular DIMACS dataset. 
For the algorithm to address problems in specific 
domains, the problem must first be transformed into the 
required graph format. In Stage 2, the input graphs are 
formatted appropriately for testing. The complement of 
the original graph is constructed by adding edges 
between nodes that are not connected in the original 
graph and removing edges where connections exist [24]. 
The Maximum Clique Problem is solved using the graph-
theoretical approach MaxClique = Maksimum 
Independent Set (G̅)[19]. In Stage 3, the complement 
graph of the original graph is generated. In Stage 4, the 
MCA-based MISA [25] is applied to the complement 
graph to determine the maximum independent set of 
nodes. The nodes in the maximum independent set of 
the complement graph correspond to the nodes in the 
maximum clique of the original graph. According to graph 
theory, the maximum independent set nodes in the 
complement graph are equivalent to the maximum clique 
nodes in the original graph [26]. Finally, in Stage 5, the 
nodes identified as the maximum clique in the graph are 
presented. 
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Figure 1. Graphical abstract of the new maximum clique method 

3.1. Independent set and clique 
In any graph G = (V, E), an independent set is a subset 
of vertices such that no two vertices in the set share an 
edge. Formally, if 𝑆 ⊆ 𝑉 is an independent set, then 
∀𝑢, 𝑣 ∈ S,(u,v) ∉ E.The maximum independent set is 
defined as the largest independent set of vertices in a 
given graph, containing the maximum number of vertices 
[27]. The size of the independent set is denoted as a(G) 
and is mathematically formulated as follows: 

𝛼(𝐺) = max	{|𝑆|: 𝑆 ⊆ 𝑉	𝑣𝑒	𝑆	𝑖𝑠	𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡	𝑠𝑒𝑡}	           (1) 

In a graph G = (V, E), a clique is a subset of vertices 
where every pair of vertices is connected by an edge. 
Formally, if 𝐶 ⊆ 𝑉 is a clique, then ∀𝑢, 𝑣 ∈ 𝐶, 𝑢 ≠ 𝑣	 ⇒
(𝑢, 𝑣) 	∈ 𝐸. In graph theory, the maximum clique is the 
largest subset of vertices that forms a clique [28]. The 
size of the maximum clique is denoted as 𝜔(𝐺), which is 
mathematically expressed as follows: 

𝜔(𝐺) = max	{|𝐶|: 𝐶 ⊆ 𝑉	𝑣𝑒	𝐶	𝑖𝑠	𝑐𝑙𝑖𝑞𝑢𝑒}                            (2) 

Both the maximum independent set and the MCP is NP-
complete, making their solutions computationally 
challenging. Consequently, these problems are typically 
addressed using heuristic or approximation methods. 

 

 
3.2. Solution to the Maximum Clique 
Problem Using the MISA  
The MISA provides effective solutions for the Maximum 
Independent Set Problem independent of the graph type 
[25]. MISA produces optimal or near-optimal solutions in 
polynomial time for various types of graphs. The 
selection of nodes in MISA solutions is based on the 
MCA. MCA is a recently developed, efficient centrality 
algorithm that determines the dominance values of 
nodes [29]. The centrality value of a node in MCA is 
calculated as the sum of the ratios of the node's degree 
to the degrees of its neighboring nodes. The 
mathematical representation of MCA is given in Equation 
3 [30]: 

y(𝑣!) = ∑ "($!)
"&$"'∀$"∈*($!)                (3) 

Where y(𝑣!) is the Malatya centrality value of i. node, N 
is the set of nodes, 𝑑(𝑣!) is the degree of node 𝑣!, 𝑑(𝑣") 
is the degrees of the neighbors of 𝑣!.  

In the algorithm, MCA is initially applied to the graph to 
compute the Malatya centrality values of all nodes. 
Nodes with the lowest Malatya centrality value are 
selected first to form the MISA solution. The selected 
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This process is repeated iteratively, with MCA being 
recalculated for the updated graph, until all nodes are 
removed, and the MISA solution set for the graph is 
determined. 

By taking the complement of a graph 𝐺	denoted as Ḡ, the 
maximum independent set solution identified in Ḡ 
corresponds to the maximum clique solution in the 
original graph 𝐺. This solution approach is widely 
recognized in the literature, and MISA has demonstrated 
its effectiveness in producing successful clique solutions 
across various types of graphs. The pseudocode for the 
implemented algorithm is provided in Algorithm 1. 

