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Abstract 

Reliable epidemiological data is a prerequisite for meaningful economic analysis of 

pandemic-related policies, as it provides the foundation for evaluating public health measures 

and their economic impacts. In Türkiye, the government did not disclose the number of all 

confirmed COVID-19 cases for several months after the relaxation of initial mobility 

restrictions in June 2020, creating significant challenges for assessing the economic and 

health tradeoffs of these policies. This paper addresses this issue by developing a system 

dynamics approach that can identify and quantify epidemiological underestimation under 

extreme data limitations. Our simulation algorithm builds on a nonlinear dynamical model 

that explicitly accounts for individuals that are exposed but not yet infectious and requires 

only a few reliable data points. Results imply large deviations between official and estimated 

figures, and counterfactual experiments show that social distancing, if practiced well and long 

enough, would have been highly effective for the containment of COVID-19. 
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Görünmeyeni Ölçmek: COVID-19 için Epidemiyolojik 

Eksik Tahminleme Sorunu  

 

 

Öz 

Güvenilir epidemiyolojik veriler, pandemiyle ilişkili politikaların kamu sağlığı önlemleri ve 

ekonomik etkiler açısından anlamlı bir şekilde analiz edilebilmesi için zorunlu bir ön 

koşuldur. Türkiye’de hükümet, ilk hareket kısıtlamalarının Haziran 2020’de 

gevşetilmesinden sonraki aylar boyunca, teyit edilen tüm COVID-19 vakalarının sayısını 

açıklamamış ve bu durum, bu politikaların ekonomik ve sağlık ödünleşmelerinin 

değerlendirilmesini ciddi şekilde zorlaştırmıştır. Bu makale, aşırı veri sınırlılıkları altında bile 

epidemiyolojik eksik tahminlemeyi tespit edebilen ve nicel olarak değerlendirebilen bir 

sistem dinamiği yaklaşımı geliştirmektedir. Simülasyon algoritmamız, virüse maruz kalan 

fakat henüz bulaştırıcı olmayan bireyleri açıkça dikkate alan bir doğrusal olmayan dinamik 

model üzerinde inşa edilmekte ve sadece birkaç güvenilir veri noktasına sahip olunmasını 

gerektirmektedir. Bulgular, resmî ve tahmin ettiğimiz sayılar arasında büyük farklılaşmalara 

işaret etmekte, karşıolgusal deneyler sosyal mesafe politikalarının yeterince iyi biçimde ve 

yeterince uzun süre uygulandığında COVID-19’un kontrol altında tutulması için oldukça 

etkili olabileceğini göstermektedir. 

JEL Kodları: C32, C63, I18 

Anahtar sözcükler: doğrusal olmayan sistemler, SEIRD modeli, eksik raporlama, sosyal 

mesafe 
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1. Introduction 

The COVID-19 pandemic led governments across the globe to impose mobility 

restrictions on people, also known as lockdown policies. The primary aim of these policies 

was to control the pandemic by reducing the speed of virus transmission through minimizing 

physical contact. However, these restrictions resulted in substantial contractions in real 

economic activity, impacting both supply and demand channels. By the first quarter of 2020, 

many countries experienced the largest economic downturns in recent history, underscoring 

the tradeoffs inherent in pandemic management strategies. 

The earliest works by economists on the COVID-19 pandemic emphasized the 

necessity of evaluating the tradeoffs between economic and public health outcomes. Novel 

concepts such as the pandemic possibility frontier highlighted how fewer deaths could be 

achieved only under stricter mobility restrictions, which, in turn, imposed larger economic 

costs (e.g., Kaplan, Moll, & Violante, 2020). Yet, subsequent studies suggested that the 

relationship between economic and pandemic outcomes could be more nuanced. For instance, 

tighter and longer initial lockdowns might create a more stable public health environment for 

subsequent months, thus potentially mitigating long-term economic costs (e.g., Çakmaklı, 

Demiralp, Özcan, Yeşiltaş, & Yıldırım, 2023). Such insights gave rise to the “hammer and 

dance” framework, which identified the optimal strategy for managing the pandemic as one 

of imposing timely, stringent lockdowns (the hammer) and gradually relaxing them as the 

situation improved (the dance) (Hellwig, Assenza, Collard, Dupaigne, Feve, Kankanamge, & 

Werquin, 2022). 

Central to all these analyses is the assumption of reliable epidemiological data. 

However, significant underestimation—arising from either unintentional gaps in testing or 

intentional data manipulation—challenges this foundation, leaving economic analyses 

vulnerable to inaccuracies. This article addresses this critical gap by presenting a system 

dynamics approach that identifies and quantifies epidemiological underestimation, offering a 

robust tool to ensure that economic analyses are grounded in reliable data. By focusing on 

Türkiye’s experience during the COVID-19 pandemic, the study provides broader insights 

into how such underestimation can be addressed in contexts of extreme data limitations. 

Epidemiological underestimation, as demonstrated in the case of Türkiye, poses 

substantial challenges for accurately managing public health crises and evaluating their 

economic consequences. Successful management of a pandemic in any case necessitates the 

availability of reliable estimates of epidemiological variables such as daily infection rates and 

cumulative case counts. The challenge in this respect is epidemiological underestimation. As 

recently classified by Millimet and Parmeter (2022), epidemiological underestimation has 

two general types, (i) under-ascertainment problems that are mainly due to poor performance 
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in testing and surveillance, and (ii) underreporting problems that have unintentional and/or 

intentional causes. Unintentional underreporting is associated with misdiagnosis of 

individuals that recover or die without diagnosed with the disease. Intentional underreporting, 

on the other hand, is a result of corrupt data disclosure practices pursued for the legitimization 

of certain economic policies and public health measures. 

Starting from the very early days of the COVID-19 pandemic, there has been a 

growing literature on epidemiological underestimation (e.g., Dougherty, Smith, Carson, & 

Ogden, 2021; Ghaffarzadegan & Rahmandad, 2020; Giordano et al., 2020; Korolev, 2021; 

Krantz & Srinivasa Rao, 2020; Millimet & Parmeter, 2022; Rahmandad, Lim, & Sterman, 

2021; Sawano et al., 2020; Wu et al., 2020). Several studies have demonstrated the extent of 

underestimation for COVID-19 by documenting the weekly excess deaths observed during 

the pandemic relative to the death counts of earlier years (e.g., Karlinsky & Kobak, 2021; 

Kung et al., 2021; Vandoros, 2020). Another group of studies has used forensic methods such 

as the Benford (1938) Law to investigate whether governments misreport COVID-19 

statistics (e.g., Adıgüzel, Cansunar, & Çörekçioğlu, 2020; Balashov, Yan, & Zhu, 2020; Isea, 

2020; Kapoor, Malani, Ravi, & Agrawal, 2020). 2  Finally, some studies have explored 

epidemiological underestimation by constructing compartmental epidemiology models à la 

Kermack and McKendrick (1927) and estimating these models with classical and Bayesian 

techniques as well as simulation-based algorithms (e.g., Çakmaklı & Şimşek, 2021; Chudik, 

Pesaran, & Rebucci, 2021; Ghaffarzadegan & Rahmandad, 2020; Korolev, 2021; Millimet & 

Parmeter, 2022; Rahmandad, Lim, & Sterman, 2021). Clearly, the first two groups of studies 

build on ex post methodologies and cannot identify the actual epidemiological structure that 

features nonlinear dynamics and reinforcing and/or balancing feedback loops. 

