ON PARA-SASAKIAN MANIFOLDS

Ahmet YILDIZ ${ }^{1}$, Mine TURAN ${ }^{1}$, Bilal Eftal ACET 2
${ }^{1}$ Dumlupınar University, Faculty of Arts and Science, Department of Mathematics, Kütahya
${ }^{2}$ Adıyaman University, Faculty of Arts and Science, Department of Mathematics, Adıyaman ahmetyildiz@dumlupinar.edu.tr minegturan@hotmail.com eacet@adiyaman.edu.tr

Geliş Tarihi:12.08.2010 Kabul Tarihi: 05.01.2011

Abstract

The object of the present paper is to study Para-Sasakian manifolds satisfying certain conditions on the curvature tensor. M.S.C. 2000: 53B20, 53C15, 53C25.

Key words: Sasakian manifolds, Para-Sasakian manifolds, Weyl-pseudosymmetric manifolds.

PARA-SASAKIAN MANIFOLDLAR ÜZERİNE

ÖZET

Bu çalışmanın amacı eğrilik tensörüüzerinde belirli şartları sağlayan Para-Sasakian manifoldları incelemektir.

Anahtar Kelimeler: Sasakian manifoldlar, Para-Sasakian manifoldlar, Weyl-pseudosimetrik manifoldlar.

1.Introduction

In ([1]), T. Adati and K. Matsumoto defined para-Sasakian and special para-Sasakian manifolds which are considered as special cases of an almost paracontact manifold introduced by I. Sato and K. Matsumoto ([10]). In the same paper, the authors studied conformally symmetric para-Sasakian manifolds and they proved that an n dimensional ($n>3$) conformally symmetric para-Sasakian manifold is conformally flat and special para-Sasakian ($n>3$). In ([5]), U. C. De and N. Guha showed that an n-dimensional Weyl-semisymmetric para-Sasakian manifold is conformally flat.

Let (M, g) be an n-dimensional differentiable manifold of class C^{∞}. We denote by ∇ the Levi-Civita connection. We define endomorphisms $R(X, Y)$ and $X \wedge Y$ by

$$
\begin{align*}
& \mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}=\left[\nabla_{\mathrm{X}}, \nabla_{\mathrm{Y}}\right] \mathrm{Z}-\nabla_{[\mathrm{X}, \mathrm{Y}]} \mathrm{Z}, \tag{1}\\
& (\mathrm{X} \wedge \mathrm{Y}) \mathrm{Z}=\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{X}-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{Y}, \tag{2}
\end{align*}
$$

respectively, where $X, Y, Z \in \chi(M)$ and $\chi(M)$ is being the Lie algebra of vector fields on M. The RiemannianChristoffel tensor R is defined by $R(X, Y, Z, W)=g(R(X, Y) Z, W), W \in \chi(M)$.

By the definition of the Weyl conformal curvature tensor C of n-dimensional ($n>3$) differentiable manifold (M, g) is given by

$$
\begin{array}{r}
C(X, Y) Z=R(X, Y) Z-\frac{1}{n-2}\left[\begin{array}{l}
g(Y, Z) Q X-g(X, Z) Q Y \\
+S(Y, Z) X-S(X, Z) Y
\end{array}\right] \tag{3}\\
+\frac{\tau}{(n-1)(n-2)}[g(Y, Z) X-g(X, Z) Y],
\end{array}
$$

where Q denotes Ricci operator, i.e. $S(X, Y)=g(Q X, Y)$ and τ is the scalar curvature of M ([11]). The Weyl conformal curvature tensor C is defined by $C(X, Y, Z, W)=g(C(X, Y) Z, W)$. If $C=0$, then M is called conformally flat.

For a $(0, k)$-tensor field $T, k \geq 1$, on (M, g) we define $R \cdot T, C \cdot T$, and $Q(g, T)$ by

$$
\begin{align*}
(R(X, Y) \cdot T)\left(X_{1}, \ldots, X_{k}\right)= & -T\left(R(X, Y) X_{1}, X_{2}, \ldots, X_{k}\right)-T\left(X_{1}, R(X, Y) X_{2}, \ldots, X_{k}\right) \\
& -\ldots-T\left(X_{1}, X_{2}, \ldots, R(X, Y) X_{k}\right), \tag{4}\\
(C(X, Y) \cdot T)\left(X_{1}, \ldots, X_{k}\right)= & -T\left(C(X, Y) X_{1}, X_{2}, \ldots, X_{k}\right)-T\left(X_{1}, C(X, Y) X_{2}, \ldots, X_{k}\right) \\
& -\ldots-T\left(X_{1}, X_{2}, \ldots, C(X, Y) X_{k}\right), \tag{5}\\
Q(g, T)\left(X_{1}, X_{2}, \ldots, X_{k}\right)= & -T\left((X \wedge Y) X_{1}, X_{2}, \ldots, X_{k}\right)-T\left(X_{1},(X \wedge Y) X_{2}, \ldots, X_{k}\right) \\
& -\ldots-T\left(X_{1}, X_{2}, \ldots,(X \wedge Y) X_{k}\right), \tag{6}
\end{align*}
$$

respectively ([7]).
If the tensor $R \cdot C$ (respectively $C \cdot R$) and $Q(g, C)$ are linearly dependent then M is called Weylpseudosymmetric. This is equivalent to

$$
R \cdot C=L_{C} Q(g, C)
$$

(respectively $C \cdot R=L_{C} Q(g, C)$), which holds on the set $U_{C}=\{x \in M: C \neq 0$ at $x\}$ where L_{C} is some function on U_{C}. If $R \cdot C=0$ then M is called Weyl-semisymmetric (see ([6]), ([7]), ([8])). If $\nabla C=0$ then M is called conformally symmetric (see [4]). It is obvious that a conformally symmetric manifold is Weyl-semisymmetric.

