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Abstract: Algorithm applications on graphs are intensively researched. Graph theory 

systematizes complex and difficult problems and algorithms provide fast and clear solutions, 

which increases interest in the discipline. The Floyd-Warshall algorithm determines the 

shortest paths between all the vertices in a graph. In this paper, we consider the Floyd-

Warshall algorithm on the Farey graph defined in a non-Euclidean hyperbolic space. A Farey 

graph with 15 edges and 9 vertices is constructed and the shortest paths from all vertices to 

other vertices are detected. By defining the weight between consecutive vertices, the shortest 

paths between the vertices are measured in terms of the number of steps. 

Keywords: Farey graph, Floyd-Warshall algorithm, non-Euclidean hyperbolic space 

1. Introduction 

Algorithms are at the core of the advance of computer and internet technology. 

Algorithms basically separate a problem into steps and systematically produce results in 

the context of inputs and outputs. The design and selection of the algorithm differs 

according to the type of problem. Algorithms provide solutions to a specific type of 

problem under certain conditions. In the scientific progress, many operations that were 

previously performed with the pen and the power of thought are now achieved much 

faster and with clearer results via algorithms. In this paper, the Floyd-Warshall 

algorithm, one of the shortest path algorithms, is used to obtain the shortest paths 

between vertices on a Farey graph defined in a non-Euclidean space.  

Several algorithms exist which aim to find the shortest path between two vertices or 

vertices in a graph. Dijkstra's algorithm, which has been intensely investigated in the 

literature and is one of the most reliable shortest path algorithms, produces the shortest 

path between two selected vertices in a graph. Dijkstra's algorithm does not apply if the 

edges are negative weighted. Also, the Bellman-Ford algorithm is used to identify the 

shortest path between two selected vertices in the graph. We can refer to [1], [2], [3], 

[4], [5], and [6] for shortest path algorithms. Unlike Dijkstra and Bellman-Ford 

algorithms, the Floyd-Warshall algorithm is used to determine the shortest paths 

between all vertices in the graph and runs in the presence of a negatively weighted edge, 

but not in the presence of a negative cycle. For more detailed information on the Floyd-

Warshall algorithm, see [7]. 

 Researchs on graph theory have been increasing in recent years and have been 

associated with many disciplines. For the literature on graph theory, see [8] and [9]. In 

[10], new concepts for suborbital graph act were presented. Numerous studies have been 

conducted on the relevant concepts. In [11], in particular, the Farey graph 𝑭, suborbit 

graphs 𝐺𝑢,𝑁 ve 𝐹𝑢,𝑁 on the rational projective line ℚ̂ with (𝑢, 𝑁) = 1 in hyperbolic 

geometry were realized. Moreover, the relationships of the vertices of suborbit graphs 

with continued fractions by means of the Modular group 𝛤 were achieved in [12]. In 

addition, in [13], continued fractions were associating with special number sequences 

and generalizations were studied for vertex values. Also, the minimum length condition 
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between vertices in suborbital graphs was analyzed in [14]. The minimum length 

condition between vertices introduced in [14] was shown as an algorithm in [15]. 

Besides, in [16], a Farey sequence between the vertices of 𝐹𝑢,𝑁 was constructed and 

Dijkstra's algorithm was used to generate a tree with minimum lengths from the initial 

vertex to the other vertices.  

 

2. Material and Method 

2.1. Graph Theory  

 

Graph theory is extensively researched in mathematics and is associated with different 

sub-disciplines. While there are different assumptions about the origin of graph theory, 

there are two prominent views. The first is based on Plato's uniform objects. The 

unfolding of these uniform objects results in vertices and edges between vertices, which 

are the basis of graph theory. The second is based on Euler's article “The Seven Bridges 

of Konigsberg”, published in 1736. Seven bridges over the Pregel River, which runs 

through the town of Kaliningrad in Belarus, were used by people attempting to cross the 

bridges according to a certain rule. Starting from a certain bridge, the rule was trying if 

you could reach the starting point after passing through each bridge without crossing the 

same bridge and path again. Euler carried the problem to the literature with “The Seven 

Bridges of Konigsberg” article and proved that starting from a bridge and without 

crossing the bridges and paths again; the starting point cannot be reached by passing 

through each bridge. In the context of developments in graph theory, in 1822, J.J. 