In this paper, we develop a system dynamics approach to detect the existence and 

severity of underestimation in the case of COVID-19 under extreme data limitations. As in 

the third group of studies mentioned above, we use a compartmental epidemiology model to 

accurately capture the actual progression of the pandemic in time. Specifically, we extend the 

Susceptible-Exposed-Infectious-Recovered-Deceased (SEIRD) model with underestimation 

and time-varying social distancing.3  As we discuss below in detail, we keep the model 

intentionally simple since we develop our simulation algorithm to work with only a few 

reliable data points and without any reliable data on key variables such as hospitalizations 

and intubated patients. Specifically, our model has only one reinforcing feedback loop (i.e., 

 
2 The Benford Law states that, in many of the naturally-occurring groups of numbers, the first digit is not 

uniformly distributed and is expected to be small. Large deviations from the theoretical Benford distribution are 

therefore interpreted as manipulated or fraudulent data. 
3 Many papers in the related literature work with SIR or SIRD versions, but the virus causing COVID-19 has a 

strictly positive incubation period. Hence, one needs to explicitly account for the number of individuals that are 

infected but not yet infectious. 
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contagion) and two exogenous driving forces (i.e., social distancing and underestimation). 

Using Google’s mobility data for time-varying social distancing and fixing some of the 

disease-specific parameters at the outset, we calibrate the country-specific parameters of the 

model in a rigorous manner. Building on these, we estimate the total numbers of cases and 

deaths and then compare them with official statistics. Our system dynamics approach 

naturally lends itself to investigate the effects of social distancing on cases and deaths using 

counterfactual experiments as well. 

Our methodological contribution to the literature on epidemiological underestimation 

is that the model-based algorithm we develop works when official statistics are almost 

completely unreliable. That is, we are able to estimate the actual headcounts of cases and 

deaths for the COVID-19 pandemic only with a few reliable data points. The problematic 

second wave of the pandemic in Türkiye, as we discuss below in detail, requires exactly this 

type of algorithm since the Turkish government did not disclose the number of all confirmed 

COVID-19 cases for several months. Clearly, with appropriate modifications, our algorithm 

can be applied to any other country and any other epidemic disease. 

Our results for Türkiye show that the actual cumulative death count may be as large 

as 27,437 deaths by December 10th, 2020 for which the official cumulative death count is 

15,571. We also estimate that, from the second week of June 2020 to the last week of 

November 2020, the total number of confirmed cases remains considerably larger than the 

official figures. At its highest, the difference is around 1 million people in late November. 

Our counterfactual analyses indicate that a later relaxation of mobility restrictions in the 

beginning of July would imply around 3,500 fewer deaths by December 10th, 2020. Finally, 

we show that the total death count by this date would be as low as 10,373 if social distancing 

was sustained at its historical maximum observed in the last week of April 2020 during the 

initial lockdown. 

 

2. Background and Motivation 

In epidemiology, underestimation of cases and deaths is a serious challenge (Gibbons 

et al., 2014; Noufaily, 2019). Epidemiologists try to determine the size of epidemic risks to 

inform policymakers once a disease outbreak occurs. Social scientists from various 

disciplines aim to understand demographic, economic, political, and social consequences of 

an epidemic or a pandemic. Governments need to develop appropriate policies to control the 

spread of the disease and minimize the costs associated with it. 

Underestimation is more likely to occur in the initial stages of an extreme event such 

as the COVID-19 pandemic. The standard procedures in regards to first response, 
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mobilization of resources, and data disclosure practices develop as people and governments 

build experience around the event. It is almost unavoidable to have underestimation due to 

under-ascertainment and unintentional underreporting during the first weeks and months 

following the first exposure to the event. However, these types of unintentional 

underestimation may continue in the medium and long run only when state capacity is low 

and/or the government has an incentive to misreport epidemiological statistics. Therefore, in 

worldwide health crises, one would expect underestimation in almost any country in the initial 

stages, but it continues only in countries that lack the resources and/or incentives to correctly 

measure and report the statistics. 

The Turkish government responded to the COVID-19 pandemic with several non-

pharmaceutical interventions (NPIs) after the first case in Türkiye was confirmed on March 

10th, 2020. The initial set of NPIs in Türkiye included (i) age-dependent curfews, (ii) 

workplace and school closures, (iii) the cancellation of social events and gatherings, and (iv) 

limitations on public transportation. These policy measures decreased interpersonal contact 

in public places via social distancing. As a result, the total number of confirmed cases 

exhibited a decreasing growth trend after the end of April 2020. Mobility restrictions were 

relaxed in June 2020 presumably because of severe economic costs of NPIs. 

From the first days of the pandemic to late July 2020, the Turkish government 

reported daily numbers of tests, cases, and deaths along with recovered individuals in a now-

famous Turquoise Table every night on TV screens. On July 29th, 2020, however, a “regime 

switch” happened in terms of the metrics reported in this table: The government abandoned 

reporting cases that tested positive for COVID-19 and started reporting metrics related to the 

so-called “patients,” i.e., the cases with moderate or severe symptoms only. After that, an 

alarming increase in the number of deaths in excess of previous years’ averages has surfaced 

in data from different official sources, contradicting the official COVID-19 death statistics.4 

This misreporting practice was later admitted by government officials, and it ended on 

November 25th, 2020. Still, there was no correction in the official statistics for previous 

months. 

The end result in the Turkish case is a sufficiently long period for which official 

COVID-19 statistics are completely unreliable. In such a case, likelihood-based inference 

using classical or Bayesian techniques requires the econometrician to correctly specify the 

data generating processes for measurement errors. That is, estimates necessarily depend on 

whether the structural model correctly specifies potentially time-varying and perhaps erratic 

patterns of underestimation. 

 
4 Güçlü Yaman’s excess death statistics for Türkiye, based on different official resources, can be accessed at 

https://github.com/gucluyaman/Excess-mortality-in-Turkey. 

https://github.com/gucluyaman/Excess-mortality-in-Turkey
https://github.com/gucluyaman/Excess-mortality-in-Turkey
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The alternative we propose in this paper does not require us to specify the data 

generating processes for measurement errors; we take epidemiological underestimation as an 

exogenous and unobserved driving force affecting only the official counts, not the actual 

ones. Hence, instead of attempting an econometric estimation with measurement errors, we 

develop and implement a simulation-based algorithm that exploits the SEIRD model in an 

efficient and effective way. With only one observed country-specific mobility variable and 

two (daily) epidemiological data moments that are reliable, our algorithm takes only a few 

minutes to jointly and exactly identify two country-specific structural parameters. 

Extreme data limitations in the Turkish case also motivate a sufficiently simple model. 

For the first and second waves of the pandemic in Türkiye, we do not have daily data on 

hospitalizations, intubated patients, intensive care occupancy rate, vaccinations, and other 

key health variables. For this reason, we construct a SEIRD model where contagion is the 

only decisive feedback loop.  