Furthermore we define the tensors $R(\xi, X) \cdot C$ and $C(\xi, X) \cdot R$ on (M, g) by

$$
\begin{align*}
(\mathrm{R}(\xi, \mathrm{X}) \cdot \mathrm{C})(\mathrm{Y}, \mathrm{Z}) \mathrm{W}= & \mathrm{R}(\xi, \mathrm{X}) \mathrm{C}(\mathrm{Y}, \mathrm{Z}) \mathrm{W}-\mathrm{C}(\mathrm{R}(\xi, \mathrm{X}) \mathrm{Y}, \mathrm{Z}) \mathrm{W} \\
& -\mathrm{C}(\mathrm{Y}, \mathrm{R}(\xi, \mathrm{X}) \mathrm{Z}) \mathrm{W}-\mathrm{C}(\mathrm{Y}, \mathrm{Z}) \mathrm{R}(\xi, \mathrm{X}) \mathrm{W}, \tag{8}\\
(\mathrm{C}(\xi, \mathrm{X}) \cdot R)(\mathrm{Y}, \mathrm{Z}) \mathrm{W}= & \mathrm{C}(\xi, \mathrm{X}) \mathrm{R}(\mathrm{Y}, \mathrm{Z}) \mathrm{W}-\mathrm{R}(\mathrm{C}(\xi, \mathrm{X}) \mathrm{Y}, \mathrm{Z}) \mathrm{W} \\
& -\mathrm{R}(\mathrm{Y}, \mathrm{C}(\xi, \mathrm{X}) \mathrm{Z}) \mathrm{W}-\mathrm{R}(\mathrm{Y}, \mathrm{Z}) \mathrm{C}(\xi, \mathrm{X}) \mathrm{W} .
\end{align*}
$$

In this study our aim is to obtain the characterization of P-Sasakian manifolds satisfying the conditions $R(\xi, X) \cdot C-C(\xi, X) \cdot R=0$ and $R(\xi, X) \cdot C-C(\xi, X) \cdot R=L_{C} Q(g, C)$.

2.Preliminaries

Let M be an n-dimensional contact manifold with contact form η, i.e. $\eta \wedge(d \eta)^{n} \neq 0$. It is well known that a contact manifold admits a vector field ξ, called the characteristic vector field, such that $\eta(\xi)=1$ and $d \eta(\xi, X)=0$ for every $X \in \chi(\mathrm{M})$. Moreover, M admits a Riemannian metric g and a tensor field ϕ of type $(1,1)$ such that

$$
\phi^{2}=-I+\eta \otimes \xi, \quad g(X, \xi)=\eta(X), \quad g(X, \phi Y)=d \eta(X, Y)
$$

We then say that (ϕ, ξ, η, g) is a contact metric structure. A contact metric manifold is said to be a Sasakian if

$$
\left(\nabla_{X} \phi\right) Y=g(X, Y) \xi-\eta(Y) X
$$

holds, where ∇ denotes the operator of covariant differentiation with respect of $g([3])$. In this case, we have

$$
\nabla_{X} \xi=-\phi X, \quad R(X, Y) \xi=\eta(Y) X-\eta(X) Y
$$

Now we give a structure similar to Sasakian but not contact.
An n-dimensional differentiable manifold M is said to admit an almost paracontact Riemannian structure (ϕ, ξ, η, g), where ϕ is a (1,1)- tensor field, ξ is a vector field, η is a 1-form and g is a Riemannian metric on M such that

$$
\begin{gathered}
\phi \xi=0, \quad \eta \circ \phi=0, \quad \eta(\xi)=1, \quad g(X, \xi)=\eta(X), \\
\phi^{2} X=X-\eta(X) \xi, \quad g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y),
\end{gathered}
$$

for all vector fields X and Y on M. The equation $\eta(\xi)=1$ is equivalent to $|\eta| \equiv 1$, and then ξ is just metric dual of η, where g is the Riemannian metric on M. If (ϕ, ξ, η, g) satisfy the following equations

$$
\begin{gathered}
d \eta=0, \quad \nabla_{X} \xi=\phi X \\
\left(\nabla_{X} \phi\right) Y=-g(X, Y) \xi-\eta(Y) X+2 \eta(X) \eta(Y) \xi
\end{gathered}
$$

then M is called a Para-Sasakian manifold or, briefly, a P-Sasakian manifold. Especially, a P-Sasakian manifold M is called a special para-Sasakian manifold or, briefly, a SP-Sasakian manifold if M admits a 1 -form η satisfying

