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ABSTRACT 
Phenotyping systems propels the growth of modern agriculture, driving innovations in plant breeding, crop 

management, precise application of resources and smart agriculture.  This review provides a comprehensive 

analysis of phenotyping systems, exploring their status, technological advancements, challenges and future 

directions. The evolution from traditional phenotyping to high-throughput phenotyping (HTP) systems with 

involvement of advanced imaging (visible, infrared, hyperspectral, and thermal), sensors (LIDAR and NIR), 

data analytics, drones and automated platforms have enabled rapid non-invasive collection of phenotypic 

information, significantly hastening breeding programs and improving stress tolerance studies. The 

integration of big data, artificial intelligence (AI) and machine learning (ML) has enhanced data 

management and interpretation, enabling the development of predictive models and real-time decision-

making tools. Despite these advancements, several challenges persist. The technical issues such as data 

accuracy, resolution and consistency alongside economic concerns related to high cost of implementation, 

limits the widespread adoption of advanced phenotyping technologies, especially among smallholder 

farmers. Furthermore, the integration of these technologies with traditional farming practices and the 

handling of large datasets raises concerns about data privacy, ownership and interpretation. The impending 

growth of phenotyping lies in advancements such as the integration of AI and genomics, enabling more 

precise breeding through the linking of genetic information with phenotypic traits. Additionally, the 

development of low-cost systems is essential to democratize access to precision agriculture, particularly in 

developing regions. As phenotyping systems continue to advance, they will play a critical role in promoting 

sustainable agriculture, enhancing resource efficiency, ensuring food security and addressing global climate 

change. 
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INTRODUCTION  

 

Phenotyping intends for comprehensive assessment of observable traits of a crop or 

organism, such as morphology, development, biochemical properties and behavior in 

response to environmental conditions (Li et al., 2014). In the context of agriculture 

and plant sciences, phenotyping is critical for understanding and establishing the 

relationship between genotype and phenotype, which is fundamental for crop 

improvement and breeding programs (Furbank and Tester, 2011). The importance of 

phenotyping in agriculture lies in its ability to facilitate the selection of superior 

genotypes with desired traits in terms of drought tolerance, disease resistance and 

yield potential (Reynolds et al., 2020). The measurement of the parameters can 

provide a basis for the breeders to make informed decisions, leading to the expansion 

of crops that are better adapted to changing environmental conditions and 

accelerating the prospectus of feeding 9 billion people in 2050 and 11 billion in 2100 

(Araus and Cairns, 2014; Muzamil et al., 2022). Over the years, phenotyping system 

has gained prominence owing to its association with precision and smart agriculture. 

The smart agricultural practices are governed by its ability to provide instantaneous 

and real time data on crop characteristics and performance, that has the potential to 

augment resource use and enhance productivity (Shakoor et al., 2017). Historically, 

the emergence of phenotyping system was intended to understand the complex traits 

in plants growth system.  The evolution has been marked by the transformation from 

manual, labor-intensive and drudgery laced methods to highly automated sensor-

based throughput systems, Figure 1.  

 

 
Figure1. Applications of phenotyping system in agriculture. 

 

Initially, phenotyping in agriculture was predominantly conducted through 

manual observations and dimensions of plant traits such as height, leaf size and 

yield, which were time-consuming and prone to human errors (Xie et al., 2021). The 

advent of imaging technologies in the late 20th century brought significant 

advancements, enabling more accurate and objective phenotypic assessments. The 

arrival and adoption of technologies like such as visible and near-infrared (NIR) 
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imaging promoted non-invasive measurement of traits, providing more consistent 

and reproducible data (Li et al., 2021). The application of phenotypic technologies in 

agriculture is enlisted in Table 1.  

 

Table 1. Application of phenotyping technologies in agriculture. 

Application Technology Refrences 

1. Detection of disease 

symptoms in potato plants 

Automated machine learning algorithms 

based high throughput phenotyping (HTP) 

system 

Afzaal et al., 2021 

2. Phenotyping canola for 

plant traits 

Automated phenomobile platform 

equipped with RGB and LiDAR sensors 

Cao, 2018 

3. Phenotyping wheat for 

nitrogen use efficiency (NUE) 

Multispectral imaging system to measure 

canopy reflectance and chlorophyll content 

Yang et al., 2020 

4. Measuring traits in large-

scale rice trials 

Drone-based HTP system Panday et al., 2020 

5. Screening barley for heat 

tolerance 

Infrared thermography system to capture 

temperature data from canopies 

Kim et al., 2018 

6. Root phenotyping for 

Arabidopsis 

Automated root phenotyping system using 

time-lapse imaging 

Satbhai et al., 2017 

7. Estimating maize yield 

potential 

LiDAR-based high-throughput 

phenotyping (HTP) system 

Luo et al., 2021 

8. Yield and leaf area index 

estimation for groundnut 

crop 

UAV-based high-throughput phenotyping 

system with multispectral cameras 

Tahir et al., 2020 

9. Assessing water-use 

efficiency in cotton 

UAV-based high-throughput phenotyping 

system for measurement of temperature 

and spectral reflectance 

Lacerda et al., 2022 

10.Screening barley for 

fungal disease resistance 

Hyperspectral imaging system Zhou et al., 2019 

11. Screening wheat and rice 

for drought tolerance 

UAV-based systems equipped with 

thermal and multispectral sensors 

Chaturvedi et al., 2019 

12. Early-stage detection of 

stress in maize 

Hyperspectral imaging system in high- 

throughput platform 

Asaari et al., 2019 

13. Root architecture 

phenotyping for soybean 

X-ray CT imaging to generate 3D root 

images 

Nakhforoosh et al., 2024 

14. Evaluating crop 

phenology in coffee plants 

UAV-based phenotyping with RGB and 

multispectral cameras 

Barbosa et al., 2021 

15. Phenotyping for drought 

tolerance in sorghum 

UAV-based remote sensing system Li et al., 2018 

16. Estimating yield in rice Hyperspectral imaging to predict yield 

from spectral data 

Kurihara et al., 2023 

17. Monitoring fruit size and 

color in tomato plants 

RGB and hyperspectral imaging in 

automated greenhouse systems 

Deulkar and Barve, 2018 

18. Measuring water-use 

efficiency in wheat 

UAV-based thermal and multispectral 

imaging systems 

Bhandari et al., 2021 
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In recent years, phenotyping systems have further evolved with the integration of 

high-throughput platforms, which can process and analyze large datasets in a short 

span of time. These systems utilize advanced sensors, robotics and data analytics to 

capture, record and analyze phenotypic data at an unprecedented scale                    

(Atefi et al., 2021). The use of drones, UGV (unmanned ground vehicles) and UAV 

(unmanned aerial vehicles) in field phenotyping has also revolutionized the ability to 

monitor crops over large areas, providing insights into spatial variability, temporal 

inconsistencies and environmental interactions (Tanaka et al., 2024). The 

incorporation of artificial intelligence (AI) and machine learning (ML) in phenotyping 

systems has heightened the ability to analyze multifaceted datasets, leading to more 

precise estimates and predictions of plant performance under various conditions 

(Nabwire et al., 2021). This technological evolution continues to push the boundaries 

of phenotyping, enabling more efficient breeding programs and precision agriculture 

practices. The review paper highlights the major advancements in phenotyping 

systems from last decade with the help of published data. The literature was selected 

on the basis of availability, relevance, economic viability, technical superiority and 

feasibility to be deployed at actual fields.  