 

3. Model 

In this section, we introduce and analyze a version of the SEIRD model extended with 

time-varying social distancing. The SEIRD model is a dynamical, epidemiological model that 

divides population into different disease compartments (or states) on any particular day. 

These compartments are those of Susceptible (S), Exposed (E), Infectious (I), Recovered (R), 

and Deceased (D) individuals. The model determines how the fraction of people in different 

compartments change from one day to the next. 

Consider the deterministic version of the SEIRD model studied by Degue and Le Ny 

(2018) and extended with a social distancing term as in Attar and Tekin-Koru (2022). The 

laws of motion are specified by the following set of (coupled) nonlinear difference equations: 

 𝑆𝑡+1 = 𝑆𝑡 − �̅�𝜁(1 − 𝑑𝑡)2𝑆𝑡𝐼𝑡 (1) 

 𝐸𝑡+1 = 𝐸𝑡 + �̅�𝜁(1 − 𝑑𝑡)2𝑆𝑡𝐼𝑡 − �̅�𝐸𝑡 (2) 

 𝐼𝑡+1 = 𝐼𝑡 + �̅�𝐸𝑡 − (
𝛾

𝛿
) 𝐼𝑡 (3) 

 𝑅𝑡+1 = 𝑅𝑡 + 𝛾 (
1−𝛿

𝛿
) 𝐼𝑡 (4) 

 𝐷𝑡+1 = 𝐷𝑡 + 𝛾𝐼𝑡 (5) 

Here, 𝑡 ∈ {0,1, . . . } denotes the model time, and the length of a period is one day. With 

(𝑆𝑡, 𝐸𝑡 , 𝐼𝑡, 𝑅𝑡, 𝐷𝑡) denoting fractions relative to population �̅� > 0, we also have  

 𝑆𝑡 + 𝐸𝑡 + 𝐼𝑡 + 𝑅𝑡 + 𝐷𝑡 = 1 (6) 
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for any day t. For simplicity, population is assumed to be fixed in the course of disease 

progression. 

The model can be understood in the following way: When a susceptible individual 

and an infectious one get in contact, there is a strictly positive probability that the susceptible 

individual becomes exposed to the virus. The social distancing term 𝑑𝑡 ∈ [0,1] in (1) and (2) 

determines the effective transmission rate of the disease from infectious to susceptible 

individuals given (𝑆𝑡, 𝐼𝑡)  and (�̅�, 𝜁) . Here, �̅� ∈ (0,1)  is the disease-specific pure 

transmission probability, and 𝜁 is a country-specific parameter that we define and discuss 

below. The main postulate here is that, since there is always a positive probability of infection, 

a particular fraction of susceptible individuals moves to the exposed compartment on any 

day. 

The movement out of the exposed compartment is governed by the incubation period. 

Individuals in the exposed compartment are infected but not infectious yet. After the 

incubation period ends for an exposed individual, he or she moves to the infectious 

compartment. The disease-specific structural parameter �̅� approximates the fraction of those 

moving from 𝐸𝑡 to 𝐼𝑡, and it is equal to the inverse of the average incubation period of the 

virus measured in days. Clearly, when the average incubation period is shorter, individuals 

in compartment 𝐸𝑡 migrate to compartment 𝐼𝑡 at a faster pace. 

If a society achieves perfect social distancing, i.e., 𝑑𝑡 = 1 , then no susceptible 

individual gets into contact with an infectious individual, and 𝑆𝑡  does not change. When 

social distancing is not perfect, i.e., 𝑑𝑡 < 1, then the growth rate of 𝐸𝑡 increases with the 

exposure term (1 − 𝑑𝑡).5  That is, lower levels of 𝑑𝑡  imply faster transmission of the 

susceptible individuals into the exposed compartment. 

The pace of transmission is also affected by 𝜁 > 0. This is a country-specific and 

fixed parameter that we calibrate using actual data targets. The introduction of this parameter 

is necessary since the social distancing term 𝑑𝑡 enters the model in an ad hoc way, and 𝜁 

disciplines how a particular social distancing level affects the transmission probability.6 

 

 

 

 

 
5 The effect of social distancing on the progression of the disease is quadratic, i.e., (1 − 𝑑𝑡)2, since social 

distancing is assumed to be practiced symmetrically both by susceptible and by infectious individuals. 
6 Notice that �̅� ∈ (0,1) and 𝜁 > 0 cannot be separately identified. For our benchmark results, we use a fixed 

value of �̅� estimated by He, Tang, and Rong (2020). Results would remain exactly the same if we treated �̅�𝜁 as 

a single parameter. 
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Figure 1. Causal Loop Diagram of the SEIRD Model 

 
 

The movement from the transitory compartment 𝐼𝑡 to the terminal compartments 𝑅𝑡 

and 𝐷𝑡 depends on two country-specific structural parameters, 𝛾 ∈ (0,1) and 𝛿 ∈ (0,1). The 

former approximates the fraction of infectious individuals moving to the deceased 

compartment, and the latter is approximately the fraction of those dying among the resolving 

cases on a day. That is, if we denote the fraction of population in the resolving compartment 

on day 𝑡 by 𝑍𝑡, then 𝛿𝑍𝑡 is the fraction of population dying on day 𝑡, and (1 − 𝛿)𝑍𝑡 is the 

fraction of recovering population. Here, it is important to note that 𝐼𝑡 includes those cases that 

resolve on day 𝑡; we do not model the resolving compartment separately as in Fernàndez-

Villaverde and Jones (2020). As a result, the fraction of infectious individuals moving from 

𝐼𝑡 to 𝑅𝑡 also depends on (𝛾, 𝛿). On any day, then, the movement out of 𝐼𝑡 must be equal to 

the total movement into 𝑅𝑡 and 𝐷𝑡. 

Finally, we define the number of cumulative cases, denoted by 𝐶𝑡, as the total number 

of all currently or previously infected individuals: 
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 𝐶𝑡 = 𝐼𝑡 + 𝑅𝑡 + 𝐷𝑡 . (7) 

Figure 1 pictures the causal loop diagram of our simple model. The actual dynamics 

of the COVID-19 pandemic are framed within the red rectangle, and underestimation enters 

the model as an exogenous driving force that determines official counts of infectious, 

recovered, and deceased individuals. 

 

4. Analysis 

4.1. The Second Wave of the Pandemic in Türkiye 

We use the SEIRD model to study the second wave of the pandemic in Türkiye. Here, 

the second wave refers to the period during which the daily numbers of cases started 

increasing again as a result of the relaxation of NPIs in June 2020. The first task is thus to 

determine when the second wave of the pandemic really started. 

The daily increase ∆𝐼𝑡 in the number of individuals in the infectious compartment is 

a useful indicator to determine the onset of the second wave. However, since the official 

statistics in Türkiye do not include all confirmed cases (but reporting those with COVID-19 

symptoms only) before November 25th, we have analyzed the movement of excess deaths as 

well. 