$$
\left(\nabla_{X} \eta\right)(Y)=-g(X, Y)+\eta(X) \eta(Y)
$$

In a P-Sasakian manifold the following relations hold:

$$
\begin{align*}
S(X, \xi) & =(1-n) \eta(X) \tag{10}\\
\eta(R(X, Y) Z) & =g(X, Z) \eta(Y)-g(Y, Z) \eta(X) \tag{11}
\end{align*}
$$

$$
\begin{gather*}
Q \xi=-(n-1) \xi, \tag{12}\\
R(X, Y) \xi=\eta(X) Y-\eta(Y) X, \tag{13}\\
R(\xi, X) Y=\eta(X) Y-g(X, Y) \xi, \tag{14}
\end{gather*}
$$

for any vector fields $X, Y, Z \in \chi(M)$,(see ([2]),([9]) and ([10])).

A Para-Sasakian manifold M is said to be η-Einstein if its Ricci tensor S is of the form $S=a g+b \eta \otimes \eta$, where a, b are smooth functions on M ([2]).

3. Main results

In the present section our aim is to find the characterization of the P-Sasakian manifolds satisfying the conditions $R(\xi, X) \cdot C-C(\xi, X) \cdot R=0$ and $R(\xi, X) \cdot C-C(\xi, X) \cdot R=L_{C} Q(g, C)$.

Theorem 1. Let M be an n-dimensional, $n>3$, P-Sasakian manifold. If the condition $R(\xi, X) \cdot C-C(\xi, X) \cdot R=0$ holds on M then the manifold is an η-Einstein manifold.

Proof. Let $M^{n}(n>3)$ a Para-Sasakian manifold. Then from (8) and (9) we have

$$
\begin{align*}
(R(\xi, X) \cdot C)(Y, Z) W= & R(\xi, X) R(Y, Z) W-R(R(\xi, X) Y, Z) W \\
& -R(Y, R(\xi, X) Z) W-R(Y, Z) R(\xi, X) W \\
& -\frac{1}{n-2}\left[\begin{array}{l}
\mathrm{S}(\mathrm{R}(\xi, \mathrm{X}) \mathrm{Y}, \mathrm{~W}) \mathrm{Z}+\mathrm{g}(\mathrm{R}(\xi, \mathrm{X}) \mathrm{Y}, \mathrm{~W}) \mathrm{QZ} \\
-\mathrm{S}(\mathrm{R}(\xi, \mathrm{X}) \mathrm{Z}, \mathrm{~W}) \mathrm{Y}-\mathrm{g}(\mathrm{R}(\xi, \mathrm{X}) \mathrm{Z}, \mathrm{~W}) \mathrm{QY} \\
-\mathrm{S}(\mathrm{Z}, \mathrm{R}(\xi, \mathrm{X}) \mathrm{W}) \mathrm{Y}+\mathrm{S}(\mathrm{Y}, \mathrm{R}(\xi, \mathrm{X}) \mathrm{W}) \mathrm{Z} \\
-\mathrm{g}(\mathrm{Z}, \mathrm{R}(\xi, \mathrm{X}) \mathrm{W}) \mathrm{QY}+\mathrm{g}(\mathrm{Y}, \mathrm{R}(\xi, \mathrm{X}) \mathrm{W}) \mathrm{QZ}
\end{array}\right] \tag{15}\\
& +\frac{\tau}{(n-1)(n-2)}\left[\begin{array}{l}
\mathrm{g}(\mathrm{R}(\xi, \mathrm{X}) \mathrm{Y}, \mathrm{~W}) \mathrm{Z}-\mathrm{g}(\mathrm{R}(\xi, \mathrm{X}) \mathrm{Z}, \mathrm{~W}) \mathrm{Y} \\
+\mathrm{g}(\mathrm{Y}, \mathrm{R}(\xi, \mathrm{X}) \mathrm{W}) \mathrm{Z}-\mathrm{g}(\mathrm{Z}, \mathrm{R}(\xi, \mathrm{X}) \mathrm{W}) \mathrm{Y}
\end{array}\right]
\end{align*}
$$

and

$$
\begin{aligned}
(C(\xi, X) \cdot R)(Y, Z) W= & C(\xi, X) R(Y, Z) W-R(C(\xi, X) Y, Z) W \\
& -R(Y, C(\xi, X) Z) W-R(Y, Z) C(\xi, X) W
\end{aligned}
$$