 

EVOLUTION OF PHENOTYPING SYSTEMS  

 

The phenotyping technologies of the crop system depends on the technological 

interventions and situations. Initially, there were only two classifications-manual 

phenotyping and high throughput phenotyping system, Figure 2. However, it has 

expanded to different sectors of agricultural sections including green house, UAV 

and precision agriculture, Table 2.  

 
Figure 2. Types of phenotyping system in agricultural system. 
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Table 2. Different types of phenotyping technologies employed in agriculture. 

Type  Description Reference 

Traditional 

Phenotyping 

Manual measurement and visual 

assessment of plant traits without 

the use of advanced technologies 

Maqbool et al., 2022 

High-Throughput 

Phenotyping (HTP) 

Automated systems that use 

sensors, imaging, and 

computational tools to rapidly 

measure plant traits in large-scale 

studies. 

 Asaari et al., 2019; Luo et al., 
2021 

Field-based 

Phenotyping 

HTP conducted in real agricultural 

fields using drones or mobile 

platforms. 

Chaturvedi et al., 2019; Tahir 

et al., 2020 

Greenhouse-based 

Phenotyping 

Automated platforms in controlled 

environments like greenhouses 

that monitor plant traits using 

imaging and sensors. 

Deulkar and Barve, 2018 

Root Phenotyping Specialized techniques for 

assessing below-ground traits like 

root architecture and 

water/nutrient uptake. 

Nakhforoosh et al., 2024 

UAV-based 

Phenotyping 

Unmanned Aerial Vehicles 

(drones) equipped with sensors to 

capture phenotypic data from large 

agricultural areas. 

Bhandari et al., 2021; Asaari 

et al., 2019 

Imaging-based 

Phenotyping 

Use of various imaging techniques 

(visible, thermal, hyperspectral, 

multispectral) to assess plant 

health and physiological traits. 

Kurihara et al., 2023 

Root and Canopy 

Phenotyping 

Combined systems that measure 

both above-ground and below-

ground plant traits to assess 

overall plant health and 

productivity. 

Luo et al., 2021 

Precision Agriculture 

Systems 

Phenotyping integrated with 

precision agriculture technologies 

for real-time decision-making in 

farm management. 

Araus et al., 2022 

 

Traditional Phenotyping 

Traditional phenotyping relies on utilizing the manual measurements and visual 

assessments for plant characterization. This method is based on the skill of the 

worker to understand the situation and measure or record the parameters 

accordingly. This method is characterized by cost-effectiveness, simplicity and the 

ability to capture complex traits that automated systems may overlook. They provide 

detailed and context-specific data, essential for understanding complex plant traits 

and interactions. Although high-throughput technologies are rapidly advancing, 

traditional methods will continue to play a vital role in plant research and breeding, 

particularly in validating new technologies, conducting detailed trait analyses and 

supporting agricultural development in resource-limited settings                                      

(Brown and Miller, 2019; Zhang et al., 2021). However, traditional phenotyping is 

valuable, particularly in resource-limited settings, for assessing traits that are 

difficult to quantify with technology and validating data obtained from high-

throughput systems (Dogan et al., 2018). 

Despite the advent of advanced phenotyping systems, traditional methods remain 

indispensable in many agricultural and plant science contexts, Table 1. Traditional 
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phenotyping methods have been the backbone of plant science for decades, providing 

fundamental insights into plant progress, growth, progress and responses to 

environmental strains. These methods are highly valuable in regions with limited 

access to advanced technologies and resources, enabling researchers and farmers to 

assess crop performance effectively (Singh et al., 2021). Traditional approaches are 

essential for validating and calibrating data obtained from modern phenotyping 

platforms, ensuring accuracy and reliability in trait measurements                               

(Reynolds et al., 2020). Traditional phenotyping is also preferred when dealing with 

complex traits that require detailed and nuanced assessments, which may not be 

fully captured by automated systems. The traits such as leaf texture, disease 

symptoms and specific developmental stages often necessitate expert visual 

evaluation to ensure precise characterization (Lee et al., 2020).  

Traditional phenotyping to assess drought tolerance in maize, measuring traits 

like leaf wilting and chlorosis (Fisher et al., 2015) found that these methods provided 

reliable data crucial for selecting drought-tolerant varieties for smallholder farmers, 

Figure 3. Traditional phenotyping was to evaluate wheat cultivars for leaf rust 

resistance, employing detailed visual inspections and standardized scoring scales. 

This method enabled precise identification of resistant genotypes and supported 

effective breeding strategies, as the complexity of disease symptoms required expert 

interpretation beyond current imaging technologies. Sinesio et al. (2021) assessed 

fruit quality traits like flavor, texture and aroma in various tomato varieties using 

traditional sensory evaluation with human panels emphasizing that human sensory 

analysis is important for capturing the subjective and complex aspects of fruit quality 

that automated systems struggle to quantify. Maqbool et al. (2022) studied root 

architecture in rice by using traditional excavation and manual measurement 

techniques. Despite its labor-intensive nature, this approach offered detailed and 

accurate data on root length, density, and branching patterns, which is crucial for 

breeding programs focused on improving nutrient and water uptake efficiency. 

Traditional phenotyping was employed to measure plant height, leaf area and 

biomass in wild populations aiming to understand adaptation to various ecological 

niches, highlighting that traditional methods provide the flexibility and adaptability 

needed for field studies in diverse and challenging environments                                         

(Diaz-Garcia et al. 2024). Traditional observational techniques to track soybean 

growth stages (Gupta et al., 2020) across various climatic zones showed that manual 

observations delivered timely and accurate data, which was essential for effectively 

scheduling irrigation, fertilization and pest control. Manual measurement 

techniques to evaluate the impact of salinity stress on barley seedlings in controlled 

environments (Nguyen et al., 2019) enabled detailed analysis of physiological 

responses under controlled conditions. Enhancing the nutritional quality of crops is 

a key objective in breeding programs. Traditional laboratory analyses to measure 

protein, mineral and vitamin content yielded accurate and reliable data imperative 

for breeding nutritionally enhanced crop varieties. 



BANDAY et al., / Turk J Agr Eng Res (TURKAGER), 2025, 6(1): 89-117                  

 

95 
 

 
Figure 3. Phenotyping system for measurement of plant characteristics. 

 

Traditional phenotyping plays a crucial role in the characterization and 

conservation of plant genetic resources. Alonso et al. (2020) performed manual 

assessments of morphological and agronomic traits in heirloom vegetable varieties 

to document and preserve their unique characteristics. The study underscored the 

importance of traditional methods in maintaining biodiversity and supporting 

sustainable agriculture. In participatory breeding programs involving farmers and 

local communities, traditional phenotyping methods are integral.                                 