From mid-April to the beginning of June, there has been a secular decrease in the 

official figures for daily COVID-19 deaths. The same pattern is observed for excess deaths, 

and these patterns are consistent with strict social distancing restrictions sustained in April 

and May. 

Sometime in June and as a result of relaxed social distancing practices, we expect to 

observe an increase in daily COVID-19 deaths. The movement of excess deaths indicates that 

daily COVID-19 deaths started increasing on the last few days of May. Besides, this upward 

trend continued until the second week of June. Hence, it is highly probable that the second 

wave started right after the relaxation of NPIs in the beginning of June. 

We compute ∆𝐼𝑡
off from the official (𝐶𝑡

off, 𝑅𝑡
off, 𝐷𝑡

off) figures using (4). Inspecting its 

movement shows that its sign is negative for all days from April 23rd to June 12th with just 

two exceptions (May 23rd and June 3rd). This recovery is consistent with social distancing 

restrictions sustained until June. Then, on June 12th, the sign is positive for five successive 

days. Such an increase almost perfectly overlaps with the timing of relaxed social distancing 

practices. Given the problems of data reliability for the period under consideration, the most 

plausible date for the onset of the second wave is thus June 12th, 2020. In fact, since the 

increasing trend starting on this date seems to be directly associated with the June 1st 
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relaxations, it is reasonable to assume that the government would have been reluctant to 

disclose the actual number of all daily COVID-19 cases. 

 

4.2. Epidemiological Data and Social Distancing Measures 

The online repository of the Center for Systems Science and Engineering at Johns 

Hopkins University is our main source of official statistics (JHU, 2021). This repository 

covers daily cumulative numbers of confirmed cases (𝐶𝑡
off) as well as recovered (𝑅𝑡

off) and 

deceased (𝐷𝑡
off) individuals. Clearly, these official statistics are not reliable especially for the 

second wave of the pandemic in Türkiye. Hence, our objective is to estimate actual, daily 

totals of 𝐶𝑡 and 𝐷𝑡 for the second wave using the SEIRD model. The official statistics are 

used for comparison purposes and only for the post-June 12 period. 

To simulate the model, we also need a proxy for the social distancing measure 𝑑𝑡. 

Daily mobility statistics published by Apple (2021) and Google (2021) are potentially useful 

in this respect since it is possible to derive a social distancing measure in percentage terms 

using such mobility statistics. However, there are various mobility indicators in each of these 

sources, and their methods of benchmarking for the pre-pandemic era also differ. It turns out 

that Google’s mobility measure for the residential areas is the most representative one since 

residential mobility is directly related with lockdown policies that limit mobility in public 

spaces. Besides, Google (2021) uses a larger time interval to normalize the pre-pandemic 

levels of mobility. 

To derive the social distancing proxy 𝑑𝑡 using the raw mobility data from Google 

(2021), we employ the following steps: First, we interpret increased mobility in residential 

areas directly as increased social distancing in public spaces. Since the raw data is already 

expressed in percentage increases relative to the pre-pandemic benchmark, dividing it by 100 

gives us a non-smoothed measure of 𝑑𝑡 that lies in the [0,1] interval. 
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Figure 2. Social Distancing in Türkiye during the COVID-19 Pandemic 

 
Notes: The raw data on residential mobility is obtained from Google (2021). 

 

In the second step, this sequence is smoothed via the Gaussian smoothing method as 

in Attar and Tekin-Koru (2022). Here, smoothing is necessary for two reasons: First, we are 

working with a deterministic version of the SEIRD model, and our main purpose is to 

generate interval estimates for cases and deaths; we do not aim to explain daily fluctuations. 

Second, the social distancing term obtained from Google is negative (but very close to zero) 

on certain days. These days are the ones where mobility is slightly lower relative to the 

benchmark period. However, in the model, these days should correspond to 𝑑𝑡 = 0 since it is 

the theoretical lower bound. Here, the Gaussian smoothing achieves exactly what we need; 

smoothed 𝑑𝑡 is equal to zero if the nonsmoothed data point is sufficiently close to zero. Figure 

2 shows the social distancing patterns in Türkiye during the COVID-19 pandemic. 

 

4.3. Identification and Calibration 

The purpose of our quantitative algorithm is to identify and calibrate the country-

specific parameters (𝜁, 𝛾, 𝛿) given the fixed values of disease-specific parameters (�̅�, �̅�). 

Identification of structural parameters in a SEIRD model using epidemiological data 

is not a straightforward task (Avery, Bossert, Clark, Ellison, & Ellison, 2020; Korolev, 2021). 
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A SEIRD model may yield observationally-equivalent epidemiological outcomes for widely 

differing parameter values. Besides, without explicit analytical solutions, identification is 

necessarily computational. 

Our identification strategy uses two data moments to identify two parameters, and we 

infer from our numerical work that identification is exact; one of the parameters is more 

sensitive to one of these data moments, and the other parameter is more sensitive to the other 

data moment (see below). 

Specifically, our strategy is centered around the simulation of the SEIRD model 

through forward recursions and builds on the following information on the actual dynamics 

of the COVID-19 pandemic (in Türkiye): 

• Verity et al. (2020) show that COVID-19 has a particular range of Infection Fatality 

Ratio (IFR), defined as the ratio of the total number of deceased individuals to the total 

number of cases: 𝐼𝐹𝑅𝑡 = 𝐷𝑡/𝐶𝑡. Their estimates suggest a lower bound of 0.39%, an 

upper bound of 1.33%, and a mean value of 0.66%. We take these IFR levels as disease-

specific parameters that must be satisfied in any country. 

• While we do not observe the actual number of cases in Türkiye before November 25th, 

2020 because of the data disclosure practices of the government, we have a particularly 

useful information for a specific date. Using the information revealed by the Minister 

of Health of Türkiye during a press interview, Uçar, Arslan, and Balcı Yapalak (2020, 

November 23) infer that the ratio of daily new cases to daily new patients, denoted 

here by CP𝑡, was equal to 6.87 on October 3rd, 2020. 

The main problem of identification we face here is the following: We presume that 

official statistics are not reliable for the period after June 12th, 2020. Hence, we do not have 

any other data moments that are sufficiently informative for the unique identification of 𝛿 

and 𝛾 for Türkiye. Consequently, we need to fix either 𝛿 or 𝛾 at the outset. 

It seems reasonable to fix the death rate 𝛿 since its interpretation is clearer compared 

to 𝛾’s—recall that 𝛿 is the daily fraction of deaths among all resolving cases on a particular 

day. With a fixed value of 𝛿 (and with various runs that use different 𝛿 values between 1% 

and 5%), we can use the two data moments described above to identify 𝜁 and 𝛾. 