$$
\begin{align*}
& -\frac{1}{n-2}\left[\begin{array}{l}
\mathrm{S}(\mathrm{X}, \mathrm{R}(\mathrm{Y}, \mathrm{Z}) \mathrm{W}) \xi-\mathrm{S}(\xi, \mathrm{R}(\mathrm{Y}, \mathrm{Z}) \mathrm{W}) \mathrm{X} \\
+(1-\mathrm{n}) \mathrm{g}(\mathrm{X}, \mathrm{R}(\mathrm{Y}, \mathrm{Z}) \mathrm{W}) \xi-\eta(\mathrm{R}(\mathrm{Y}, \mathrm{Z}) \mathrm{W}) \mathrm{QX} \\
-\mathrm{S}(\mathrm{X}, \mathrm{Y}) \mathrm{R}(\xi, \mathrm{Z}) \mathrm{W}+(1-\mathrm{n}) \eta(\mathrm{Y}) \mathrm{R}(\mathrm{X}, \mathrm{Z}) \mathrm{W} \\
-(1-\mathrm{n}) \mathrm{g}(\mathrm{X}, \mathrm{Y}) \mathrm{R}(\xi, \mathrm{Z}) \mathrm{W}+\eta(\mathrm{Y}) \mathrm{R}(\mathrm{QX}, \mathrm{Z}) \mathrm{W} \\
+\mathrm{S}(\mathrm{X}, \mathrm{Z}) \mathrm{R}(\xi, \mathrm{Y}) \mathrm{W}+(1-\mathrm{n}) \eta(\mathrm{Z}) \mathrm{R}(\mathrm{Y}, \mathrm{X}) \mathrm{W} \\
+(1-\mathrm{n}) \mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{R}(\xi, \mathrm{Y}) \mathrm{W}+\eta(\mathrm{Z}) \mathrm{R}(\mathrm{Y}, \mathrm{QX}) \mathrm{W} \\
-\mathrm{S}(\mathrm{X}, \mathrm{~W}) \mathrm{R}(\mathrm{Y}, \mathrm{Z}) \xi+(1-\mathrm{n}) \eta(\mathrm{W}) \mathrm{R}(\mathrm{Y}, \mathrm{Z}) \mathrm{X} \\
-(1-\mathrm{n}) \mathrm{g}(\mathrm{X}, \mathrm{~W}) \mathrm{R}(\mathrm{Y}, \mathrm{Z}) \xi+\eta(\mathrm{W}) \mathrm{R}(\mathrm{Y}, \mathrm{Z}) \mathrm{QX}
\end{array}\right] \tag{16}\\
& +\frac{\tau}{(n-1)(n-2)}\left[\begin{array}{l}
\mathrm{g}(\mathrm{X}, \mathrm{R}(\mathrm{Y}, \mathrm{Z}) \mathrm{W}) \xi-\mathrm{g}(\xi, \mathrm{R}(\mathrm{Y}, \mathrm{Z}) \mathrm{W}) \mathrm{X} \\
-\mathrm{g}(\mathrm{X}, \mathrm{Y}) \mathrm{R}(\xi, \mathrm{Z}) \mathrm{W}+\eta(\mathrm{Y}) \mathrm{R}(\mathrm{X}, \mathrm{Z}) \mathrm{W} \\
+\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{R}(\xi, \mathrm{Y}) \mathrm{W}+\eta(\mathrm{Z}) \mathrm{R}(\mathrm{Y}, \mathrm{X}) \mathrm{W} \\
-\mathrm{g}(\mathrm{X}, \mathrm{~W}) \mathrm{R}(\mathrm{Y}, \mathrm{Z}) \xi+\eta(\mathrm{W}) \mathrm{R}(\mathrm{Y}, \mathrm{Z}) \mathrm{X}
\end{array}\right] .
\end{align*}
$$

Multiplying equations (15) and (16) with ξ and using the condition $R(\xi, X) \cdot C-C(\xi, X) \cdot R=0$, we can write

$$
\begin{align*}
& {\left[\begin{array}{l}
\mathrm{S}(\mathrm{R}(\xi, \mathrm{X}) \mathrm{Y}, \mathrm{~W}) \eta(\mathrm{Z})+(1-\mathrm{n}) \mathrm{g}(\mathrm{R}(\xi, \mathrm{X}) \mathrm{Y}, \mathrm{~W}) \eta(\mathrm{Z}) \\
-\mathrm{S}(\mathrm{R}(\xi, \mathrm{X}) \mathrm{Z}, \mathrm{~W}) \eta(\mathrm{Y})-(1-\mathrm{n}) \mathrm{g}(\mathrm{R}(\xi, \mathrm{X}) \mathrm{Z}, \mathrm{~W}) \eta(\mathrm{Y}) \\
-\mathrm{S}(\mathrm{Z}, \mathrm{R}(\xi, \mathrm{X}) \mathrm{W}) \eta(\mathrm{Y})+\mathrm{S}(\mathrm{Y}, \mathrm{R}(\xi, \mathrm{X}) \mathrm{W}) \eta(\mathrm{Z}) \\
-(1-\mathrm{n}) \mathrm{g}(\mathrm{Z}, \mathrm{R}(\xi, \mathrm{X}) \mathrm{W}) \eta(\mathrm{Y})+(1-\mathrm{n}) \mathrm{g}(\mathrm{Y}, \mathrm{R}(\xi, \mathrm{X}) \mathrm{W}) \eta(\mathrm{Z}) \\
-\mathrm{S}(\mathrm{X}, \mathrm{R}(\mathrm{Y}, \mathrm{Z}) \mathrm{W})-(1-\mathrm{n}) \mathrm{g}(\mathrm{X}, \mathrm{R}(\mathrm{Y}, \mathrm{Z}) \mathrm{W}) \\
+\mathrm{S}(\mathrm{X}, \mathrm{Y}) \mathrm{g}(\mathrm{Z}, \mathrm{~W})-(1-\mathrm{n}) \mathrm{g}(\mathrm{X}, \mathrm{Y}) \mathrm{g}(\mathrm{Z}, \mathrm{~W}) \\
+\mathrm{S}(\mathrm{X}, \mathrm{Z}) \mathrm{g}(\mathrm{Y}, \mathrm{~W})+(1-\mathrm{n}) \mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{g}(\mathrm{Y}, \mathrm{~W})
\end{array}\right]} \tag{17}\\
& +\frac{\tau}{(n-1)(n-2)}\left[\begin{array}{l}
\mathrm{g}(\mathrm{R}(\xi, \mathrm{X}) \mathrm{Y}, \mathrm{~W}) \eta(\mathrm{Z})-\mathrm{g}(\mathrm{R}(\xi, \mathrm{X}) \mathrm{Z}, \mathrm{~W}) \eta(\mathrm{Y}) \\
+\mathrm{g}(\mathrm{Y}, \mathrm{R}(\xi, \mathrm{X}) \mathrm{W}) \eta(\mathrm{Z}) \mathrm{g}(\mathrm{Z}, \mathrm{R}(\xi, \mathrm{X}) \mathrm{W}) \eta(\mathrm{Y}) \\
-\mathrm{g}(\mathrm{X}, \mathrm{R}(\mathrm{Y}, \mathrm{Z}) \mathrm{W})-\mathrm{g}(\mathrm{X}, \mathrm{Y}) \mathrm{g}(\mathrm{Z}, \mathrm{~W})+\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{g}(\mathrm{Y}, \mathrm{~W})
\end{array}\right]=0 .
\end{align*}
$$