Sylvester used the term graph for the first time in his work. Moreover, Gustav Kirchhoff 

published Kirchhoff circuit theories based on Graph theory in 1945 and Francis Guthrie 

published the four-color problem in 1852. Furthermore, in 1936, D. König published the 

first book on graph theory. 

Here are some definitions related to graph theory that will be used in the study. 

A graph is roughly a mathematical object consisting of vertices and edges connecting 

the vertices. An element at both ends of an edge is called a vertex. The element between 

two vertices is called an edge. A directed graph is a graph whose edges contain 

directional information. A sequence of the edges to be traced from one vertex to another 

is called a path. The length of a path is equal to the number of edges traversed. An edge 

with the same initial and ending vertices is called a loop. A path that begins at a vertex 

and returns to the same vertex and does not pass through a vertex twice is called a cycle. 

A graph has at least one cycle if the number of edges equals or exceeds the number of 

vertices. A connected graph without cycles is called a tree. Adding an edge to a tree 

creates a loop and the number of edges in a tree is one less than the number of vertices. 

A graph that has no cycles is called a forest. A forest is formed by trees and a tree alone 

is a forest. In a graph, edges can take values and these values are included in the 

structure of the graph. A graph where all edges have values is called a weighted graph. 

The sum of all values in a weighted graph provides the total cost of the graph. Once the 

least-weighted path is calculated for any two vertices in a graph, the sum of the weights 

of edges is the total weight of this path. The more central of the two vertices is the one 

with the lower weight. The least-weight vertex in a graph is called a central vertex of 

the graph. A spanning tree is a tree that covers all vertices in a graph. Given all the 

spanning trees in a graph, a spanning tree with the lowest weight is a least weighted 

spanning tree of that graph. For a graph, if there is at least one path between two 

vertices 𝑥 and 𝑦, the weight of a shortest of these paths is called the distance between 𝑥 

and 𝑦. 
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2.2. Non-Euclidean Geometries 

 

The existence of cases where 5th postulate in Euclid's Elements is not satisfied has been 

studied for centuries in the scientific world. Especially in the 18th and 19th centuries, 

Girolamo Saccheri (1667-1733), Carl Friedrich Gauss (1777-1855), Nikolai Ivanovich 

Lobachevsky (1792-1856), János Bolyai (1802-1860), Bernhard Riemann (1826-1866), 

Henry Poincaré (1854-1912) and Eugenio Beltrami (1835-1900) discussed the problem 

comprehensively and non-Euclidean geometries were defined. Non-Euclidean 

geometries can be analyzed under two headings: Hyperbolic and Elliptic geometries. In 

a non-planar region, Hyperbolic geometries are constructed in case the sum of the 

interior angles of the triangle is less than 180° and Elliptic geometries are constructed in 

case it is greater than 180°. Obviously, in non-Euclidean geometries, the edges are 

curves, not lines. In this paper, in particular, Farey graphs constructed from hyperbolic 

triangles will be focused on. 

 

2.3. Farey Graph 

 

The Farey graph is formed basically by an infinite number of curved triangles that get 

smaller as they approach to the circle line. Given the two vertices 
𝑎

𝑏
 and 

𝑐

𝑑
 on the Farey 

graph, the middle vertex is determined by mediant rule. Let assume that vertices 
𝑎

𝑏
 and 

𝑐

𝑑
 

are consecutive vertices on Farey graph satisfying 
𝑎

𝑏
<

𝑐

𝑑
 and |𝑏𝑐 − 𝑎𝑑| = 1. Then, the 

mediant of these consecutive vertices is presented by 
𝑎

𝑏
⊕

𝑐

𝑑
=

𝑎+𝑐

𝑏+𝑑
. For example, if 

vertices 
0

1
 and 

1

1
 are consecutive vertices on Farey graph, the mediant of these 

consecutive vertices is 
0

1
⊕

1

1
=

1

2
. In other words, the middle vertex of vertices 

0

1
 and 

1

1
 is 

1

2
.  The Farey graph is constructed between all consecutive pairs of numbers arranged 

around a circle. An example of Farey graph between 
𝑎

𝑏
 and 

𝑐

𝑑
 only is illustrated below: 

 
Figure 1. Farey graph constructed between 

𝑎

𝑏
 and 

𝑐

𝑑
  

In special, taking the vertices of the graph as 
0

1
 and 

1

1
, by using the mediant, the vertices 

of the graph can be represented as elements of the Farey sequence, some elements of 

which are presented as follows. 