How are the two data moments informative for the two country-specific structural 

parameters? Evidently, both 𝜁  and 𝛾  affect the dynamics of the disease progression in 

complicated ways because of the very nature of the SEIRD model. However, our numerical 

investigations show that, given 𝛿, the IFR targets are relatively more informative for 𝛾, and 

the case-patient ratio CP is relatively more informative for 𝜁. Hence, we believe that these 

two targets jointly and exactly identify the unknown country-specific parameters. 
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A computationally costless way of inferring 𝜁 and 𝛾 is to minimize a quadratic form 

that represents the distance between model moments and data moments. Specifically, for a 

given level of 𝛿, we minimize the following quadratic form by choosing 𝜁 and 𝛾: 

 𝑄(𝜁, 𝛾) = [IFR𝑇
data − IFR𝑇

model(𝜁, 𝛾)]
2

+ [CP𝜏
data − CP𝜏

model(𝜁, 𝛾)]
2
 (8) 

Here, 𝑇 refers to the end date of our sample, i.e., December 10th, 2020, and 𝜏 refers to 

October 3rd, 2020 for which we know the (approximate) case-patient ratio. In practice, we 

use the three values of IFR𝑇
data

 and seven different values of the death rate 𝛿. Hence, we run 

the calibration algorithm 21 times to obtain 21 different pairs of (𝜁, 𝛾) for Türkiye.7 

Needless to say, the algorithm is supplied with the “initial” values (𝑆0, 𝐸0, 𝐼0, 𝑅0, 𝐷0) 

for June 12th, 2020 that corresponds to the first day in the model, i.e., 𝑡 =  0. These values 

and the benchmark levels of (�̅�, �̅�) are borrowed from Attar and Tekin-Koru (2022). The 

pure transmission probability �̅� is equal to 0.111 as estimated by He et al. (2020), and the 

average incubation period, denoted by 1/�̅�, is set to 7 days as it is typical in the related 

literature (Tang et al., 2020). Finally, for simplicity, we set the total population of Türkiye to 

83,429,607, i.e., the official population of the country in the year 2019. Table 1 collects the 

model inputs utilized by the calibration algorithm. The initial date corresponds to 𝑡 = 0 in 

the model and to June 12th, 2020 in the data. Table 2 documents the results of three runs of 

the calibration algorithm for the death rate 𝛿 = 4% . In all of these runs, the algorithm 

minimizes 𝑄(𝜁, 𝛾) by choosing (𝜁, 𝛾) where CP𝜏
data is set to 6.87. We start with the same 

initial guesses for (𝜁, 𝛾) and use a simple routine of local optimization. Clearly, both targets 

are achieved with considerable accuracy, and the objective function 𝑄(𝜁, 𝛾) remains very 

close to zero in all three of the executions.8 

The parameter 𝜁 , determining the effective rate of transmission given the pure 

transmission probability �̅� = 0.111, is lower than unity. This means that, given (1 − 𝑑𝑡)2 

and depending on the magnitude of 𝑑𝑡 , the calibration targets revise the transmission 

probability down to a lower level. 

 

 

 
7 Since we have only two moments (m1, m2) for two parameters, we do not attempt a two-step or continuously-

updated estimation of optimal weights for these two moments. Besides, in all of the 21 specifications, we 

observe that the relative deviation (m1
model/m1

data)/(m2
model/m2

data) is close to unity, implying that optimal weights 

may not yield considerable gains. Another related issue is whether we should have defined the quadratic form 

via scaled differences (mmodel – mdata)/mdata. While rescaling is generally preferable, our results are not sensitive 

in this respect. 
8 Please see Appendix A for detailed calibration results of all 21 specifications and for technical details about 

the numerical optimization routine we use. 
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Table 1. Calibration Inputs 

 Values Sources 

Disease-specific parameters 

�̅� 

�̅� 

 

0.111 

1/7 

 

He et al. (2020) 

Tang et al. (2020) 

Initial values 

𝑆0 

𝐸0 

𝐼0 

𝑅0 

𝐷0 

 

0.99781158 

0.00008823 

0.00025576 

0.00178716 

0.00005727 

 

 

 

Attar & Tekin-Koru (2022) 

Population  

�̅� 

 

83,429,607 

 

UNPF (2021) 

Alternative IFR targets  

 

IFR𝑇
data 

 

0.39% 

0.66% 

1.33% 

 

 

Verity et al. (2020) 

 

   

Alternative death rates  

𝛿 

 

{1.0%, 1.2%, 1.5%, 2.0%, 3.0%, 4.0%, 5.0%} 

 

Table 2. Calibration Results for 𝜹 = 𝟒% and 𝐂𝐏𝝉
𝐝𝐚𝐭𝐚 = 𝟔. 𝟖𝟕 

 IFR𝑇
data = 0.66% IFR𝑇

data = 0.39% IFR𝑇
data = 1.33% 

𝜁 0.30544199 0.29011661 0.35406967 

𝛾 0.00012012 0.00004386 0.00035678 

CP𝜏
model 6.86997594 6.86998216 6.87001287 

IFR𝑇
model 0.65945713 0.38955008 1.32998076 

𝑄(𝜁, 𝛾) 0.00000030 0.00000020 0.00000000 

𝐶𝑇
model 2,133,948 2,160,373 2,062,951 

𝐶𝑇
data 1,748,567   

𝐷𝑇
model 14,072 8,416 27,437 

𝐷𝑇
data 15,751   

𝑇 Dec. 10, 2020   

𝜏 Oct. 3, 2020   
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The parameter 𝛾  determines the fraction 𝛾/𝛿  of individuals leaving the infectious 

compartment on each day for any given level of 𝛿. The algorithm returns very low levels for 

𝛾 in all of the runs. However, we also observe sizable differences for changing IFR targets. 

For 𝛿 = 4% and the upper bound IFR target of 1.33%, we have 𝛾/𝛿 = 0.0089, implying 

that, on any given day, roughly 0.9% of individuals in the infectious compartment leave for 

the recovered and deceased compartments. For the lower bound IFR target of 0.39%, this rate 

is equal to 𝛾/𝛿 = 0.0011. That is, roughly 0.1% of infectious individuals become recovered 

or deceased on a daily basis. Without actual data on the fraction 𝐼𝑡  of individuals in the 

infectious compartment, it is not possible to find a useful benchmark for comparison. But the 

model at least allows us to differentiate the individuals moving into compartment 𝑅𝑡 from 

those moving into compartment 𝐷𝑡. Recalling that compartment 𝐼𝑡 in our setup includes the 

resolving cases on day 𝑡, the parameter 𝛾 gives the fraction of infectious individuals that die 

on a day. 

 

5. Results 

We present the main results of our paper in this section. For both cases and deaths as 

well as IFR, we provide intervals for each day in our sample. Recall that we have 21 different 

specifications of (𝛿, IFR𝑇
data ) for the determination of (𝜁, 𝛾), and our interval estimations 

give the maximum-minimum bounds for each day in our sample across all 21 specifications. 

We also run two counterfactual experiments to investigate the role of social distancing for 

epidemiological outcomes.  

 

5.1. COVID-19 Deaths and Cases in Türkiye 

After obtaining the simulated data for each of the 21 specifications, we compute the 

minimums and maximums of cumulative deaths (𝐷𝑡) and cases (𝐶𝑡) for each day across 

different specifications (Figures 3 and 4, respectively). Consequently, for both cases and 

deaths, we derive the SEIRD model bounds for each day in our sample that runs from June 

12th to December 10th. Additionally, we document the SEIRD model bounds for IFR and 

compare them with the official IFR statistic for each day (Figure 5). 
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Figure 3. Cumulative COVID-19 Deaths in Türkiye 

 
Notes: This figure shows the estimated SEIRD model bounds (grey area) and 

the official figure (red circles) for cumulative COVID-19 deaths. 