Putting $Y=W=\xi$ in (17) and then using (10) and (11), we get

$$
\begin{align*}
& -\frac{1}{n-2}[5(1-\mathrm{n}) \mathrm{g}(\mathrm{X}, \mathrm{Z})-8(1-\mathrm{n}) \eta(X) \eta(Y)+3 S(X, Z)] \\
& +\frac{4 \tau}{(n-1)(n-2)}[\mathrm{g}(\mathrm{X}, \mathrm{Z})-\eta(X) \eta(Z)]=0 \tag{18}
\end{align*}
$$

From equation (18), we obtain

$$
\begin{align*}
S(X, Z) & =\left(\frac{4 \tau}{3(n-1)}-\frac{5}{3}(1-n)\right) g(X, Z) \\
& +\left(\frac{8}{3}(1-n)-\frac{4 \tau}{3(n-1)}\right) \eta(X) \eta(Z) . \tag{19}
\end{align*}
$$

Thus M is an η-Einstein manifold.

Theorem 2. Let M be an n-dimensional, $n>3$, P-Sasakian manifold. If the condition $R(\xi, X) \cdot C-C(\xi, X) \cdot R=L_{C} Q(g, C)$ is satisfied on M, then M is either conformally flat, in which case M is a SP-Sasakian manifold, or $L_{C}=-1$ holds on M.

Proof. Assume that $M,(n>3)$, is satisfying the condition $R(\xi, X) \cdot C-C(\xi, X) \cdot R=L_{C} Q(g, C)$. So we have

$$
\begin{align*}
& \mathrm{R}(\xi, \mathrm{X}) \mathrm{C}(\mathrm{Y}, \mathrm{Z}) \mathrm{W}-\mathrm{C}(\mathrm{R}(\xi, \mathrm{X}) \mathrm{Y}, \mathrm{Z}) \mathrm{W}-\mathrm{C}(\mathrm{Y}, \mathrm{R}(\xi, \mathrm{X}) \mathrm{Z}) \mathrm{W} \\
& -\mathrm{C}(\mathrm{Y}, \mathrm{Z}) \mathrm{R}(\xi, \mathrm{X}) \mathrm{W}-\mathrm{C}(\xi, \mathrm{X}) \mathrm{R}(\mathrm{Y}, \mathrm{Z}) \mathrm{W}+\mathrm{R}(\mathrm{C}(\xi, \mathrm{X}) \mathrm{Y}, \mathrm{Z}) \mathrm{W} \\
& +\mathrm{R}(\mathrm{Y}, \mathrm{C}(\xi, \mathrm{X}) \mathrm{Z}) \mathrm{W}+\mathrm{R}(\mathrm{Y}, \mathrm{Z}) \mathrm{C}(\xi, \mathrm{X}) \mathrm{W} \tag{20}\\
& =\mathrm{L}_{C}\left[\begin{array}{l}
(\xi \wedge \mathrm{X}) \mathrm{C}(\mathrm{Y}, \mathrm{Z}) \mathrm{W}-\mathrm{C}((\xi \wedge \mathrm{X}) \mathrm{Y}, \mathrm{Z}) \mathrm{W} \\
-\mathrm{C}(\mathrm{Y},(\xi \wedge \mathrm{X}) \mathrm{Z}) \mathrm{W}-\mathrm{C}(\mathrm{Y}, \mathrm{Z})(\xi \wedge \mathrm{X}) \mathrm{W}
\end{array}\right] .
\end{align*}
$$