 
0

1
,
1

5
,
2

9
,
1

4
,
2

7
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
5

7
,
3

4
,
4

5
,
1

1
 

2.4. Suborbital Graphs and Farey Graph 

In [10], the motion of 𝐺 on the set 𝛺 is described, where 𝐺 is a group and 𝛺 is the set 

whose elements are the vertices of the graph. [17] and [18] investigated the idea 

introduced in [10] on finite groups. In [11], however, 𝐺 = 𝛤 Modular group and 𝛺 = ℚ̂ 
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were scrutinised. Additionally, in [11] the next lemma for group action between vertices 

in a Farey graph was presented. 

2.4.1. Lemma Assume that 
𝑎

𝑏
,
𝑐

𝑑
∈ ℚ̂ are reduced rationals, 𝑭 is the Farey graph and 𝐹𝑛 

is the sequence generated from the Farey graph. In this case, the conditions below are 

equivalent.  

𝑖) 
𝑎

𝑏
 and 

𝑐

𝑑
 are the neighbor vertices in the Farey graph 𝑭. 

𝑖𝑖) 𝑎𝑑 − 𝑏𝑐 = ±1. 

𝑖𝑖𝑖) 
𝑎

𝑏
 and 

𝑐

𝑑
 are the neighbor vertices in the Farey sequence 𝐹𝑛 for 𝑛 ∈ ℕ. 

2.5. Floyd-Warshall Algorithm 

The Floyd-Warshall algorithm is a dynamic programming algorithm that determines 

shortest paths between all pairs of vertices in a graph. The Floyd-Warshall algorithm is 

a shortest path algorithm similar to the Dijkstra and Bellman-Ford algorithms. The 

Dijkstra and Bellman-Ford algorithms have a source vertex in a graph and produce 

shortest path from this source vertex to any other vertex. In the contrary, the Floyd-

Warshall algorithm provides shortest paths between all pairs of vertices in a graph. 

Obviously, in Floyd-Warshall algorithm, every vertex can be considered as a source 

vertex. It is applicable to directed and undirected graphs. The Floyd-Warshall algorithm 

is also applicable to pseudo graphs consisting of loops and parallel edges. However, in 

this case, all 0’s are substituted by ∞. The algorithm fails on graphs with negative 

cycles; a negative cycle means that the sum of the edges in a cycle is negative. The 

Floyd-Warshall algorithm is a dynamic program. In other words, it recalls the shortest 

distances between vertices in the previous step and uses them in subsequent steps. In 

addition, the time complexity of the Floyd - Warshall algorithm is 𝑂(𝑛3). 

The 𝑤𝑖𝑗 value of the Floyd-Warshall algorithm is defined as a piecewise function as 

follows: Assume that 𝑖, 𝑘 and 𝑗 are vertices and 𝑤(𝑖𝑗) is the weight of the edge if exists 

between 𝑖 and 𝑗 in a graph 𝐺. Then; 

𝑤𝑖𝑗 = {
0,

𝑤(𝑖𝑗),
+∞

if 𝑖 = 𝑗 ;
if 𝑖 ≠ 𝑗 and there is an edge between 𝑖 and 𝑗; 
if 𝑖 ≠ 𝑗 and there is an edge between 𝑖 and 𝑗.

 

Thus, the matrix 𝑊 = (𝑤𝑖𝑗) is generated by using the values 𝑤(𝑖𝑗). Now, suppose that 

the graph is composed of vertices 𝑣1, 𝑣2, ⋯ , 𝑣𝑛. Assume that 𝐿0 is the first generated 

matrix based on the connectivity between vertices, that is, 𝐿0 = 𝑊. Let 𝑑𝑣𝑖𝑣𝑗
(𝑣𝑘) path from 

be length of a shortest path 𝑣𝑖 to 𝑣𝑗  via an intermediate vertex. There are two cases 

depending on the state of reaching vertex 𝑣𝑗  from vertex 𝑣𝑖 with intermediate vertex 𝑣𝑘. 