 

In Figures 3, 4 and 5, the reader would notice that official statistics may or may not 

remain within the SEIRD model bounds for any given day. The model bounds for cumulative 

deaths, for instance, include the official statistic for almost the entire sample period, most 

definitely after mid-July. However, for cumulative cases and for IFR, official statistics are 

generally not included within the model bounds. They return to the model bounds only when 

they are disclosed truthfully at the very end of our sample, on December 10th. When the 

official statistic for any given day is lower than the lower bound (or higher than the upper 

bound) implied by one of the 21 runs of the SEIRD model, this identifies that the 

epidemiological variable in question is underestimated (or overestimated). In this case, the 

extent of underestimation (or overestimation) is at least the difference between the lower 

model bound and the official figure (or between the official figure and the upper model 

bound). When the official statistic for any given day is within the model bounds, however, 

the lower bound of the model is not a useful point of reference for underestimation. In such 

a case, the extent of underestimation should be evaluated by inspecting the difference between 

the upper bound implied by the model and the official figure.      
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Deaths. Figure 3 pictures the model-based results for cumulative deaths. The gray 

area is the interval we derive using the SEIRD model. The red line with circle markers is the 

official death total. 

Figure 3 shows that the vertical distance between the upper bound of the SEIRD 

model and the official figures continues to grow after late July. If we take the official COVID-

19 deaths as the most plausible minimum and the upper bound of the SEIRD model as the 

most plausible maximum, the difference on the last day of our sample is slightly less than 

13,000 deaths. Clearly, the lower bound we estimate is not informative ex post since the 

official death count is larger than this minimum for all days in the sample. 

Figure 3 also shows that, compared with the earlier period, both the upper bound we 

estimate and the official death total increase at faster rates after mid-November. This 

acceleration is observed despite the weekend curfews and some other mobility restrictions 

reinstated on November 17th. However, the increasing pace of death totals is due to the 

delayed effect of no social distancing continued until the end of August and loose social 

distancing observed in September and October. 

In short, the evolution of COVID-19 deaths originating from the SEIRD model 

indicates that official COVID-19 statistics in Türkiye underestimate the actual death toll 

during the second wave of the pandemic.9 

Cases. We present the simulation results for cumulative cases in Figure 4. Once again, 

the gray area represents the SEIRD model bounds, and the red line with circle markers is the 

official case count. 

The most significant outcomes are (i) the wide gap between the model bounds and the 

official figure, and (ii) the jump on December 10th that eventually locates the total number of 

cases within the model bounds.10 

Figure 4 shows that there is a large and growing difference between the upper bound 

originating from the SEIRD model and the official case count. The difference is more visible 

after mid-July and is around 250,000 cases in the beginning of September. At the end of 

September, the difference reaches a level slightly less than 500,000 cases, and it is over 

750,000 cases at the end of October. These dynamics are not surprising since the government 

 
9 The multiplication factor that is equal to unity on June 12th by construction persistently increases to a level 

slightly less than two at the end of our sample period. 
10 Cumulative case counts originating from our SEIRD model runs are all close to 1.3 million in mid-November. 

Hence, the SEIRD model bounds seem to be converging to each other in a particular week. While a 

mathematical proof of why this must be the case is not feasible, we explain why this is a typical feature of a 

SEIRD model in Appendix B. 
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was announcing only the patients with symptoms, at least after the end of July, and we do not 

even know what fraction of all cases in the country could have actually been confirmed. 

 

Figure 4. Cumulative COVID-19 Cases in Türkiye 

 
Notes: This figure shows the estimated SEIRD model bounds (gray area) and 

the official figure (red circles) for cumulative COVID-19 cases. 

 

On the day the government starts disclosing the daily cases confirmed through tests 

(not just the patients with symptoms), i.e., on November 25th, the difference between the 

upper bound and the official figure is 1,166,942 cumulative cases. Then, on December 10th, 

the government announces the cumulative case count (not just the cumulative patient count), 

and that particular official figure lies within our model bounds. This means that, if the official 

cumulative figure the government announced on December 10th is truthful, the SEIRD model 

performs remarkably well by targeting the IFR bounds for Türkiye. 
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Figure 5. Infection Fatality Ratio in Türkiye 

 
Notes: Infection Fatality Ratio is defined as the ratio of total death count to 

total case count. The gray area pictures the estimated SEIRD model bounds 

for IFR, and the red circles show the official figure. 

 

Infection Fatality Ratio. Figure 5 pictures the evolution of IFR from June 12th to 

December 10th where the gray area is again representing the SEIRD model bounds and the 

red line with circle markers the official ratio. Recall that the SEIRD model presumes that the 

June 12th official data is correct. The model then targets IFR𝑇
model

 at the end of the sample at 

three different levels. 

The figure shows that the official ratio remains much larger than the SEIRD model 

maximum after the first week of July. The official ratio abruptly drops on December 10th 

when the Ministry of Health started reporting the total number of confirmed cases. On this 

day, the model bounds include the official ratio as in Figure 4. 

Similar to the dynamics of cumulative cases discussed above, we learn a great deal 

about the strange data disclosure practices of the government from Figure 5. First, the 

evolution of the official IFR figure throughout the second wave has such a strange shape, and 

it remains well above 2% most possibly as a result of official case count being too low. 

Second, the official IFR figure on December 10th lies within the model bounds, and this shows 

that, if the government’s December 10th announcement is truthful, then the version of the 
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SEIRD model we calibrate for the pandemic in Türkiye is exceptionally well-performing even 

though it only has five compartments. 

 

5.2. Counterfactual Social Distancing Scenarios 

How COVID-19 progresses in time crucially depends on the effective rate of 

transmission, and this effective rate depends on de facto social distancing practices of 

susceptible and infected individuals in the society (Attar & Tekin-Koru, 2022; Siedner et al., 

2020). 

In this subsection, we investigate the effects of two counterfactual social distancing 

scenarios. To this end, we feed the model with two alternative sequences of the social 

distancing term dt and compare counterfactual outcomes of cases and deaths with official 

statistics and with the benchmark values from the SEIRD model. For both scenarios, we take 

the specification with IFR𝑇
model = 1.33% and 𝛿 = 4% as the SEIRD model benchmark, and 

we do so for two reasons: First, the specifications with IFR𝑇
model ∈ {0.39%, 0.66%} imply 

fewer deaths than the official death count. Second, among the specifications with IFR𝑇
model =

1.33% , the death rate of 𝛿 = 4%  yields the highest accuracy in the sense that 𝑄(𝜁, 𝛾) 

assumes the lowest value among all executions. 

As we explain below in detail, we consider the following social distancing scenarios 

in our counterfactual analyses: 

• A Longer Initial Lockdown Ending on July 1st  

• Social Distancing Sustained at its Historical Maximum 

The rationale for the former is that June 1st relaxations were implemented at a time 

when the daily number of new cases was at its minimum observed after the first peak. It is 

thus interesting to see the effects of an alternative lockdown where relaxations are delayed. 