Using (6) and multypling equation (20) with ξ, we have

$$
\begin{align*}
& \eta(\mathrm{R}(\xi, \mathrm{X}) \mathrm{C}(\mathrm{Y}, \mathrm{Z}) \mathrm{W})-\eta(\mathrm{C}(\mathrm{R}(\xi, \mathrm{X}) \mathrm{Y}, \mathrm{Z}) \mathrm{W})-\eta(\mathrm{C}(\mathrm{Y}, \mathrm{R}(\xi, \mathrm{X}) \mathrm{Z}) \mathrm{W}) \\
& -\eta(\mathrm{C}(\mathrm{Y}, \mathrm{Z}) \mathrm{R}(\xi, \mathrm{X}) \mathrm{W})-\eta(\mathrm{C}(\xi, \mathrm{X}) \mathrm{R}(\mathrm{Y}, \mathrm{Z}) \mathrm{W})+\eta(\mathrm{R}(\mathrm{C}(\xi, \mathrm{X}) \mathrm{Y}, \mathrm{Z}) \mathrm{W}) \\
& +\eta(\mathrm{R}(\mathrm{Y}, \mathrm{C}(\xi, \mathrm{X}) \mathrm{Z}) \mathrm{W})+\eta(\mathrm{R}(\mathrm{Y}, \mathrm{Z}) \mathrm{C}(\xi, \mathrm{X}) \mathrm{W}) \\
& =L_{C}\left[\begin{array}{l}
\mathrm{g}(\mathrm{X}, \mathrm{C}(\mathrm{Y}, \mathrm{Z}) \mathrm{W})-\eta(\mathrm{C}(\mathrm{Y}, \mathrm{Z}) \mathrm{W}) \eta(\mathrm{X}) \\
-\mathrm{g}(\mathrm{X}, \mathrm{Y}) \eta(\mathrm{X}(\xi, \mathrm{Z}) \eta(\mathrm{C}(\mathrm{Y}, \xi) \mathrm{W})+\eta(\mathrm{Y}) \eta(\mathrm{C}(\mathrm{X}, \mathrm{Z}) \mathrm{W}) \\
+\eta(\mathrm{W}) \eta(\mathrm{C}(\mathrm{Y}, \mathrm{Z}) \mathrm{X})
\end{array}\right] \tag{21}
\end{align*}
$$

Using equations (10) and (11) in (21), we have

$$
\begin{aligned}
& \eta(\mathrm{C}(\mathrm{Y}, \mathrm{Z}) \mathrm{W}) \eta(\mathrm{X})-\mathrm{g}(\mathrm{X}, \mathrm{C}(\mathrm{Y}, \mathrm{Z}) \mathrm{W})-\eta(\mathrm{C}(\mathrm{R}(\xi, \mathrm{X}) \mathrm{Y}, \mathrm{Z}) \mathrm{W}) \\
& -\eta(\mathrm{C}(\mathrm{Y}, \mathrm{R}(\xi, \mathrm{X}) \mathrm{Z}) \mathrm{W})-\eta(\mathrm{C}(\mathrm{Y}, \mathrm{Z}) \mathrm{R}(\xi, \mathrm{X}) \mathrm{W})-\eta(\mathrm{C}(\xi, \mathrm{X}) \mathrm{R}(\mathrm{Y}, \mathrm{Z}) \mathrm{W}) \\
& +\mathrm{g}(\mathrm{C}(\xi, \mathrm{X}) \mathrm{Y}, \mathrm{~W}) \eta(\mathrm{Z})-\mathrm{g}(\mathrm{Z}, \mathrm{~W}) \eta(\mathrm{C}(\xi, \mathrm{X}) \mathrm{Y})+\mathrm{g}(\mathrm{Y}, \mathrm{~W}) \eta(\mathrm{C}(\xi, \mathrm{X}) \mathrm{Z}) \\
& -\mathrm{g}(\mathrm{C}(\xi, \mathrm{X}) \mathrm{Z}, \mathrm{~W}) \eta(\mathrm{Y})+\mathrm{g}(\mathrm{Y}, \mathrm{C}(\xi, \mathrm{X}) \mathrm{W}) \eta(\mathrm{Z})-\mathrm{g}(\mathrm{Z}, \mathrm{C}(\xi, \mathrm{X}) \mathrm{W}) \eta(\mathrm{Y}) \\
& =L_{C}\left[\begin{array}{c}
\mathrm{g}(\mathrm{X}, \mathrm{C}(\mathrm{Y}, \mathrm{Z}) \mathrm{W})-\eta(\mathrm{C}(\mathrm{Y}, \mathrm{Z}) \mathrm{W}) \eta(\mathrm{X}) \\
-\mathrm{g}(\mathrm{X}, \mathrm{Y}) \eta(\mathrm{C}(\xi, \mathrm{Z}) \mathrm{W})+\eta(\mathrm{Y}) \eta(\mathrm{C}(\mathrm{X}, \mathrm{Z}) \mathrm{W}) \\
-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \eta(\mathrm{C}(\mathrm{Y}, \xi) \mathrm{W})+\eta(\mathrm{Z}) \eta(\mathrm{C}(\mathrm{Y}, \mathrm{X}) \mathrm{W}) \\
+\eta(\mathrm{W}) \eta(\mathrm{C}(\mathrm{Y}, \mathrm{Z}) \mathrm{X})
\end{array}\right] .
\end{aligned}
$$