𝑖. The situation where the paths from vertex 𝑣𝑖 to vertex 𝑣𝑗  do not pass via intermediate 

vertex 𝑣𝑘. In this case, the length of the shortest path is defined as 𝑑𝑣𝑖𝑣𝑗
(𝑣𝑘−1). 

𝑖𝑖.  The situation where the paths from vertex 𝑣𝑖 to vertex 𝑣𝑗  pass via intermediate 

vertex 𝑣𝑘. To obtain a shortest path, the path should not pass two times via the same 

vertex. Thus, get a path with the shortest length from vertex 𝑣𝑖 to vertex 𝑣𝑗 , the paths 

from vertex 𝑣𝑖 to vertex 𝑣𝑘 and from vertex 𝑣𝑘 to vertex 𝑣𝑗  should be selected as short 

as possible. The length of the shortest path is thus equal to 𝑑𝑣𝑖𝑣𝑘
(𝑣𝑘−1) + 𝑑𝑣𝑘𝑣𝑗

(𝑣𝑘−1) in 

{𝑣1, 𝑣2, ⋯ , 𝑣𝑘}. Therefore, it is obvious that 

  

𝑑𝑣𝑖,𝑣𝑗
(𝑣𝑘) = min {𝑑𝑣𝑖,𝑣𝑗

(𝑣𝑘−1), 𝑑𝑣𝑖,𝑣𝑘
(𝑣𝑘−1) + 𝑑𝑣𝑘,𝑣𝑗

(𝑣𝑘−1)} 
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As the algorithm updates the matrix at each step, the distance matrix 𝐿𝑣𝑘  is updated after 

each intermediate vertex 𝑣𝑘. 

Pseudocode of the Floyd-Warshall algorithm is presented below: 

 

floyd − warshall (n, w)  { 

       d = array[1. . n, 1. . n]                                    // distance matrix 

       for (i = 1 to n) {                                           // 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 

       for (j = 1 to n) { 

            𝑑[𝑖, 𝑗] = 𝑤[𝑖, 𝑗]          

           helper[i, j] = null   

      } 

}   

for (k = 1 to n) {                                                 //use intermediates {1. . k}  

      for (i = 1 to n) {                            //… from i 

            for (j = 1 to n) {                            //… from j 

                              if (d[i, k] + d[k, j] < 𝑑[𝑖, 𝑗])  { 

                                   d[i, j] = d[i, k] + d[k, j] // new shorter path length  

                                   helper[i, j] = k           // new path is through k      

                               } 

                       } 

                 } 

         }     

         return d                                              //d[i, j] holds the distance from i to j 

3. Results 

3. Determination of Shortest Paths in Farey Graph with Floyd-Warshall 

Algorithm 

Consider the vertices 
0

1
 and 

1

1
 of the graph given in Figure 1 and analyze the shortest 

paths between the vertices with the Floyd-Warshall Algorithm. In particular, consider 

the edges of the graph as right-oriented from 
0

1
 to 

1

1
. We study with the graph shown in 

Figure 2. 

  
Figure 2. Farey graph between 

0

1
 and 

1

1
 

Let the weight between vertices in the graph be identified as |𝑎𝑑 − 𝑏𝑐| by using Lemma 

2.4.1, where 
𝑎

𝑏
 and 

𝑐

𝑑
 are neighboring vertices. Hence, the weighted matrix 𝑊 = 𝐿0 

constructed based on the weights of edges between the vertices of the graph is obtained 
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by means of the piecewise function 𝑤𝑖𝑗 as follows. Let 
𝑎

𝑏
,
𝑐

𝑑
 be two vertices in the above 

Farey graph 𝑭. Then 

𝑤𝑖𝑗 =

{
 
 

 
 0,                  if  

𝑎

𝑏
=
𝑐

𝑑
;

|𝑎𝑑 − 𝑏𝑐|      if    
𝑎

𝑏
→
𝑐

𝑑
;

+∞,                 if    
𝑎

𝑏
⇸
𝑐

𝑑
.

