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ABSTRACT 

Accurate mathematical modeling of resin flow in liquid composite molding (LCM) processes is important for 
effective simulations of the mold-filling process. Recent experiments indicate that the physics of resin flow in 
woven fiber mats is very different from the flow in random fiber mats. In this study, the mathematically rigorous 
volume averaging method is adapted to derive the averaged form of mass and momentum balance equations for 
unsaturated flow in LCM. The two phases used in the volume averaging method are the dense bundle of fibers 
called tows, and the surrounding gap present in the woven fiber mats. Averaging the mass balance equation yields 
a macroscopic equation of continuity which is similar to the conventional continuity equation for a single-phase 
flow. Similar averaging of the momentum balance equation is accomplished for the dual-scale porous medium.  

 
Keywords:   Porous media flow, Mathematical modelling;  Resin transfer moulding (RTM); Local volume 
averaging. 
 
F�BERL� GÖZENEKL� B�R ORTAMDAK� �ZOTERMAL B�R AKI�KANIN YEREL 

HAC�MSEL ORTALAMA METODU KULLANILARAK HAREKET 
DENKLEMLER�N�N ELDE ED�LMES� 

 
ÖZET 

S�v� kompozit kal�p i�lemi  s�ras�ndaki resin ak���n�n do�ru bir matematiksel modelinin olu�turulmas�, simülasyon 
ve kal�p doldurma i�lemi için çok önemlidir. Bu çal��mada, yerel hacimsel ortalama metodu detayl� olarak 
kullan�lmak sureti ile ak�� alan�na ait  kütle ve momentum denklemleri elde edildi. Olu�an matematiksel model  
ak��kan resine ait ortalama h�z bile�enleri ile bas�nc� verir. Benzer ortalama teknikleri ile, çift skalal� gözenekli 
ortama ait  momentum balans deklemleri elde edilebilir. 

 
Anahtar Kelimeler: Gözenekli ortam ak���, matematiksel modelleme, RTM. 
 
1. Introduction 
 
Liquid composite molding (LCM) technologies such as the resin transfer molding are very important in the 
manufacture of polymeric composites [1]. These composites consist of polymeric matrix, which is interspersed 
with reinforcements such as carbon and glass fibers. In LCM, the composites are created by impregnating a mold 
cavity packed with fibers with liquid polymer or resin by injecting it through the inlet gates of the mold. 
Numerical simulation of such mold-filling process in LCM is becoming indispensable for optimizing the mold 
design [2] and[3]. The flow of resin through the fiber packed mold is modeled as a single-phase flow of a 
viscous liquid through a porous medium behind a progressing resin front, as the medium behind the front is 
assumed to be fully saturated. Since the resin is very viscous and resin speed never exceeds a few centimeters 
per second, the local Reynolds number is many orders smaller than unity. Such a flow is modeled using the 
macroscopic equation of continuity [4], [5] and [6] with the Darcy's law for momentum balance. Since the resin 
is undergoing an exothermic chemical reaction during the flow, and the release of heat affects the flow through 
the temperature dependent viscosity, both energy and chemical species transport equation are solved 
simultaneously.  
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Of the various material parameters needed for the LCM mold flow simulations, the permeability S is most 
important as it is very sensitive to the packing arrangement of fibers. Various techniques for the measurement of 
this quantity generate a simple radial or rectilinear flow in a fibrous medium using a non-reacting test liquid. 
Permeability is computed by substituting the measured pressure gradient and flow rates for such flows[7] and[8]. 
One such permeability measurement setup was used by Parseval et al. [9] to create transient mold-filling 
experiments with flat rectangular molds. Here, the change in inlet pressure with time is recorded as the mold is 
filled at a constant flow rate. The theoretical inlet pressure increases linearly with time.  Literature indicates that 
the inlet pressure histories for woven mats are non-linear and could not be explained with the help of the simple 
Darcy’ s equations. A two-layer model, where the tow and gap regions alternate in the flow domain and are 
aligned with the flow direction, was proposed by the author [10] and[12]  to explain the deviant behavior of flow 
in woven fiber mats. As soon as the macroscopic flow-front passed a certain point, the fluid pressure in the gap 
forced the liquid into the tows. Such a movement of the liquid and micro-front (i.e. liquid front inside the tows) 
was modeled using the Darcy's law, and was aided by the capillary suction pressure [13].  Unlike mass balance, 
the momentum balance equation was not derived rigorously and was borrowed from the single-scale medium in 
the form of Darcy's law. Application of this equation of continuity and Darcy's law to rectilinear flow in a 
rectangular mold filled with woven mats successfully replicated the drooping inlet pressure history. It could also 
explain the difference in the inlet pressure histories for random and woven mats in the radial injection case [10]  
and [7]. The partial saturation behind the flow-front could now be explained in terms of the degree of 
impregnation of tows. A similar models based on the concept of dual-scale porous media [15] and [16] explained 
anomalous pressure drops and predicted void distribution in woven fiber mats.  
 