Algorithm 1. Pseudocode of the maximum clique method 

Maksimum independent set and maksimum clique[5] 

Ḡ <- Complement (G)  

Input : Adjacency matrix of Ḡ is A and Ḡ =(V,E) 
   

Output: VindÍV,    Vind :It is the independent set solution 
in the graph Ḡ 

Vind¬Æ 

While E¹Æ do 

       i¬1, …, |V| 

            𝝍(𝒗𝒊) = ∑ 𝒅(𝒗𝒊)
𝒅(𝒗𝒋)∀𝒗𝒋∈𝑵(𝒗𝒊)  

       𝑽𝒊𝒏𝒅 = 𝑽𝒊𝒏𝒅 ∪ {𝐦𝐢𝐧	(𝝍(𝒗𝒊))} 

       V=V-{vi}, and E=E-"(vi,vj)ÎE 

Output=Vind  :    Vind(Ḡ) = Vclique(G)       

 

4. Experimental results 
In this study, tests were conducted on 61 different 
graphs, including 36 DIMACS benchmark graphs and 25 
random graphs. DIMACS benchmark graphs are widely 
used for testing significant NP graph problems, such as 
vertex coloring, maximum clique, and maximum 
independent set. Table 1 presents the clique results 
obtained by the MISA, which is based on the MCA, for 
DIMACS graphs. Additionally, the table includes the 
known optimal clique results for these graphs. Optimal 
results produced by MISA are marked with an asterisk 
(*). For example, the MANN-a9 graph consists of 45 
vertices and 72 edges. MISA determines the maximum 
clique value for this graph as 16, which is the optimal 
result. Another example is the brock200-4 graph, which 
contains 200 vertices and 6811 edges. After applying 
MISA, the maximum clique value is identified as 14, 
whereas the known optimal maximum clique value for 
this graph is 17. An overall examination of the table 
shows that, while MISA achieves optimal results for 
some DIMACS graphs, it generally provides approximate 
solutions. 

 

 

 

 

Table 1. MISA results on DIMACS benchmark graphs 

𝐆0 V E Optimum MISA 
MANN-a9 45 72 16 16* 
MANN-a27 378 702 126 125 
brock200-1 200 5,066 21 20 
brock200-2 200 10,024 12 9 
brock200-3 200 7,852 15 13 
brock200-4 200 6,811 17 14 
brock400-1 400 20,077 27 22 
brock400-2 400 20,014 29 22 
brock400-3 400 20,119 31 23 
brock400-4 400 20,035 33 22 
c-fat200-1 200 18,366 12 12* 
c-fat200-2 200 16,665 24 24* 
c-fat200-5 200 11,427 58 58* 
c-fat500-1 500 120,291 14 14* 
c-fat500-2 500 115,611 26 26* 
c-fat500-5 500 101,559 64 64* 
c-fat500-10 500 78,123 126 126* 
hamming6-2 64 192 32 32* 
hamming6-4 64 1,312 4 4* 
hamming8-2 256 1,024 128 128* 
hamming8-4 256 11,776 16 16* 
johnson8-2-4 28 168 4 4* 
johnson8-4-4 70 560 14 14* 
johnson16-2-4 120 1,680 8 8* 
johnson32-2-4 496 14,880 16 16* 
san200-0.9-1 200 1990 70 48 
san200-0.9-2 200 1,990 60 41 
san200-0.9-3 200 1,990 44 34 
san400-0.5-1 400 39,900 13 9 
san400-0.7-1 400 23,940 40 22 
san400-0.7-2 400 23,940 30 18 
san400-0.7-3 400 23,940 22 18 
sanr200-0.7 200 6,032 18 15 
sanr200-0.9 200 2,037 42 41 
sanr400-0.5 400 39, 816 13 11 
sanr400-0.7 400 23, 931 21 18 

Table 2 presents analyses conducted on various random 
graphs. For instance, a graph generated using the 
Erdos-Renyi model with parameters 3000(p=~0.30) 
p≈0.30 contains 3000 vertices and 1,343,049 edges. The 
complement of this graph has 3,155,451 edges. After 
applying MISA, the maximum clique value was 
determined to be 8. 