 

Then 𝐿0 is the following matrix: 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑤𝑖𝑗 𝑣1 =
0

1
𝑣2 =

1

4
𝑣3 =

1

3
𝑣4 =

2

5
𝑣5 =

1

2
𝑣6 =

3

5
𝑣7 =

2

3
𝑣8 =

3

4
𝑣9 =

1

1

𝑣1 =
0

1
0 1 1 ∞ 1 ∞ ∞ ∞ 1

𝑣2 =
1

4
1 0 1 ∞ ∞ ∞ ∞ ∞ ∞

𝑣3 =
1

3
1 1 0 1 1 ∞ ∞ ∞ ∞

𝑣4 =
2

5
∞ ∞ 1 0 1 ∞ ∞ ∞ ∞

𝑣5 =
1

2
1 ∞ 1 1 0 1 1 ∞ 1

𝑣6 =
3

5
∞ ∞ ∞ ∞ 1 0 1 ∞ ∞

𝑣7 =
2

3
∞ ∞ ∞ ∞ 1 1 0 1 1

𝑣8 =
3

4
∞ ∞ ∞ ∞ ∞ ∞ 1 0 1

𝑣9 =
1

1
1 ∞ ∞ ∞ 1 ∞ 1 1 0 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Let us scrutinise the shortest paths through all intermediate vertices.  

Using the intermediate vertex 𝑣2 =
1

4
, the length 𝑑0

1
,
1

3

(
1

4
)
 is calculated as follows: 

𝑑0
1
,
1

3

(
1

4
)
= min {𝑑0

1
,
1

3

(
0

1
)
, 𝑑0

1
,
1

4

(
0

1
)
+ 𝑑1

4
,
1

3

(
0

1
)
} = min{1, 1 + 1} = 1 

Therefore, 𝐿1
4

= 𝐿0. 

For the intermediate vertex 𝑣3 =
1

3
, lengths 𝑑0

1
,
2

5

(
1

3
)
, 𝑑0

1
,
1

2

(
1

3
)
, 𝑑1

4
,
2

5

(
1

3
)
 and 𝑑1

4
,
1

2

(
1

3
)
 are examined. 

𝑑0
1
,
2

5

(
1

3
)
= min {𝑑0

1
,
2

5

(
1

4
)
, 𝑑0

1
,
1

3

(
1

4
)
+ 𝑑1

3
,
2

5

(
1

4
)
} = min{∞, 1 + 1} = 2, 

𝑑0
1
,
1

2

(
1

3
)
min {𝑑0

1
,
1

2

(
1

4
)
, 𝑑0

1
,
1

3

(
1

4
)
+ 𝑑1

3
,
1

2

(
1

4
)
} = min{1,1 + 1} = 1, 

𝑑1
4
,
2

5

(
1

3
)
min {𝑑1

4
,
2

5

(
1

4
)
, 𝑑1

4
,
1

3

(
1

4
)
+ 𝑑1

3
,
2

5

(
1

4
)
} = min{∞, 1 + 1} = 2, 
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𝑑1
4
,
1

2

(
1

3
)
min {𝑑1

4
,
2

5

(
1

4
)
, 𝑑1

4
,
1

3

(
1

4
)
+ 𝑑1

3
,
2

5

(
1

4
)
} = min{∞, 1 + 1} = 2. 

The distance matrix 𝐿1
3

 is presented below, showing the changes in red. 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑤𝑖𝑗 𝑣1 =
0

1
𝑣2 =

1

4
𝑣3 =

1

3
𝑣4 =

2

5
𝑣5 =

1

2
𝑣6 =

3

5
𝑣7 =

2

3
𝑣8 =

3

4
𝑣9 =

1

1

𝑣1 =
0

1
0 1 1 2 1 ∞ ∞ ∞ 1

𝑣2 =
1

4
1 0 1 2 2 ∞ ∞ ∞ ∞

𝑣3 =
1

3
1 1 0 1 1 ∞ ∞ ∞ ∞

𝑣4 =
2

5
2 2 1 0 1 ∞ ∞ ∞ ∞

𝑣5 =
1

2
1 2 1 1 0 1 1 ∞ 1

𝑣6 =
3

5
∞ ∞ ∞ ∞ 1 0 1 ∞ ∞

𝑣7 =
2

3
∞ ∞ ∞ ∞ 1 1 0 1 1

𝑣8 =
3

4
∞ ∞ ∞ ∞ ∞ ∞ 1 0 1

𝑣9 =
1

1
1 ∞ ∞ ∞ 1 ∞ 1 1 0 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The only length that is analyzable for the intermediate vertex 𝑣4 =
2

5
 is 𝑑1

3
,
1

2

(
2

5
)
. This results 

in  

𝑑1
3
,
1

2

(
2

5
)
= min {𝑑1

3
,
1

2

(
1

3
)
, 𝑑1

3
,
2

5

(
1

3
)
+ 𝑑2

5
,
1

2

(
1

3
)
} = min{1,1 + 1} = 1, 

and thus no update to the distance matrix is required. Therefore the distance matrix 𝐿2
5

 is 

the same as the distance matrix 𝐿1
3

. 