Rodriguez et al. (2019) collaborated with farmers to evaluate and select maize 

varieties based on manual assessments of yield, taste and adaptability. This 

approach empowered local stakeholders and ensured that selected varieties met the 

specific needs and preferences of end-users. Müller and Becker (2020) utilized 

traditional field measurements to assess heat and drought tolerance in sorghum. 

Parameters such as plant height, leaf area and grain yield were manually recorded 

under varying stress conditions. The study demonstrated that traditional 

phenotyping provides robust data critical for developing stress-resilient crop 

varieties. Understanding interactions between plants and soil microbes often 

requires traditional assessment methods. Li et al. (2021) conducted manual 

measurements of root exudates and soil nutrient levels to study mutualistic 

relationships influencing plant health and productivity. The detailed analyses 

facilitated insights that are challenging to capture through automated systems. In 

the tea industry, traditional sensory evaluation remains the standard for assessing 

quality and flavor profiles. Kim and Lee (2019) employed expert tasters to evaluate 

different tea cultivars, providing nuanced assessments essential for maintaining 

product standards and guiding breeding efforts aimed at flavor improvement. 

Research on phenotypic plasticity often relies on traditional phenotyping to 

capture variability in plant responses to change in environmental parameters. 

Fernandez et al. (2020) used manual measurements to study how different light 

conditions affected leaf morphology and photosynthetic rates in forest understory 

species. Detecting and managing herbicide resistance in weeds is important for crop 

protection. Thompson and Carter (2019) performed traditional bioassays involving 

manual observation and measurement of weed growth following herbicide 
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application. This method provided direct and reliable assessments necessary for 

effective resistance management strategies. In the aftermath of natural disasters, 

traditional phenotyping methods are often employed to quickly assess crop damage 

and plan recovery efforts. Oliveira et al. (2021) conducted field surveys using manual 

observations to evaluate the impact of flooding on rice fields, facilitating timely and 

informed decision-making for restoration. Urban agriculture projects frequently 

utilize traditional phenotyping due to space and resource constraints.                          

Williams et al. (2019) incorporated manual measurement exercises in their 

curriculum to teach fundamental concepts of plant morphology and physiology, 

emphasizing hands-on learning and skill development. Traditional methods are 

important for validating and calibrating data obtained from high-throughput 

phenotyping systems. Walter et al. (2019) conducted parallel manual and automated 

measurements of wheat canopy traits to ensure the accuracy and reliability of HTP 

data, highlighting the complementary role of traditional approaches. In many 

developing countries, traditional phenotyping remains the primary method due to 

limited access to advanced technologies. Ahmed et al. (2021) concluded that extensive 

manual evaluations of millet varieties under local field conditions contributes 

valuable data for improving food security and agricultural resilience in resource-

constrained regions. 

 

High-throughput Phenotyping (HTP): High-throughput phenotyping (HTP) systems 

use advanced technologies such as imaging sensors, robotics, and computational tools 

for rapid and non-invasive measurement of plant traits in large-scale breeding 

programs. The advent of HTP has also accelerated the process of developing climate-

resilient crops that can withstand environmental stresses like drought, heat, and 

salinity (Nabwire et al., 2021). These systems are designed to handle large volumes 

of plants while capturing a wide range of phenotypic traits across diverse 

environments and time points. HTP has revolutionized modern agriculture by 

enabling the efficient selection of genotypes with superior traits for higher 

productivity. HTP has improved crop breeding programs by integrating sensors such 

as RGB cameras, thermal imaging, LiDAR, and hyperspectral imaging to increase 

the speed and accuracy of phenotypic data collection in terms of plant structure, 

health, and physiological responses (Mahlein et al., 2018). The ability of HTP to 

operate in controlled environments like greenhouses, as well as in open fields, makes 

it versatile for evaluating crops under real-world agricultural conditions, Figure 4. 

HTP has facilitated the study of complex traits such as water-use efficiency, 

photosynthetic capacity and root architecture, which are challenging to measure 

manually.  
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Figure 4. Process methodology of HTP system. 

 

Bhandari et al. (2021) used UAVs with thermal and multispectral cameras to 

phenotype wheat genotypes under drought conditions. The UAVs collected canopy 

temperature and NDVI data, aiding in the identification of drought-tolerant lines. 

This high-throughput phenotyping (HTP) approach enhanced the accuracy of trait 

measurement and significantly reduced the time needed for phenotyping.                    

Kurihara et al. (2023) utilized hyperspectral imaging to predict rice yield in large 

field trials by analyzing reflectance data from various spectral bands. This method 

enabled highly accurate yield estimation before harvest, facilitating earlier selection 

of high-yielding varieties and shortening the breeding cycle.                                                  

Deulkar and Barve (2018) used an automated phenotyping platform in a greenhouse 

study to measure fruit size, shape, and color in tomato plants. By utilizing RGB and 

hyperspectral imaging, the system continuously monitored the ripening process and 

detected defects in fruit quality. This high-throughput phenotyping (HTP) system 

enabled the selection of tomato varieties with superior fruit quality.                                     

Asaari et al. (2019) employed field-based high-throughput phenotyping (HTP) to 

assess drought tolerance in maize hybrids. Using a ground-based system with 

thermal and LiDAR sensors, they collected data on canopy temperature, plant 

height, and biomass. The study identified drought-tolerant maize hybrids, which 

were later integrated into breeding programs. Li et al. (2018) focused on sorghum, a 

key crop for food and bioenergy, using an HTP platform with drones and ground-

based sensors to measure biomass traits like plant height, leaf area, and chlorophyll 

content. This system enabled rapid screening of sorghum genotypes, leading to the 

identification of high-biomass-producing lines. 
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Nakhforoosh et al. (2024) used X-ray CT imaging to phenotype root architecture 

in soybean, generating detailed 3D images of root structures. This non-destructive 

method allowed the identification of genotypes with more efficient root systems for 

water and nutrient uptake, surpassing the limitations of traditional phenotyping 

techniques. An automated high-throughput phenotyping (HTP) system that used 

machine learning algorithms (Afzaal et al., 2021) was developed to detect disease 

symptoms in potato plants. By capturing high-resolution images at various growth 

stages, the system employed artificial intelligence to identify early signs of disease, 

significantly reducing the time and labor involved in monitoring large potato fields. 

An automated phenomobile platform equipped with RGB and LiDAR sensors        

(Cao, 2018) was used to phenotype canola plants, measuring traits like plant height, 

leaf area index and flowering time. The platform efficiently covered large field plots, 

offering high-throughput data to support canola breeding programs.                                     

Yang et al. (2020) employed multispectral imaging to phenotype wheat plants for 

nitrogen use efficiency (NUE). The high-throughput system measured canopy 

reflectance and chlorophyll content, which were linked to NUE. The study 

successfully identified wheat genotypes with enhanced nitrogen uptake, aiding in the 

development of more sustainable cropping systems. 