In this paper, the two governing equations for isothermal flow in dual-scale porous media will be derived 
rigorously using the well-established volume averaging method as adapted to such media. In the past, these 
methods have been successfully used in deriving transport equations for single-phase flow in the single-scale 
porous media [4], [5], [6], [17], [18], [19] and [20] and were later adapted for the dual-scale fractured porous 
media [6], [21] and [22]. Here, we will be applying the volume averaging method to establish the mass and 
momentum transport equations for flow in the gaps between the fiber tows and show that a workable system of 
equations can be thus created to model unsaturated flow in woven fiber mats.  
 
2. Volume averaging method adapted for the dual-scale porous medium 
 
2.1 Nomenclature for porous media flow 
The manufacturing process employing RTM contains two phases, the resin (i.e. the fluid phase) and the fiber 
reinforcement (i.e. the solid phase), and it will be required to distinguish between their respective properties. The 
two phases under consideration will be indicated by subscripts “f” for the fluid phase and “s” for the solid phase. 
Terms associated with either phase will be denoted with the corresponding subscript, while the terms associated 
with both phases will have no subscript. For example, 2 is the density of both phases, while 2f is the density of 
the fluid and 3s is the total stress tensor in the solid. 
 
The control volume for which we derive the mathematical model to describe the flow of the resin through fibers 
and to which we apply the local volume averaging technique is a microscopic control volume. When this control 
volume is examined, the individual fibers and the resin in the pores between the fibers can be seen, but the 
molecular structure of the fibers and resin cannot be seen. On this scale we may use a continuum description of 
the fibers and the resin, and identify pressure, velocity, stress, etc., as field variables that have values at each 
point in space. We assume that these variables vary continuously with position x, despite the fact that they may 
have jump discontinuities on the surface of the solid where no slip boundary condition is present.  
In order to develop a mathematical development for flow through porous media, it is useful to give a formal 
description of the microscopic geometry of the porous medium. This is done by defining phase functions, as 
follows:  
 

                            (
)
*�

                                                 phaseother any in  lies  if           0
                                                             fluid in the lies  if           1)(f x

xxX
       (1)

 

 



 
 
 
DPÜ Fen Bilimleri Enstitüsü Dergisi                            Governing Equations for Isothermal Flow Through Woven Fiber Mats 
Say� 24, Nisan 2011                                                                                     By Employing Local Volume Averaging Technique 
                                                                                                                                                                                          B.Alaku� 

93 
 

The solid phase function can also be defined in a similar fashion. If the solid media is not stationary, the phase 
functions will be time-dependent as well. When solving real flow problems, the character of the porous medium 
is never considered in detail, but the phase functions are necessary functions to obtain the governing 
conservation and constitutive equations of the flow field. 
 