The lengths 𝑑0
1
,
1

1

(
1

2
)
, 𝑑0

1
,
2

3

(
1

2
)
, 𝑑0

1
,
3

5

(
1

2
)
, 𝑑1

3
,
1

1

(
1

2
)
, 𝑑1

3
,
2

3

(
1

2
)
, 𝑑1

3
,
3

5

(
1

2
)
, 𝑑2

5
,
1

1

(
1

2
)
, 𝑑2

5
,
2

3

(
1

2
)
, 𝑑2

5
,
3

5

(
1

2
)
 are obtainable via the 

intermediate vertex 𝑣5 =
1

2
. 

𝑑0
1
,
1

1

(
1

2
)
= min {𝑑0

1
,
1

1

(
2

5
)
, 𝑑0

1
,
1

2

(
2

5
)
+ 𝑑1

2
,
1

1

(
2

5
)
} = min{1,1 + 1} = 1, 

𝑑0
1
,
2

3

(
1

2
)
= min {𝑑0

1
,
2

3

(
2

5
)
, 𝑑0

1
,
1

2

(
2

5
)
+ 𝑑1

2
,
2

3

(
2

5
)
} = min{∞, 1 + 1} = 2, 

𝑑0
1
,
3

5

(
1

2
)
= min {𝑑0

1
,
3

5

(
2

5
)
, 𝑑0

1
,
1

2

(
2

5
)
+ 𝑑1

2
,
3

5

(
2

5
)
} = min{∞, 1 + 1} = 2, 

𝑑1
3
,
1

1

(
1

2
)
min {𝑑1

3
,
1

1

(
2

5
)
, 𝑑1

3
,
1

2

(
2

5
)
+ 𝑑1

2
,
1

1

(
2

5
)
} = min{∞, 1 + 1} = 2, 
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𝑑1
3
,
2

3

(
1

2
)
min {𝑑1

3
,
2

3

(
2

5
)
, 𝑑1

3
,
1

2

(
2

5
)
+ 𝑑1

2
,
2

3

(
2

5
)
} = min{∞, 1 + 1} = 2, 

𝑑1
3
,
3

5

(
1

2
)
min {𝑑1

3
,
3

5

(
2

5
)
, 𝑑1

3
,
1

2

(
2

5
)
+ 𝑑1

2
,
3

5

(
2

5
)
} = min{∞, 1 + 1} = 2, 

𝑑2
5
,
1

1

(
1

2
)
min {𝑑2

5
,
1

1

(
2

5
)
, 𝑑2

5
,
1

2

(
2

5
)
+ 𝑑1

2
,
1

1

(
2

5
)
} = min{∞, 1 + 1} = 2, 

𝑑2
5
,
2

3

(
1

2
)
min {𝑑2

5
,
2

3

(
2

5
)
, 𝑑2

5
,
1

2

(
2

5
)
+ 𝑑1

2
,
2

3

(
2

5
)
} = min{∞, 1 + 1} = 2, 

𝑑2
5
,
3

5

(
1

2
)
min {𝑑2

5
,
3

5

(
2

5
)
, 𝑑2

5
,
1

2

(
2

5
)
+ 𝑑1

2
,
3

5

(
2

5
)
} = min{∞, 1 + 1} = 2. 