Drone-based high-throughput phenotyping (HTP) measured traits like plant 

height, biomass and leaf area in a large-scale rice cultivation (Panday et al., 2020). 

The drones enabled rapid data collection across multiple field sites, accelerating the 

breeding process and facilitating the selection of high-performing rice varieties. 

Infrared thermography to phenotype heat tolerance in barley (Kim et al. 2018) 

captured temperature data from barley canopies, allowing in identifying genotypes 

that maintained lower canopy temperatures under heat stress. Satbhai et al. (2017) 

developed an automated root phenotyping system for Arabidopsis using time-lapse 

imaging to monitor root growth and development. The system captured high-

resolution data on root length, branching and angle, allowing for the rapid screening 

of Arabidopsis mutants with modified root architectures. A Phenotyping tool 

(RhizOSun) with Raspberry Pi computer and a picamera for acquiring images was 

employed for automatic recording of the number of tubercles counted on sunflower 

root (Le Ru et al., 2021).  

Luo et al. (2021) used LiDAR-based high-throughput phenotyping (HTP) to 

estimate yield potential in maize. The LiDAR system scans maize fields to create 3D 

models of plant structures, which are then used to estimate biomass and grain yield. 

The study showed that LiDAR effectively provided accurate yield predictions for 

maize breeding programs. The UAV-based high- phenotyping system with 

multispectral cameras was used to estimate real time leaf area index and yield of 

groundnut crop utilizing Normalized Difference Vegetation Index (NDVI)                          

(Tahir et al., 2020). The system allowed for rapid phenotyping of large breeding plots, 

leading to the identification of genotypes with improved yield and disease resistance. 

A UAV-based HTP system (Lacerda et al., 2022) to assess water-use efficiency in 

cotton was employed to measure canopy temperature and spectral reflectance which 

were correlated with water-use efficiency. The HTP approach allowed for the 

identification of cotton lines with improved drought tolerance and water-use 

efficiency. An HTP platform (Zhou et al., 2019) to screen barley lines for resistance 

to fungal diseases employed hyperspectral imaging to detect early symptoms of 
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disease, enabling the identification of resistant genotypes invisible to naked eye. 

According to Barbosa et al. (2021), UAV integrated with RGB camera aligned with 

computer vision can help to measure coffee tree height/diameter and predict yield of 

coffee. The system used UAVs equipped with multispectral cameras to collect 

phenotypic data across a large coffee plantation, supporting breeding efforts for high-

yielding and disease-resistant coffee varieties. Chaturvedi et al. (2019) utilized high-

throughput phenotyping (HTP) to assess rice lines for drought and heat tolerance. 

UAVs equipped with thermal and multispectral sensors collected data on canopy 

temperature and NDVI, correlating these with drought and heat tolerance traits. 

The HTP system facilitated the identification of resilient rice varieties. Some of the 

applications of phenotyping technology in agriculture are highlighted in Table 2. 

 

TECHNOLOGIES USED IN PHENOTYPING SYSTEM  

 

Sensor Technologies: The use of sensor technologies in HTP systems has 

revolutionized the ability to collect detailed, real-time data on plant growth, 

development, and environmental responses. These sensors allow for the non-invasive 

assessment of a wide range of physiological and structural traits, significantly 

enhancing the precision of phenotyping. The integration of diverse sensor modalities, 

including RGB cameras, multispectral and hyperspectral imaging and LIDAR, has 

significantly improved the precision and efficiency of phenotyping efforts, Figure 5. 

One of the primary advantages of HTP systems is their ability to automate data 

collection, which reduces labor costs and human error. Ground-based robots 

equipped with imaging and LIDAR sensors can accurately measure plant height and 

biomass at high resolutions, allowing for detailed assessments of crop performance 

over time (Young et al., 2019; Yao et al., 2021). This automation is crucial for large-

scale studies, where traditional manual measurements would be impractical. 

Moreover, the combination of various sensor types enhances the richness of the data 

collected, as different sensors can capture complementary information about plant 

health and growth dynamics (Ma et al., 2022).  

 

 
Figure 5. Different sensors used in phenotyping system for agricultural crops. 
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The recent advancements in sensor technologies have also facilitated the 

development of sophisticated technologies and data processing algorithms that can 

analyze the huge amounts of data generated by HTP systems (Deery et al., 2014), 

Figure 5. Machine learning techniques have been employed to extract meaningful 

insights from phenotypic data, enabling researchers to identify genetic traits 

associated with desirable agronomic characteristics (Tsaftaris et al., 2016;                          

Yang et al., 2020). Studies have demonstrated that integrating genomic data with 

phenotypic measurements can accelerate the identification of quantitative trait loci 

(QTLs) linked to yield components in crops like rice (Tanger et al., 2017;                               

Wu et al., 2019). The various types of sensors used in phenotyping system are shown 

in Table 3. 

 

Table 3. Different types of sensors used in phenotyping systems. 

Type of Sensor Description References 

RGB Cameras Capture visible light in red, green, 

and blue bands, commonly used for 

basic morphological traits like plant 

height, leaf area, and fruit size. 

Deulkar and Barve, 2018; 

Zhang et al., 2023 

Thermal Infrared Sensors Measure plant surface temperature to 

assess water status and heat stress 

tolerance by detecting canopy 

temperature. 

Banerjee et al., 2020; Lacerda 

et al., 2022 

Multispectral Sensors Capture reflectance data across 

several bands (e.g., NIR, red, and 

blue) to calculate vegetation indices 

like NDVI. 

Tahir et al., 2020; Panday et 

al., 2020 

Hyperspectral Sensors Capture data across hundreds of 

spectral bands to assess physiological 

traits, such as chlorophyll content and 

nitrogen status 

Asaari et al., 2019; Kurihara et 

al., 2023 

LiDAR (Light Detection 

and Ranging) 

Use laser beams to generate 3D 

models of plant structures, accurately 

measuring height, biomass, and 

canopy traits. 

Luo et al., 2021; Yao et al., 2021 

X-ray CT (Computed 

Tomography) 

Non-invasive imaging to generate 3D 

root system models, enabling accurate 

root phenotyping. 

Nakhforoosh et al., 2024 

Near-Infrared (NIR) 

Sensors 

Capture near-infrared light, typically 

used for monitoring water status and 

photosynthetic activity. 

Yang et al., 2020; Araus et al., 

2022  

Spectral Reflectance 

Sensors 

Measure how much light is reflected 

by plants, used to evaluate health, 

nutrient content, and stress levels. 

Yang et al., 2020 

Fluorescence Sensors Measure chlorophyll fluorescence to 

assess photosynthetic efficiency and 

plant stress responses. 

Mahlein et al., 2018 

Ultrasound Sensors Measure root traits such as diameter 

and length, providing non-invasive 

phenotyping of roots. 