Interchanging X and Y in (22), we obtain

$$
\begin{align*}
& \eta(\mathrm{C}(\mathrm{X}, \mathrm{Z}) \mathrm{W}) \eta(\mathrm{Y})-\mathrm{g}(\mathrm{Y}, \mathrm{C}(\mathrm{X}, \mathrm{Z}) \mathrm{W})-\eta(\mathrm{C}(\mathrm{R}(\xi, \mathrm{Y}) \mathrm{X}, \mathrm{Z}) \\
& -\eta(\mathrm{C}(\mathrm{X}, \mathrm{R}(\xi, \mathrm{Y}) \mathrm{Z}) \mathrm{W})-\eta(\mathrm{C}(\mathrm{X}, \mathrm{Z}) \mathrm{R}(\xi, \mathrm{Y}) \mathrm{W})-\eta(\mathrm{C}(\xi, \mathrm{Y}) \mathrm{R}(\mathrm{X}, \mathrm{Z}) \mathrm{W}) \\
& +\mathrm{g}(\mathrm{C}(\xi, \mathrm{Y}) \mathrm{X}, \mathrm{~W}) \eta(\mathrm{Z})-\mathrm{g}(\mathrm{Z}, \mathrm{~W}) \eta(\mathrm{C}(\xi, \mathrm{Y}) \mathrm{X})+\mathrm{g}(\mathrm{X}, \mathrm{~W}) \eta(\mathrm{C}(\xi, \mathrm{Y}) \mathrm{Z}) \tag{23}\\
& -\mathrm{g}(\mathrm{C}(\xi, \mathrm{Y}) \mathrm{Z}, \mathrm{~W}) \eta(\mathrm{X})+\mathrm{g}(\mathrm{X}, \mathrm{C}(\xi, \mathrm{Y}) \mathrm{W}) \eta(\mathrm{Z})-\mathrm{g}(\mathrm{Z}, \mathrm{C}(\xi, \mathrm{Y}) \mathrm{W}) \eta(\mathrm{X}) \\
& =L_{C}\left[\begin{array}{l}
\mathrm{g}(\mathrm{Y}, \mathrm{C}(\mathrm{X}, \mathrm{Z}) \mathrm{W})-\eta(\mathrm{C}(\mathrm{X}, \mathrm{Z}) \mathrm{W}) \eta(\mathrm{Y}) \\
-\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \eta(\mathrm{C}(\xi, \mathrm{Z}) \mathrm{W})+\eta(\mathrm{C}(\mathrm{X}) \eta(\mathrm{C}(\mathrm{Y}, \mathrm{Z}) \mathrm{W}) \\
+\eta(\mathrm{W}) \eta(\mathrm{C}(\mathrm{X}, \mathrm{Z}) \mathrm{Y})
\end{array}\right] .
\end{align*}
$$

Substracting (23) from (22), we get

$$
\begin{align*}
& \eta(\mathrm{C}(\mathrm{Y}, \mathrm{Z}) \mathrm{W}) \eta(\mathrm{X})-\eta(\mathrm{C}(\mathrm{X}, \mathrm{Z}) \mathrm{W}) \eta(\mathrm{Y})-\mathrm{g}(\mathrm{X}, \mathrm{C}(\mathrm{Y}, \mathrm{Z}) \mathrm{W})+\mathrm{g}(\mathrm{Y}, \mathrm{C}(\mathrm{X}, \mathrm{Z}) \mathrm{W}) \\
& +\eta(\mathrm{C}(\mathrm{R}(\mathrm{X}, \mathrm{Y}) \xi, \mathrm{Z}) \mathrm{W})-\eta(\mathrm{C}(\mathrm{Y}, \mathrm{R}(\xi, \mathrm{X}) \mathrm{Z}) \mathrm{W})+\eta(\mathrm{C}(\mathrm{X}, \mathrm{R}(\xi, \mathrm{Y}) \mathrm{Z}) \mathrm{W}) \\
& -\eta(\mathrm{C}(\mathrm{Y}, \mathrm{Z}) \mathrm{R}(\xi, \mathrm{X}) \mathrm{W})+\eta(\mathrm{C}(\mathrm{X}, \mathrm{Z}) \mathrm{R}(\xi, \mathrm{Y}) \mathrm{W})-\eta(\mathrm{C}(\xi, \mathrm{X}) \mathrm{R}(\mathrm{Y}, \mathrm{Z}) \mathrm{W}) \tag{24}\\
& +\eta(\mathrm{C}(\xi, \mathrm{Y}) \mathrm{R}(\mathrm{X}, \mathrm{Z}) \mathrm{W})+\mathrm{g}(\mathrm{Y}, \mathrm{~W}) \eta(\mathrm{C}(\xi, \mathrm{X}) \mathrm{Z})-\mathrm{g}(\mathrm{X}, \mathrm{~W}) \eta(\mathrm{C}(\xi, \mathrm{Y}) \mathrm{Z}) \\
& =L_{C}\left[\begin{array}{l}
\mathrm{g}(\mathrm{X}, \mathrm{C}(\mathrm{Y}, \mathrm{Z}) \mathrm{W})-\mathrm{g}(\mathrm{Y}, \mathrm{C}(\mathrm{X}, \mathrm{Z}) \mathrm{W})+2 \eta(\mathrm{C}(\mathrm{X}, \mathrm{Z}) \mathrm{W}) \eta(\mathrm{Y}) \\
-2 \eta(\mathrm{C}(\mathrm{Y}, \mathrm{Z}) \mathrm{W}) \eta(\mathrm{X})-2 \eta(\mathrm{Z}) \eta(\mathrm{C}(\mathrm{X}, \mathrm{Y}) \mathrm{W})+\mathrm{g}(\mathrm{X}, \mathrm{Z}) \eta(\mathrm{C}(\xi, \mathrm{Y}) \mathrm{W}) \\
-\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \eta(\mathrm{C}(\xi, \mathrm{Y}) \mathrm{W})+\eta(\mathrm{W}) \eta(\mathrm{C}(\mathrm{Y}, \mathrm{X}) \mathrm{Z})
\end{array}\right] .
\end{align*}
$$