What motivates the second scenario is the notion that social distancing and lockdowns should 

either be exercised strictly to control the epidemic as early as possible or not at all (Çakmaklı 

et al., 2023; Maharaj & Kleczkowski, 2012). Türkiye’s case is thus informative for the effects 

of sustained and effective mobility restrictions. 

Scenario 1: A Longer Initial Lockdown. The Turkish government adopted the first set 

of NPIs against COVID-19 in March 2020 after confirming the first cases of COVID-19. As 

noted above, these initial sets of policy measures included school and workplace closures 

(including restaurants, coffee shops, and night clubs), travel restrictions, and other measures 

such as the cancellation of public events and gatherings. However, these restrictions were 

relaxed significantly in the beginning of June 2020. 
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As our first counterfactual scenario, we consider a longer initial lockdown that ends 

not on June 1st but on July 1st. We chose such an alternative since official statistics indicate 

that the progression of COVID-19 significantly slowed down throughout the initial 

lockdown. This, of course, was accompanied with a severe contraction of real economic 

activity. The interesting question here is whether and how bearing the economic burden of 

the initial lockdown a little longer would alter the pandemic outcomes. 

To construct the alternative 𝑑𝑡 sequence for the first scenario, we assume that the July 

1st relaxation would have the same shape and scale we observe for the June 1st relaxation. 

Scenario 2: Social Distancing Sustained at its Historical Maximum. The second 

counterfactual scenario represents the best practice social distancing from the perspective of 

the control of disease transmission. In this scenario, we assume that society sustains social 

distancing at the maximum level that it achieved since the beginning of the pandemic in 

March 2020. 

The smoothed social distancing measure we use indicates that Türkiye achieves 

maximum social distancing on April 24th, 2020 with 𝑑𝑡 = 24%. We thus feed the model with 

a constant value of 24% for the entire post-June 12th sample. 

Figures 6 and 7 show the results of our counterfactual simulations for cumulative 

COVID-19 deaths and cases, respectively. Regarding the evolution of cumulative COVID-

19 deaths, both counterfactual scenarios yield lower deaths relative to the SEIRD model 

benchmark as expected. A longer initial lockdown has a smaller effect on cumulative deaths; 

at its highest, the difference with the benchmark is around 3,000 fewer deaths on December 

10th, 2020. Compared with the official figures, cumulative deaths under a longer initial 

lockdown diverge from the official death toll after October. 
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Figure 6. Counterfactual Cumulative COVID-19 Deaths in Türkiye 

 
Notes: This figure shows the cumulative deaths for counterfactual and 

benchmark scenarios as well as the official figure. 

 

 

Figure 7. Counterfactual Cumulative COVID-19 Cases in Türkiye 

 
Notes: This figure shows the cumulative cases for counterfactual and 

benchmark scenarios as well as the official figure. 
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For the second scenario with social distancing sustained at its historical maximum, 

we observe a growing gap between the SEIRD model benchmark and the counterfactual, 

especially after September. On the last day of our sample—December 10th—maximum social 

distancing is associated with around 17,000 fewer deaths relative to the benchmark and with 

around 5,000 fewer deaths relative to the official death toll. 

The results of our counterfactual analysis for cumulative COVID-19 cases, 

summarized in Figure 7, are also interesting. First, as expected after Figure 6, the effect of a 

longer lockdown is not pronounced relative to the benchmark. Second, maximum social 

distancing returns the most favorable outcomes in terms of the cumulative number of cases. 

Specifically, if social distancing was sustained at its historical maximum all along, then the 

total number of confirmed cases would be lower than the model benchmark by around 1.5 

million cases on December 10th. Put differently, there is a very large and growing gap 

between the case totals implied by the model benchmark and those implied by maximum 

social distancing. 

The striking feature of Figure 7 is the coincidental overlap of the official figure and 

the maximum social distancing scenario before November 25th. Then, on December 10th, the 

official figure jumps again as the total number of cases was disclosed by the Ministry of 

Health. On this date, again coincidentally, the official figure is very close to the case total 

implied by the longer lockdown scenario. 

For the simulation results presented in Figure 7, we must emphasize that the overlaps 

are indeed coincidental; we are not aware of any model-building effort by the Ministry of 

Health that utilizes Google mobility data and/or investigates the effects of lockdowns that 

sustain social distancing at its historical maximum. If, however, the strange data disclosure 

practices would have been imagined to be complemented with the fabrication of 

epidemiological data, then an interesting and convincing way to do so would be to observe 

the maximum level of social distancing and run a counterfactual SEIRD model exactly as we 

have done in this paper! 
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6. Conclusion 

Social scientists need efficient and effective algorithms to deal with intentional and 

unintentional underestimation problems. In this paper, we develop a system dynamics 

approach for epidemiological underestimation that works under extreme data limitations. 

We construct a dynamic, nonlinear, epidemiological model designed particularly for 

understanding the nonmonotonic progression of an epidemic disease in time. Our main 

contribution to the related literature on underestimation is to identify the actual evolution of 

the pandemic when it is certain that official statistics are almost completely unreliable as in 

Türkiye. With only one observed country-specific mobility variable and only two data 

moments, our algorithm takes only a few minutes to identify country-specific structural 

parameters. 

While we take the problematic second wave of COVID-19 in Türkiye as our exemplar 

in this paper, the algorithm can be applied, with appropriate modifications, to any other 

country, any other epidemic disease, and any wave of the COVID-19 pandemic. In the 

Turkish case, we use the presumably truthful revelation of actual ratio of cases to patients on 

October 3rd, 2020 by the Minister of Health as a useful data moment. But any reliable 

information on daily or cumulative deaths or cases, even for single day, can be used while 

applying our algorithm to another country or disease. 
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Appendices  

Appendix A: Calibration Results 

The seven tables presented below collect the detailed calibration results for seven 

different values of 𝛿, i.e., the fixed death rate among the resolving cases. The algorithm 

minimizes the quadratic form 𝑄(𝜁, 𝛾) by choosing (𝜁, 𝛾) from a compact set where 𝜁 ∈ [0,2] 

and 𝜁 ∈ [0,0.005]. For all the runs, the initial guesses are 𝜁 = 0.4 and 𝛾 = 0.001. 

The tables below have three columns documenting the results, and each column 

corresponds to a particular run of the calibration algorithm with a given IFR target for 

December 10th, 2020: IFR𝑇
data ∈ {0.39%, 0.66%, 1.33%}. The other data moment that is 

common across all specifications is the case-patient ratio CP𝜏
data on October 3rd, 2020 and is 

set to 6.87 (Uçar et al., 2020). 

The algorithm uses MATLAB’s “fmincon” routine. By default, this routine searches 

for an interior optimum within a compact set. The Hessian is approximated through the 

Broyden–Fletcher–Goldfarb–Shanno algorithm. In all of the runs, the algorithm has 

converged to a solution by hitting the step-size tolerance that is equal to 10−20. 