Another example involves a graph generated using the 
Forest Fire model with parameters (200, 0.2, 1, 2), 
consisting of 200 vertices and 643 edges. The 
complement of this graph contains 19,257 edges. MISA 
identified the maximum clique value as 5. The table also 
includes analyses of large graphs. For instance, a graph 
generated using the Erdos-Renyi model with parameters 
30000 (p≈0.25) consists of 30,000 vertices and 
112,498,073 edges, while its complement graph has 
337,486,927 edges. After applying MISA, the maximum 
clique value was determined to be 9. Although the 
maximum clique results obtained do not guarantee 
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optimality, the ability of MISA to produce solutions in 
polynomial time for large graphs is a significant 
advantage.

Table 2. Maximum clique results in random and large graphs 

Random Graphs 
(G) (G0) MISA- 𝛼(�̅�) 

Maximum Clique V E V E 

Erdos-Renyi 

1000(p=~0.20) 1000 100,323 1000 399,177 7 
2000(p=~0.25) 2000 498,996 2000 1,500,004 7 
3000(p=~0.30) 3000 1,343,049 3000 3,155,451 8 
4000(p=~0.35) 4000 2,796,887 4000 5,201,113 11 
5000(p=~0.40) 5000 5,000,287 5000 7,497,213 12 

Forest Fire 

(100, 0.2, 1, 2) 100 323 100 4,627 6 
(200, 0.2, 1, 2) 200 643 200 19,257 5 
(300, 0.2, 1, 2) 300 962 300 43,888 5 
(400, 0.2, 1, 2) 400 1,298 400 78,502 6 
(500, 0.2, 1, 2) 500 1,614 500 123,136 5 

Watts Strogatz 

(100, 0.1) 100 200 100 4,750 3 
(200, 0.1) 200 400 200 19,500 3 
(300, 0.1) 300 600 300 44,250 3 
(400, 0.1) 400 800 400 79,000 3 
(500, 0.1) 500 1000 500 123,750 3 

Regular 

(100, 3) 100 150 100 4800 2 
(100, 5) 100 250 100 4700 3 
(100, 8) 100 400 100 4550 3 
(100, 10) 100 500 100 4450 3 
(100, 15) 100 750 100 4200 3 

Big Graphs 

10000(p=~0.20) 10000  9,998,560 10000 39,996,440 8 
10000(p=~0.25) 10000  12,499,449 10000 37,495,551 9 
20000(p=~0.20) 20000  39,993,590 20000 159,996,410 8 
30000(p=~0.20) 30000  90,012,939 30000 359,972,061 8 
30000(p=~0.25) 30000 112,498,073 30000 337,486,927 9 

       

5. Conclusions 
In this study, the effectiveness of our previously 
proposed maximum clique method for solving the MCP 
was demonstrated on DIMACS benchmark graphs and 
random graphs generated using various models. The 
proposed method takes unweighted and undirected 
graphs as input and first computes the complement of 
the original graph. Subsequently, the nodes forming the 
maximum independent set in the complement graph are 
identified. To determine the maximum independent set, 
the MISA, which is based on the MCA, was employed as 
an efficient algorithm recognized in the literature. The 
proposed method's effectiveness in producing solutions 
for MCP was validated through tests conducted on 
graphs of varying types and complexities. These tests 
utilized DIMACS benchmark graphs as well as random 
graphs generated using the Erdos-Renyi, Forest Fire, 
Watts-Strogatz, and Regular Random models. To further 
evaluate the method’s robustness on unpredictable 
graphs, random graphs with varying complexities and 
densities were generated using different generator 
models. The test results indicated that the proposed 
method effectively and robustly identified the maximum 
cliques in benchmark graphs and various random 

graphs. In conclusion, this study demonstrated that the 
proposed method provides effective and successful 
solutions for MCP across different graph types, including 
benchmark graphs and various types of random graphs.  

Future work could focus on identifying cliques of different 
sizes and extending the approach to solve MCP in other 
graph types, such as weighted graphs. Additionally, the 
exploration of problems and application areas where 
MCP is utilized could serve as a significant avenue for 
further research. 
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