Hence, the distance matrix 𝐿1
2

 is given as follows. 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑤𝑖𝑗 𝑣1 =
0

1
𝑣2 =

1

4
𝑣3 =

1

3
𝑣4 =

2

5
𝑣5 =

1

2
𝑣6 =

3

5
𝑣7 =

2

3
𝑣8 =

3

4
𝑣9 =

1

1

𝑣1 =
0

1
0 1 1 2 1 2 2 ∞ 1

𝑣2 =
1

4
1 0 1 2 2 ∞ ∞ ∞ ∞

𝑣3 =
1

3
1 1 0 1 1 2 2 ∞ 2

𝑣4 =
2

5
2 2 1 0 1 2 2 ∞ 2

𝑣5 =
1

2
1 2 1 1 0 1 1 ∞ 1

𝑣6 =
3

5
2 ∞ 2 2 1 0 1 ∞ ∞

𝑣7 =
2

3
2 ∞ 2 2 1 1 0 1 1

𝑣8 =
3

4
∞ ∞ ∞ ∞ ∞ ∞ 1 0 1

𝑣9 =
1

1
1 ∞ 2 2 1 ∞ 1 1 0 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The only length that is obtained by the intermediate vertex 𝑣6 =
3

5
 is 𝑑1

2
,
2

3

(
3

5
)
: 

𝑑1
2
,
2

3

(
3

5
)
= min {𝑑1

2
,
2

3

(
1

2
)
, 𝑑1

2
,
3

5

(
1

2
)
+ 𝑑3

5
,
2

3

(
1

2
)
} = min{1,1 + 1} = 1. 

The distance matrix 𝐿3
5

 is then the same as the distance matrix 𝐿1
2

. 

The lengths 𝑑1
2
,
3

4

(
2

3
)
, 𝑑1

2
,
1

1

(
2

3
)
, 𝑑3

5
,
3

4

(
2

3
)
 and 𝑑3

5
,
1

1

(
2

3
)
 are achieved via the intermediate vertex 𝑣7 =

2

3
. 

𝑑1
2
,
3

4

(
2

3
)
= min {𝑑1

2
,
3

4

(
3

5
)
, 𝑑1

2
,
2

3

(
3

5
)
+ 𝑑2

3
,
3

4

(
3

5
)
} = min{∞, 1 + 1} = 2, 
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𝑑1
2
,
1

1

(
2

3
)
= min {𝑑1

2
,
1

1

(
3

5
)
, 𝑑1

2
,
2

3

(
3

5
)
+ 𝑑2

3
,
1

1

(
3

5
)
} = min{1,1 + 1} = 1, 

𝑑3
5
,
3

4

(
2

3
)
= min {𝑑3

5
,
3

4

(
3

5
)
, 𝑑3

5
,
2

3

(
3

5
)
+ 𝑑2

3
,
3

4

(
3

5
)
} = min{∞, 1 + 1} = 2, 

𝑑3
5
,
1

1

(
2

3
)
= min {𝑑3

5
,
1

1

(
3

5
)
, 𝑑3

5
,
2

3

(
3

5
)
+ 𝑑2

3
,
1

1

(
3

5
)
} = min{∞, 1 + 1} = 2. 

So, the distance matrix 𝐿2
3

 is presented as follows: 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑤𝑖𝑗 𝑣1 =
0

1
𝑣2 =

1

4
𝑣3 =

1

3
𝑣4 =

2

5
𝑣5 =

1

2
𝑣6 =

3

5
𝑣7 =

2

3
𝑣8 =

3

4
𝑣9 =

1

1

𝑣1 =
0

1
0 1 1 2 1 2 2 ∞ 1

𝑣2 =
1

4
1 0 1 2 2 ∞ ∞ ∞ ∞

𝑣3 =
1

3
1 1 0 1 1 2 2 ∞ 2

𝑣4 =
2

5
2 2 1 0 1 2 2 ∞ 2

𝑣5 =
1

2
1 2 1 1 0 1 1 2 1

𝑣6 =
3

5
2 ∞ 2 2 1 0 1 2 2

𝑣7 =
2

3
2 ∞ 2 2 1 1 0 1 1

𝑣8 =
3

4
∞ ∞ ∞ ∞ 2 2 1 0 1

𝑣9 =
1

1
1 ∞ 2 2 1 2 1 1 0 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The only length that is achievable for the intermediate vertex 𝑣8 =
3

4
 is 𝑑2

3
,
1

1

(
3

4
)
. 

𝑑2
3
,
1

1

(
3

4
)
= min {𝑑2

3
,
1

1

(
2

3
)
, 𝑑2

3
,
3

4

(
2

3
)
+ 𝑑3

4
,
1

1

(
2

3
)
} = min{1,1 + 1} = 1. 

This means that there is no need to update the distance matrix 𝐿2
3

.  