 

Table A.1: Calibration Results for 𝛿 = 1% 

 IFR𝑇
data = 0.66% IFR𝑇

data = 0.39% IFR𝑇
data= 1.33% 

𝜁 0.41311650 0.31833305 1.79925404 

𝛾 0.00015896 0.00004590 0.00163752 

CP𝜏
model 6.86969279 6.86983096 6.86470456 

IFR𝑇
model 0.65195260 0.38507261 1.15113794 

𝑄(𝜁, 𝛾) 0.00006486 0.00002431 0.03201968 

𝐶𝑇
model 1,995,980 2,113,317 1,645,057 

𝐷𝑇
model 13,013 8,138 18,937 
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Table A.2: Calibration Results for 𝛿 = 1.2% 

 IFR𝑇
data = 0.66% IFR𝑇

data = 0.39% IFR𝑇
data= 1.33% 

𝜁 0.38363504 0.31214880 1.62699469 

𝛾 0.00014924 0.00004596 0.00175058 

CP𝜏
model 6.86984582 6.86992727 6.86965623 

IFR𝑇
model 0.65610866 0.38776070 1.31213495 

𝑄(𝜁, 𝛾) 0.00001517 0.00000502 0.00031928 

𝐶𝑇
model 2,027,229 2,123,047 1,657,509 

𝐷𝑇
model 13,301 8,232 21,749 

 

Table A.3: Calibration Results for 𝛿 = 1.5% 

 IFR𝑇
data = 0.66% IFR𝑇

data = 0.39% IFR𝑇
data= 1.33% 

𝜁 0.35713181 0.30584194 0.71127614 

𝛾 0.00013930 0.00004578 0.00073892 

CP𝜏
model 6.86988344 6.86999244 6.86960653 

IFR𝑇
model 0.65682194 0.38975343 1.31854187 

𝑄(𝜁, 𝛾) 0.00001011 0.00000006 0.00013144 

𝐶𝑇
model 2,058,983 2,133,294 1,812,919 

𝐷𝑇
model 13,524 8,315 23,904 

 

Table A.4: Calibration Results for 𝛿 = 2% 

 IFR𝑇
data = 0.66% IFR𝑇

data = 0.39% IFR𝑇
data= 1.33% 

𝜁 0.33452902 0.29939993 0.49581989 

𝛾 0.00013128 0.00004508 0.00050789 

CP𝜏
model 6.86997581 6.87000084 6.86983760 

IFR𝑇
model 0.65905167 0.38996712 1.32581496 

𝑄(𝜁, 𝛾) 0.00000090 0.00000000 0.00001754 

𝐶𝑇
model 2,089,396 2,144,107 1,925,872 

𝐷𝑇
model 13,770 8,361 25,533 
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Table A.5: Calibration Results for 𝛿 = 3% 

 IFR𝑇
data = 0.66% IFR𝑇

data = 0.39% IFR𝑇
data= 1.33% 

𝜁 0.31453646 0.29310936 0.38985490 

𝛾 0.00012372 0.00004412 0.00039510 

CP𝜏
model 6.86999531 6.86996764 6.87001764 

IFR𝑇
model 0.65970339 0.38917236 1.32986580 

𝑄(𝜁, 𝛾) 0.00000009 0.00000069 0.00000002 

𝐶𝑇
model 2,119,290 2,155,029 2,020,368 

𝐷𝑇
model 13,981 8,387 26,868 

 

Table A.6: Calibration Results for 𝛿 = 4% 

 IFR𝑇
data = 0.66% IFR𝑇

data = 0.39% IFR𝑇
data= 1.33% 

𝜁 0.30544199 0.29011661 0.35406967 

𝛾 0.00012012 0.00004386 0.00035678 

CP𝜏
model 6.86997594 6.86998216 6.87001287 

IFR𝑇
model 0.65945713 0.38955008 1.32998076 

𝑄(𝜁, 𝛾) 0.00000030 0.00000020 0.00000000 

𝐶𝑇
model 2,133,948 2,160,373 2,062,951 

𝐷𝑇
model 14,072 8,416 27,437 

 

Table A.7: Calibration Results for 𝛿 = 5% 

 IFR𝑇
data = 0.66% IFR𝑇

data = 0.39% IFR𝑇
data= 1.33% 

𝜁 0.30028009 0.28833673 0.33608492 

𝛾 0.00011816 0.00004368 0.00033762 

CP𝜏
model 6.86998412 6.86998724 6.87000500 

IFR𝑇
model 0.65965149 0.38967514 1.33007881 

𝑄(𝜁, 𝛾) 0.00000012 0.00000011 0.00000001 

𝐶𝑇
model 2,142,601 2,163,593 2,087,205 

𝐷𝑇
model 14,134 8,431 27,761 
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Appendix B: The Evolution of Cumulative Case Count 

Our purpose in this appendix is to clarify why the SEIRD model bounds seem to be 

converging to each other sometime in mid-November. 

In the middle of November 2020, the total number 𝐶𝑡  of confirmed cases under 

different specifications get extremely close to each other. There is no particular day on which 

such a convergence occurs, and the convergence is not absolute. Yet, on different days around 

November 13th, cumulative case count is close to 1.3 million people under different 

specifications. Since the SEIRD model is a system of nonlinear difference equations, it is not 

feasible to provide formal proof of this outcome. However, as shown by Li (2020), for 

instance, the solution of the model for 𝐶𝑡  can be approximated by the definite solution       

𝐶𝑡 = 𝐶0𝑒Θt + Ψ(𝑒Ωt − 𝑒Θt)  where Θ, Ψ, Ω ∈ ℝ  are meta-parameters that depend on the 

structural parameters of the SEIRD model, and Θ  and Ω  have switching signs by 

construction, i.e., depending on sign and magnitude restrictions on structural parameters. 

Furthermore, such time paths are strictly convex and strictly increasing for the beginning of 

a single wave of a pandemic, and the growth rate of 𝐶𝑡 is not fixed. Hence, generally and 

purely from a mathematical point of view, such paths that start from the same initial value 𝐶0 

intersect once for some 𝑡 > 0. 

Our calibration algorithm chooses different (𝜁, 𝛾) pairs for different runs, and we thus 

obtain a particular (Θ, Ψ, Ω) tuple for each of them. Importantly, the specification that attains 

the lowest growth rate near 𝑡 = 0 also attains the highest growth rate near 𝑡 = 𝑇 and vice 

versa. With the additional restriction that the absolute increase in 𝐶𝑡 on October 3rd (𝑡 = 𝜏) 

is targeted, the two paths imply similar 𝐶𝑡 levels on a particular day between 𝜏 and 𝑇. 

We should also note the following remarks regarding this feature of the SEIRD model. 

First, the date on which different specifications imply 𝐶𝑡 ≈ 1.3 million lies between 𝜏 and 𝑇 

since the absolute increase in 𝐶𝑡 is targeted for 𝜏. Second, once we change the initial values 

(𝑆0, 𝐸0, 𝐼0, 𝑅0, 𝐷0) of the model in alternative runs, this particular feature vanishes. Third, the 

proximity of 𝐶𝑡 to 1.3 million under different specifications is closely related with the value 

attained by 𝑄(𝜁, 𝛾); in specifications where the algorithm is less successful in matching the 

targets, the SEIRD model bounds gets larger for the mid-November as well. 
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