Nguyen et al., 2019 

 

This integration is essential for breeding programs focusing to enhance crop 

resilience and efficiency in the face of climate change. The application of remote 

sensing technologies has revolutionized the way phenotyping is conducted. Aerial 
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platforms, such as drones, equipped with multispectral cameras, allow for the 

monitoring of large fields and the assessment of crop conditions over extensive areas 

(Thorp et al., 2018; Araus et al., 2022), Figure 6. These technologies not only provide 

spatially explicit data but also enable real-time monitoring of plant responses to 

environmental stresses, such as drought or nutrient deficiency. The ability to capture 

dynamic changes in plant phenotypes is critical for developing strategies to improve 

water use efficiency and overall crop performance (Thorp et al., 2018;                                  

Yuan et al., 2023). 

 

 
Figure 6. Advanced HTP system with sensor integration (Deery et al., 2014). 

 

Despite the advancements in sensor technologies, challenges remain in the 

standardization and integration of data across different platforms. Variability in 

sensor calibration, environmental conditions, and data processing methodologies can 

introduce biases that complicate data interpretation (Wang et al., 2018;                          

Roitsch et al., 2019). Therefore, ongoing research is focused on developing 

standardized protocols and robust data management systems to ensure the 

reliability and comparability of phenotypic data across studies (Zhao et al., 2019;              

Ma et al., 2022). Sensor technologies are at the forefront of high-throughput 

phenotyping systems, providing unprecedented opportunities for crop research and 

breeding. The integration of diverse sensor modalities, coupled with advanced data 

analytics, is transforming the landscape of agricultural science. As these technologies 

continue to grow, they hold the potential to significantly enhance our understanding 

of plant biology and improve agricultural productivity in a sustainable manner. 

 

Imaging Techniques: Imaging techniques have become fundamental to high-

throughput phenotyping (HTP) systems, enabling non-invasive and high-precision 

data collection on a range of plant traits. These techniques employ different parts of 

the electromagnetic spectrum to gather information on plant health, growth, stress 

responses and other important characteristics. The visible imaging, which captures 

information within the range of the human eye (400-700 nm), is one of the simplest 

and most cost-effective methods in phenotyping. It provides high-resolution images 
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of plant architecture, including traits like plant height, leaf area, and color                  

(Shakoor et al., 2017). RGB cameras are commonly used to assess morphological 

traits such as leaf angle and fruit size in crops like maize and tomato                                 

(Zhang et al., 2023). Despite its simplicity, visible imaging can be limited in detecting 

physiological changes, particularly in early stages of stress or disease                        

(Deulkar and Barve, 2018). Infrared (IR) imaging, particularly in the thermal 

infrared range (8-14 µm), is used to assess plant temperature, which is a proxy for 

water status and heat stress tolerance. IR imaging systems measure the radiation 

emitted by plants, enabling the detection of transpiration rates and plant water use 

efficiency (He et al., 2024). IR imaging has been used to screen for drought-tolerant 

genotypes by identifying plants that maintain cooler canopy temperatures under 

water deficit conditions (Banerjee et al., 2020). Hyperspectral imaging captures 

information from a wide range of wavelengths (typically 400-2500 nm) and is 

particularly useful for assessing plant physiological traits such as chlorophyll 

content, nutrient status and disease severity (Sarić et al., 2022).  

Hyperspectral cameras divide the light spectrum into hundreds of narrow bands, 

allowing the detection of subtle differences in plant reflectance that may not be 

visible to the human eye. Hyperspectral imaging has been successfully used in rice 

to predict yield and detect nitrogen deficiencies (Kurihara et al., 2023). Multispectral 

imaging operates in fewer wavelength bands than hyperspectral imaging                   

(typically 3-12 bands), but it still provides valuable insights into plant health. 

Multispectral sensors measure plant reflectance at key wavelengths, such as near-

infrared (NIR), red and blue, which are commonly used to calculate vegetation 

indices like the NDVI (Normalized Difference Vegetation Index)                                       

(Roberts et al., 2018). These indices are highly correlated with photosynthetic 

activity, biomass, and plant vigor. Multispectral imaging is frequently employed in 

field-based phenotyping using drones, especially for crops like maize and wheat 

(Zaman-Allah et al., 2015). Thermal imaging, a type of infrared imaging, focuses 

specifically on capturing the temperature of plant surfaces. It plays a critical role in 

monitoring plant responses to heat stress and water availability (Zhu et al., 2018). 

By measuring canopy temperature, thermal imaging can help breeders select heat-

tolerant and drought-resistant crops.  

 

Data Management and Analysis: Effective data management and analysis are 

critical in modern phenotyping systems, especially in high-throughput phenotyping 

(HTP), where large volumes of complex data are generated. Technologies like big 

data, artificial intelligence (AI) and machine learning (ML) are increasingly applied 

to handle and interpret this data, leading to improved breeding decisions and more 

efficient crop management. The rise of HTP platforms has resulted in an explosion 

of data from various sources, including imaging, sensors, environmental monitoring, 

and genomic information (Fiorani and Schurr, 2019). Managing this data requires 

advanced big data technologies that can handle the integration of diverse datasets. 

These technologies allow for the analysis of large-scale phenotypic, environmental, 

and genetic data, enabling more comprehensive breeding decisions. The use of big 

data technologies to manage multi-location trials (Tardieu et al., 2017) allows 

researchers to integrate phenotypic data across varied environmental conditions to 

identify genotypes with stable performance, helping in understand genotype-
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environment interactions and make more targeted selections in breeding programs. 

The ability to manage large, diverse datasets is essential in identifying the best-

performing crops under different stress conditions (Krause et al., 2019). Artificial 

Intelligence is revolutionizing phenotyping by automating the interpretation of large 

datasets. AI algorithms, particularly those based on deep learning, have proven 

highly effective in analyzing image and sensor data (Singh et al., 2016). Deep 

learning models can identify subtle patterns in plant images, such as leaf texture or 

color, which are often early indicators of diseases (Pound et al., 2017). Deep learning 

models have been used to detect leaf blight in rice by analyzing digital images and 

comparing them to historical data (Kamilaris and Prenafeta-Boldú, 2018). AI-based 

systems have been applied to predict crop yields by correlating multispectral images 

with historical yield data. A study on maize demonstrated that AI models could 

predict final crop yields based on image data collected during early growth stages, 

offering real-time insights into crop health and performance (Yang et al., 2022). Such 

predictive tools are invaluable in improving resource allocation and decision-making 

for farmers and breeders alike. 

Machine learning (ML) methods are essential for processing high-dimensional 

phenotypic data and identifying non-linear relationships between traits and 

environmental factors. In crop phenotyping, ML models can predict crop performance 

based on phenotypic data collected under varying environmental conditions                  

(Araus et al., 2012). ML models have been used to analyze phenotypic traits like 

canopy temperature and chlorophyll content to predict drought tolerance in maize 

(Montesinos-López et al., 2021). Machine Learning has also facilitated genotype-

phenotype association studies by analyzing large-scale phenotypic data alongside 

genomic information allowing researchers to identify genes linked to desirable traits 

such as disease resistance or yield potential (Crossa et al., 2017). ML techniques help 

in identifying genomic regions associated with high yield, accelerating breeding 

cycles by enabling breeders to focus on high-potential genotypes early in the process 

(Li et al., 2024). 