The values of ∞ remaining in the distance matrix are found as the following: 

𝑑0
1
,
3

4

(
2

3
)
= min {𝑑0

1
,
3

4

(
3

5
)
, 𝑑0

1
,
2

3

(
3

5
)
+ 𝑑2

3
,
3

4

(
3

5
)
} = min{∞, 2 + 1} = 3, 

𝑑1
4
,
3

5

(
1

2
)
= min {𝑑1

4
,
3

5

(
2

5
)
, 𝑑1

4
,
1

2

(
2

5
)
+ 𝑑1

2
,
3

5

(
2

5
)
} = min{∞, 2 + 1} = 3, 

𝑑1
4
,
2

3

(
3

5
)
= min {𝑑1

4
,
2

3

(
1

2
)
, 𝑑1

4
,
1

2

(
1

2
)
+ 𝑑1

2
,
2

3

(
1

2
)
} = min{3,3 + 1} = 3, 
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𝑑1
4
,
3

4

(
2

3
)
= min {𝑑1

4
,
3

4

(
3

5
)
, 𝑑1

4
,
2

3

(
3

5
)
+ 𝑑2

3
,
3

4

(
3

5
)
} = min{∞, 3 + 1} = 4, 

𝑑1
4
,
1

1

(
3

4
)
= min {𝑑1

4
,
1

1

(
2

3
)
, 𝑑1

4
,
2

3

(
2

3
)
+ 𝑑2

3
,
1

1

(
2

3
)
} = min{3,4 + 1} = 3, 

𝑑1
3
,
3

4

(
2

3
)
= min {𝑑1

3
,
3

4

(
3

5
)
, 𝑑1

3
,
2

3

(
3

5
)
+ 𝑑2

3
,
3

4

(
3

5
)
} = min{∞, 2 + 1} = 3, 

𝑑2
5
,
3

4

(
2

3
)
= min {𝑑2

5
,
3

4

(
3

5
)
, 𝑑2

5
,
2

3

(
3

5
)
+ 𝑑2

3
,
3

4

(
3

5
)
} = min{∞, 2 + 1} = 3. 

Consequently, the distance matrix formed is the following:  

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑤𝑖𝑗 𝑣1 =
0

1
𝑣2 =

1

4
𝑣3 =

1

3
𝑣4 =

2

5
𝑣5 =

1

2
𝑣6 =

3

5
𝑣7 =

2

3
𝑣8 =

3

4
𝑣9 =

1

1

𝑣1 =
0

1
0 1 1 2 1 2 2 3 1

𝑣2 =
1

4
1 0 1 2 2 3 3 4 3

𝑣3 =
1

3
1 1 0 1 1 2 2 3 2

𝑣4 =
2

5
2 2 1 0 1 2 2 3 2

𝑣5 =
1

2
1 2 1 1 0 1 1 2 1

𝑣6 =
3

5
2 3 2 2 1 0 1 2 2

𝑣7 =
2

3
2 3 2 2 1 1 0 1 1

𝑣8 =
3

4
3 4 3 3 2 2 1 0 1

𝑣9 =
1

1
1 3 2 2 1 2 1 1 0 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

4. Conclusion 

The shortest lengths between all vertices in a Farey graph were determined by analyzing 

the Farey graph defined in hyperbolic geometry, which has been intensely discussed in 

the relevant literature, with the Floyd-Warshall algorithm. The lengths between vertices 

in the Farey graph are associated by the number of steps, and the step condition is given 

by * as below: 

* The number of steps between neighboring vertices is 1 regardless of the distance, 

based on Lemma 2.4.1. The step number is 2 if the two edges have a common vertex, 

provided that the middle vertex is not obtained with the mediant. The number of steps 

increases based on this condition. Therefore, the length of a shortest path between two 

vertices is defined as follows:  

 

𝑑𝑣𝑖,𝑣𝑗
(𝑣𝑘) = Number of steps between vi and vj depending on the condition ∗ 

by the Floyd-Warshall algorithm. As an example, the shortest path between 
1

4
 and 

3

4
 is 4 

as the number of steps is 4 with the condition * as in Figure 3. 
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Figure 3. 4 step path from 

1

4
 to 

3

4
 

In addition, the results obtained with the Floyd-Warshall algorithm are very useful 

because Floyd-Warshall algorithm give the results in a single table, but they are 

obtained separately with the Dijkstra and Bellman-Ford algorithms for each vertex. 
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