Putting $Z=\xi$ in (24) we get

$$
=\left[1+L_{C}\right]\left[\begin{array}{c}
3 \eta(\mathrm{C}(\mathrm{X}, \xi) \mathrm{W}) \eta(\mathrm{Y})-3 \eta(\mathrm{C}(\mathrm{Y}, \xi) \mathrm{W}) \eta(\mathrm{X})+\mathrm{g}(\mathrm{X}, \mathrm{C}(\mathrm{Y}, \xi) \mathrm{W}) \tag{25}\\
-\mathrm{g}(\mathrm{Y}, \mathrm{C}(\mathrm{X}, \xi) \mathrm{W})-2 \eta(\mathrm{C}(\mathrm{X}, \mathrm{Y}) \mathrm{W})
\end{array}\right]=0
$$

So a contraction of (25) with respect to X gives us

$$
\begin{equation*}
\left[1+L_{C}\right][\eta(\mathrm{C}(\xi, \mathrm{Y}) \mathrm{W})]=0 . \tag{26}
\end{equation*}
$$

If $L_{C}=0$ then M is Weyl-semisymmetric and so equation (26) is reduced to

$$
\begin{equation*}
\eta(\mathrm{C}(\xi, \mathrm{Y}) \mathrm{W})=0 \tag{27}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\mathrm{S}(\mathrm{Y}, \mathrm{~W})=\left(\frac{\tau}{(n-1)}+1\right) g(Y, W)-\left(\frac{\tau}{(n-1)}+n\right) \eta(Y) \eta(W) . \tag{28}
\end{equation*}
$$

Therefore M is an η-Einstein manifold. So using (27) and (28) the equation (24) takes the form

$$
\mathrm{C}(\mathrm{Y}, \mathrm{Z}, \mathrm{~W}, \mathrm{X})=0
$$

which means that M is conformally flat. So by ([2]), M is a SP-Sasakian manifold.
If $L_{C} \neq 0$ and $\eta(\mathrm{C}(\xi, \mathrm{Y}) \mathrm{W})=0$, then $1+L_{C}=0$, which gives $L_{C}=-1$. This completes the proof of the our Theorem.

REFERENCES

[1] Adati T. and Matsumoto K., On conformally recurrent and conformally symmetric P-Sasakian manifolds, (1997), TRU Math.,13, 25-32.
[2] Adati T. and Miyazawa, T., On P-Sasakian manifolds satisfying certain conditions, (1979), Tensor N.S., 33, 173-178.
[3] Blair D.E., Contact manifolds in Riemannian geometry, (1976), Lectures Notes in Mathematics 509, Springer-Verlag, Berlin, 146p.
[4] Chaki M.C., and Gupta B., On conformally symmetric spaces, (1963), Indian J. Math., 5, 113-122.
[5] De U. C. and Guha N., On a type of P-Sasakian manifold, (1992), Istanbul Univ. Fen Fak. Mat. Der., 3539.
[6] Deszcz R., Examples of four-dimensional Riemannian manifolds satisfying some pseudo-symmetry curvature conditions, Geometry and Topology of submanifolds, II (Avignon, 1988), 134-143, World Sci. Publishing, Teaneck, NJ, (1990).
[7] Deszcz R., On pseudosymmetric spaces, (1990), Bull. Soc. Math. Belg., 49, 134-145.
[8] Deszcz R., On four-dimensional Riemannian warped product manifolds satisfying certain pseudosymmetry curvature conditions, (1991), Colloq. Math., 1, 103-120.
[9] Sato I., On a structure similar to the almost contact structure, (1976), Tensor N.S., 30, 219-224.
[10] Sato I. and Matsumoto K., On P-Sasakian manifolds satisfying certain conditions, (1979), Tensor N.S., 33, 173-178.
[11] Yano K., Kon M., Structures on manifolds, (1984), World Scientific, 508p.