 

CHALLENGES AND LIMITATIONS OF CURRENT PHENOTYPING 

SYSTEMS 

 

Technical Challenges: High-throughput phenotyping (HTP) systems have brought 

immense potential for improving agricultural practices and breeding programs. 

However, they face several technical challenges, particularly related to data 

accuracy, resolution, and consistency. Addressing these challenges is essential for 

maximizing the potential of phenotyping technologies. One of the major challenges 

in phenotyping systems is ensuring data accuracy. Phenotyping platforms rely 

heavily on sensors, imaging systems, and automated data collection processes, which 

can introduce errors due to sensor limitations, calibration issues and environmental 

noise. Inaccurate sensor calibration or poor lighting conditions can result in incorrect 

measurements of plant height or leaf area, affecting the reliability of the data 

(Fiorani and Schurr, 2019).  

In field-based phenotyping systems, environmental variability further 

complicates data accuracy. Factors such as wind, rain, and soil heterogeneity can 
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impact the precision of measurements, especially when drones or mobile platforms 

are used for data collection (Wang et al., 2024). Additionally, plant movements 

caused by wind can skew measurements in real-time, leading to inaccurate 

assessments of canopy structure (Feng et al., 2021). Another critical technical 

limitation is the resolution of data, particularly in imaging-based phenotyping 

systems. While high-resolution imaging technologies such as hyperspectral or 

multispectral cameras can capture fine details of plant traits, there is often a trade-

off between resolution and the speed of data acquisition. High-resolution imaging 

systems may slow down the data collection process or increase computational 

demand for processing, making it difficult to apply these systems in large-scale field 

trials (Shi et al., 2021). In remote sensing applications, resolution is also limited by 

the altitude at which drones or satellites operate. Higher altitudes reduce spatial 

resolution, potentially missing subtle phenotypic traits such as leaf disease spots or 

early signs of water stress (Xue and Su, 2017). Low-resolution data can also mask 

small differences between genotypes, making it harder to distinguish superior-

performing varieties during selection (Walter et al., 2019). 

Ensuring data consistency is another significant challenge in phenotyping. 

Consistency is affected by the variability of environmental conditions, measurement 

timing, and differences in phenotyping protocols. The same crop trait measured 

under different lighting conditions or at different times of day can yield varying 

results (Gill et al., 2022). Moreover, inconsistency in sensor performance, caused by 

sensor drift or changes in calibration over time, can reduce the reliability of long-

term studies (Ge et al., 2016). Phenotyping systems that are used across multiple 

locations or seasons face additional consistency challenges. Variations in weather, 

soil type, and agricultural practices can lead to inconsistent data, making it difficult 

to compare results across different environments (Araus et al., 2022). Standardizing 

data collection methods and ensuring uniformity in phenotyping protocols are crucial 

for improving consistency in multi-location trials. 

 

Economic Considerations: The adoption of advanced phenotyping systems, 

particularly high-throughput phenotyping (HTP), presents significant economic 

challenges. The costs associated with implementing and maintaining these systems 

can be substantial, particularly for small-scale farmers or research institutions with 

limited budgets. The upfront investment required to establish a phenotyping system, 

especially HTP platforms, can be prohibitively expensive. The costs include 

purchasing advanced imaging equipment, sensors, automated platforms, and the 

necessary computational infrastructure for data storage and analysis                   

(Fiorani and Schurr, 2019). Hyperspectral imaging systems and LiDAR sensors, 

which are commonly used in phenotyping can cost tens of thousands of dollars            

(Wang et al., 2024). Additionally, the need for high-powered computing resources to 

process large datasets further increases the initial cost of implementation                        

(Zhao et al., 2019). Custom-built phenotyping platforms such as phenomobiles 

(mobile platforms equipped with sensors) or drones require not only specialized 

equipment but also technical expertise for their operation and maintenance                

(Shi et al., 2023). Moreover, integrating these platforms with data management 

systems and ensuring that they are compatible with existing agricultural practices 

adds to the complexity and cost of implementation (Rico-Chávez et al., 2022). 
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Jimenez-Berni et al. (2018) attempted to design and develop a low cost phenomobile 

system with sensor attachments for monitoring of crops on real time basis, Figure 7. 

 

 
Figure 7. Low cost phenomobile platform and sensor attachments                                    

(Jimenez Berni et al., 2018). 

 

The maintenance of phenotyping systems is another important economic factor. 

Advanced phenotyping platforms, such as drones, robotic systems and automated 

imaging equipment, require regular calibration and servicing to maintain data 

accuracy (Kamarianakis et al., 2024). Sensor performance can degrade over time, 

necessitating frequent recalibration or replacement. The cost of maintaining these 

systems is compounded by the need for skilled technicians to operate and 

troubleshoot them (Mao et al., 2017). In field-based systems, environmental factors 

such as dust, humidity, and extreme weather conditions can affect the durability and 

performance of equipment, leading to higher maintenance costs. Drones used in field 

phenotyping may require frequent repairs or part replacements due to exposure to 

harsh outdoor conditions (Washburn et al., 2024). Similarly, automated greenhouse 

systems, which involve moving platforms and robotic arms need regular upkeep to 

ensure smooth operation. 

The operation of HTP systems often requires highly trained personnel to manage 

both the hardware and software components. Training staff to operate advanced 

imaging systems, interpret sensor data, and manage big data infrastructure incurs 

additional costs (Kim et al., 2020). Even with automation, skilled labor is required to 

oversee data collection, analyze results, and troubleshoot technical issues                      

(Araus et al., 2022). Smaller institutions or research farms may not have the 

resources to hire specialized staff, making the operation of such systems more costly 

and less feasible. While HTP systems offer tremendous benefits for large-scale 

breeding programs and research, their high costs make them less accessible for 

smallholder farmers and low-resource institutions (Kaur et al., 2024). Scaling down 

these systems to make them affordable for broader use remains a challenge. Small-



BANDAY et al., / Turk J Agr Eng Res (TURKAGER), 2025, 6(1): 89-117                  

 

106 
 

scale implementations may still require significant investment, and while these costs 

may be justifiable for large research programs, they are often too high for smaller 

operations. 

Despite the high costs of implementation and maintenance, the potential economic 

benefits of phenotyping systems cannot be ignored. By improving the efficiency of 

breeding programs, increasing crop yields, and reducing input costs, HTP platforms 

can lead to long-term economic gains (Costa et al., 2019). However, realizing these 

benefits requires a significant upfront investment, which may be a barrier for 

widespread adoption, especially in developing countries or regions with limited 

agricultural funding (Feng et al., 2021). 

 

Integration with Existing Agricultural Practices: High-throughput phenotyping 

(HTP) systems are reshaping agricultural research and crop improvement, but 

integrating these technologies into traditional farming practices poses several 

challenges. Smallholder farmers continue to rely on manual labor, conventional tools, 

and historical knowledge, making the transition to advanced phenotyping more 

complex. Several factors must be addressed for successful integration. One 

significant barrier is the complexity of advanced phenotyping systems. HTP 

platforms involve sophisticated tools such as drones, multispectral cameras, and 

environmental sensors that require specialized knowledge to operate effectively. 

Traditional farmers familiar with visual assessments may struggle with systems 

that rely on machine learning algorithms for decision-making. Studies have 

highlighted the need for comprehensive training programs to ensure that farmers 

can adapt to these technologies and maximize their utility in field settings                 

(Mir et al., 2019; Ruzzante et al., 2021). Infrastructure deficits are another roadblock. 

In many regions, particularly in developing countries, access to reliable electricity, 

internet connectivity, and data management systems remains inadequate                    

(Singh, 2022). This lack of infrastructure impedes the adoption of HTP platforms, 

which rely on consistent data transmission and analysis. Furthermore, the high cost 

of equipment poses an economic barrier for smallholder farmers, making external 

support crucial for adoption (Hatem et al., 2022). 

The lack of standardization across phenotyping systems is a significant issue for 

integration. Current technologies vary widely in their data formats, making it 

difficult for farmers to incorporate these systems into their existing workflows. 

Moreover, traditional farming often involves multiple crop varieties and 

environmental conditions, which complicates the implementation of generalized 

phenotyping solutions (Wang et al., 2024). Customization of phenotyping systems for 

specific crops or regions is essential for widespread adoption. There is a notable gap 

between the technical knowledge required for modern phenotyping systems and the 

traditional expertise of farmers. Traditional farmers are skilled at observing visual 

signs of plant health, but they may find sensor-generated data challenging to 

interpret (Jimenez-Berni et al., 2018). Bridging this knowledge gap requires 

investment in educational initiatives to help farmers understand the benefits and 

practical applications of phenotyping data (Marwaha et al., 2023).  Economic barriers 

are significant, particularly for smallholder farmers. Even when the long-term 

benefits of phenotyping technologies are evident, the initial investment costs can be 

prohibitive. Financial subsidies, microfinancing, and government incentives may be 
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necessary to make these technologies accessible at the farm level (Rose et al., 2021). 

Large-scale farms and research institutions have had more success in implementing 

these technologies, but smallholder farmers need financial support to bridge the gap 

(Lipper et al., 2017). Despite the challenges, successful case studies exist in regions 

such as India and parts of Africa, partnerships between agricultural research 

institutions and local farmers have enabled the adoption of drone-based phenotyping 

to monitor crop health. This has improved water use efficiency and increased yields 

(Chawade et al., 2019). Research collaborations have shown how tailored solutions, 

paired with strong farmer education programs, can overcome many of the integration 

barriers (Balota and Oakes, 2017). 

 

Data Management and Interpretation: Phenotyping systems generate massive 

amounts of data that require efficient management, interpretation and storage 

solutions. With the advent of high-throughput phenotyping (HTP) platforms, the 

volume and complexity of the datasets have increased exponentially. Managing these 

large datasets presents challenges in terms of storage capacity, computational power, 

and the ability to extract meaningful insights. 

HTP platforms generate multispectral, hyperspectral and 3D imaging data as well 

as environmental and sensor data, which results in terabytes of information per 

growing season (Tong and Nikoloski, 2021). The effective management of these 

datasets requires high-performance computing (HPC) and cloud-based solutions 

which can process large-scale data in real time (Fiorani and Schurr, 2019). Image 

processing algorithms are often used to analyze large sets of visual data from various 

sensors and cameras. However, the quality of the output relies on the precision and 

accuracy of these algorithms, as even minor discrepancies in sensor calibration or 

environmental factors can lead to errors in the final analysis (Singh et al., 2021). 

Data collection is just the first step, proper curation and storage are essential for 

long-term use. Phenotypic data needs to be organized into databases that can be 

easily accessed and queried by researchers, breeders, and farmers                                

(Dwivedi et al., 2020). The sheer volume of data makes it difficult to maintain 

without specialized tools and infrastructure, leading to the development of 

centralized platforms such as the European Plant Phenotyping Network (EPPN) and 

the Integrated Breeding Platform (IBP), which provide shared resources for data 

management and dissemination (Daviet et al., 2022). 

Sharing large datasets across institutions and countries is critical for advancing 

crop research and breeding programs. Open access to phenotyping data facilitates 

collaboration and speeds up the development of new crop varieties. However, data 

sharing is hampered by several factors, including the lack of standardization in data 

formats, which makes it difficult for different systems to interpret and exchange 

information (Chenu et al., 2018). Data collected by different HTP systems or field 

phenotyping platforms might be incompatible due to variations in measurement 

protocols or sensor technologies (Hu and Schmidhalter, 2023). To address these 

challenges, efforts have been made to develop standardized protocols and metadata 

structures for phenotypic data sharing. Initiatives such as MIAPPE (Minimum 

Information About a Plant Phenotyping Experiment) have been established to 

provide guidelines for data sharing, helping researchers and breeders to collaborate 

more effectively (Papoutsoglou et al., 2020). Another challenge in data sharing is the 
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proprietary nature of some phenotypic datasets, particularly in commercial 

agriculture. Companies may be reluctant to share data due to competitive concerns 

or intellectual property rights. To overcome this, public-private partnerships have 

been proposed to facilitate the sharing of non-sensitive data while protecting the 

commercial interests of the stakeholders (Pieruschka and Schurr, 2019). 

In addition to the technical and logistical challenges of data sharing, there are 

privacy concerns related to the ownership and use of phenotypic data. Farmers and 

researchers may be wary of sharing data, especially when it contains information 

about crop yields, soil health, or farm management practices, which could be 

exploited by competitors or used for profit without their consent (Kotal et al., 2023). 

The growing reliance on cloud-based systems for data storage also raises concerns 

about data security. Breaches in these systems could expose sensitive agricultural 

information, including proprietary breeding lines or field-level data on crop 

performance. Ensuring that phenotypic data is protected by robust security 

protocols, such as encryption and user authentication, is essential for maintaining 

trust among data providers (Kuriakose et al., 2020). Legal frameworks surrounding 

data ownership and intellectual property rights are still evolving in the context of 

phenotyping. Clarifying who owns the data collected by phenotyping systems-

whether it be the farmers, researchers or technology providers-remains a pressing 

issue that requires regulatory oversight (Lassoued et al., 2021). Ensuring fair access 

to and control over data will be crucial for the continued growth of phenotyping as a 

tool for crop improvement and precision agriculture. 

 

FUTURE PROSPECTUS, IMPLICATIONS AND DIRECTIONS 

 

Advancements in Phenotyping Technologies: AI and machine learning are playing a 

transformative role in modern phenotyping. Enhanced predictive models and 

decision support systems are improving the efficiency of plant breeding programs by 

rapidly analyzing large datasets and predicting phenotypic traits based on 

environmental and genetic factors (Sahoo et al., 2024). These advancements have 

enabled real-time monitoring of crops and early detection of stress responses 

(Centorame et al., 2024). Deep learning models have been successful in identifying 

complex traits with high accuracy, reducing the time needed for manual phenotyping 

(Arya et al., 2022). The integration of phenotyping with genomics holds significant 

promise for enhancing the precision of plant breeding (Shakshi et al., 2024). By 

linking phenotypic data with genetic information, researchers can better understand 

gene-trait relationships, enabling the advancement of more resilient crop varieties 

(Mir et al., 2019). This integration also facilitates genome-wide association studies, 

where phenotypic traits are mapped to specific genomic regions, helping to identify 

key genes responsible for desirable traits (Xiao et al., 2022). To ensure the 

widespread adoption of advanced phenotyping technologies, it is crucial to develop 

low-cost systems, particularly for smallholder farmers in developing regions 

(Reynolds et al., 2019). Recent innovations include handheld devices and 

smartphone-based applications that offer affordable alternatives to expensive 

imaging systems (Nguyen et al., 2023). These systems democratize access to 

precision agriculture tools, empowering small-scale farmers to monitor crop health 
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and make data-driven decisions without significant financial investment 

(Karunathilake et al., 2023). 

 

Role in Sustainable Agriculture: Advanced phenotyping technologies are playing a 

crucial role in promoting sustainable agriculture by refining resource use efficiency 

and reducing the environmental footprint of farming practices. These technologies 

empower farmers to better monitor crop health, optimize the use of water, nutrients, 

and other inputs, and reduce wastage, ultimately leading to more sustainable 

farming systems (Janni and Pieruschka, 2022). 

One of the primary areas where phenotyping contributes to sustainability is in 

water management. By accurately measuring crop water use and stress responses, 

farmers can implement precision irrigation techniques, which minimize water use 

while maintaining crop yields (Thorp et al., 2018). This is particularly important in 

regions fronting water shortage due to climate change and increasing agricultural 

demands. Similarly, nutrient management is another area where phenotyping can 

enhance sustainability. Real-time monitoring of plant nutrient status allows for the 

precise application of fertilizers, reducing the risk of over-application and nutrient 

runoff, which can lead to soil degradation and water pollution (Shi et al., 2020). 

Integrating phenotyping with precision agriculture practices can help in reducing 

the environmental impact of excessive chemical use. Phenotyping also aids in the 

expansion of climate-resilient crops, which are critical for addressing the challenges 

posed by global climate change (Cvejić et al., 2022). By identifying traits associated 

with resilience to extreme temperatures, drought, and pests, researchers can breed 

crops that require fewer inputs while maintaining high productivity, contributing to 

both ecological sustainability and food security (Bohra et al., 2021). 

 

Policy and Regulatory Considerations: As phenotyping technologies evolve, there are 

important policy and regulatory issues that need to be addressed, particularly 

around data ownership, standardization, and ethical concerns. With the growing use 

of phenotyping platforms, including drones and IoT devices, large amounts of data 

are being generated. The question of who owns this data is becoming increasingly 

significant. Farmers, researchers, and technology providers may have different 

stakes in the data, raising concerns about intellectual property rights and the 

commercialization of agricultural data (Lajoie-O'Malley et al., 2020). Policies need to 

clearly define ownership rights, ensuring that farmers retain control over their data 

while allowing for the responsible sharing of information for research and 

development purposes. There is a lack of standardized protocols for data collection 

and analysis in phenotyping, which creates challenges in comparing results across 

different studies and technologies (Tomičić et al., 2022). Regulatory frameworks 

should work towards developing industry-wide standards to ensure consistency and 

reliability in phenotyping data. Standardization will also facilitate the integration of 

phenotypic data with other datasets, such as genomic or environmental data, 

enabling more comprehensive analyses. The use of AI and automation in 

phenotyping raises ethical concerns, particularly around the potential displacement 

of human labor and the unequal access to technology. Smallholder farmers in 

developing regions may be left behind if policies do not promote equitable access to 

advanced phenotyping tools (Ryan, 2023). Additionally, the use of sensitive genetic 
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data in phenotyping could lead to privacy breaches or misuse if not properly 

regulated (Stanghellini and Leoni, 2020). Ethical guidelines are needed to ensure 

that these technologies are used responsibly and do not exacerbate social or economic 

inequalities. 

 

Future Research Directions: There are several promising areas for future research 

in phenotyping that can help address current gaps and explore new applications. 

Despite the significant advances in phenotyping, some gaps remain that need to be 

addressed there. Phenotyping for below-ground traits, such as root structure and 

function, lags above-ground phenotyping (Blanchy et al., 2024). Research should 

focus on developing tools and methodologies for non-invasive root phenotyping, 

which is essential for understanding water and nutrient uptake and improving 

drought tolerance (Wasaya et al., 2018). Additionally, current phenotyping systems 

are often expensive, limiting their accessibility to resource-constrained farmers. 

Developing low-cost, scalable systems should be a priority for future research 

(Thrash et al., 2022). Future research should also explore new applications of 

phenotyping, such as its potential role in biodiversity conservation and ecosystem 

monitoring. By identifying and characterizing plant species based on their 

phenotypic traits, phenotyping could help monitor changes in biodiversity due to 

climate change or human activities (Karaca and Ince, 2019). Moreover, integrating 

phenotyping with precision agriculture tools such as drones and satellite imagery 

and decision making tools could enable large-scale environmental monitoring, 

offering insights into ecosystem health and sustainability (Sweet et al., 2022). The 

possibility of low-cost AI driven phenotyping system can also be explored to benefit 

small and marginal farmers.  

 

CONCLUSION 

 

Phenotyping systems have evolved significantly over the past few decades, from 

traditional manual methods to high-throughput, AI-driven technologies. The 

integration of advanced imaging techniques, sensor technologies, and big data 

analytics has revolutionized how phenotypic traits are monitored and measured. 

Despite these advancements, several challenges remain, including technical issues 

such as data accuracy and consistency, economic considerations around the cost of 

implementation, and the need for better data management and interpretation. 

Moreover, compatibility with traditional farming practices and ethical concerns, such 

as data privacy and ownership, present additional hurdles. However, the future 

holds exciting prospects, with advancements in AI, machine learning and genomics 

integration promising to enhance the precision of plant breeding. The development 

of low-cost phenotyping systems also offers hope for smallholder farmers, allowing 

them to adopt precision agriculture without significant financial strain. The 

continued evolution of phenotyping technologies will play a necessary role in 

addressing most demanding challenges in global agriculture, particularly in 

ensuring food security amidst climate change and population growth. By enabling 

more efficient resource use, promoting sustainability, and accelerating the 

development of climate-resilient crops, phenotyping will be at the forefront of 

agricultural innovation. Moreover, as technology becomes more accessible, especially 
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with the development of affordable systems for smallholder farmers, the gap between 

high-tech and traditional farming practices may narrow. This could lead to a more 

equitable agricultural system where all farmers, regardless of scale, can profit from 

scientific and technological advancements. In this way, phenotyping will continue to 

be a driving force in the future of global agriculture, contributing to a more 

sustainable, productive and resilient food system. 
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