2.2 Local volume averaging technique 
 
The basic concepts in porous media theory are the local volume averaging technique and the use of averaged 
variables instead of instantaneous ones in field equations. Rather than modeling the microscopic resin flow 
around each fiber, porous media theory predicts averaged velocity, pressure and stress fields for the flow phase. 
This approach is similar to the averaging procedure used in continuum mechanics for homogenous materials. 
Instead of computing the position and velocity of every atom in a gas (i.e. the Lagrangian viewpoint), one 
develops the continuum theories to calculate the velocity, pressure and temperature for small regions that contain 
many atoms (i.e. the Eularian viewpoint). Within the mathematical aspects of continuum mechanics, it is 
possible to consider the velocity at a point. However, the results of continuum mechanics loose their meaning 
when the size of the point approaches the mean free path-line (streak-lines) of an atom. Similarly, porous media 
theory gives the averaged velocity, pressure and stress at each point, but these results lose their meanings when 
we examine the material on the scale of the individual pores and fibers. 
 
To understand the governing conservation and constitutive equations, and to derive them for flow through 
porous media, we must first give the definitions of these averaged variables. First, let us consider a 
representative control volume V with each point x in the medium. The size of this volume has to be large enough 
to include representative amounts of both fluid and solid phases, but small enough so that long-range variations 
do not affect the average. As an illustrative example, let us consider V as a sphere with its center on x, as shown 
in Figure.1. The surface S bounds V. 
 
Let B represent any variable that has a value at each point. There are three different ways to represent and 
calculate an average value for B. The spatial average is defined as the average value of B within V. The spatial 
average will be given by angle brackets as: 

,�
V

B
V

B dV1
                       (2) 

 
Since B has a value at each point inside the volume V, the spatial average gives the combined properties of both 
phases. For instance, 2  is the total mass of both fluid and solid per unit total volume. 
The phase average contains only the points that are associated with a single phase, but still averages over the 
entire volume V.  Phase averages will also be given by an angle bracket, but the variable inside the bracket will 
show a subscript denoting the phase over which the average is performed. The phase average of B over the fluid 
phase is  given as 
 

,, ��
VV

VBVdVXBVB
f

d
11

fff     (3) 

 
The multiplication of Xf with variable B in the first integral causes only the points lying within the fluid to be 
counted; in the second integral Vf means the portion of V occupied by the fluid. Therefore, we can say that the 
phase average describes the properties of a single phase. The terms “volume average” and “local volume 
average”  indicate a phase average. 
 
The third average takes into account only points associated with a single phase and averages their values 
occupied by that phase. This is termed as an intrinsic phase average. It is denoted by angle brackets with a 
superscript showing the relevant phase: 
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All three types of averages given above are used, and can appear in governing conservation and constitutive 
equations for porous media. The intrinsic phase average is a mean to calculate and report the averaged pressure; 

as an example, if all the fluid is at one pressure, then that pressure will be equal to pf
f

. The phase average is 
a way to calculate and report averaged velocity; for example, the volume flow rate of fluid crossing a surface dS 
that has unit normal vector n is given by Sdf nv � . 
The various averages are related to one another in a simple fashion. First, the spatial average is the sum of the 
solid and fluid phase averages: 
 

BBB sf ��      (5) 
 
To obtain a relationship between the phase average and the intrinsic phase average, first we define the volume 
fractions of the phases as 
 

,��
V

VXVV
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f
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where the fluid portion 4f is often called the porosity and the solid fraction is 4s. From these definitions, we see 
that the phase and intrinsic averages are now related by 
 

BB ff
f

f �4      (7) 
 
Eqn. (7) will be used very often to interchange  the different averages. 
Any average of any variable can be related to a point in the medium. The point x that has the average value is 
determined by the location of the averaging volume V (Figure 1). The pore average (i.e. intrinsic average) 

velocity of the fluid v f
f

 is given even for a point x that is located in the solid phase. 
We can now investigate the question of the choice and the size of the averaging volume V. The averaged values 
should vary continuously and smoothly with position. This will be achieved  if V is large enough so that a small 
change in the location of V and its attendant reference point x yields a small change in the averaged values. That 
is, we wish to have 
 

l
B

B f
f 55�     (8) 

 
where l is the characteristic length scale of V. If this condition is satisfied, then the averages of averages obey the 
following equations as in [59]. 
 

BB ff
f
6            (9) 

BB f

f

f
f f

6      (10) 

Since the averaging process gives the solution of the variables on a scale comparable to l, equations based on 
local volume averaging technique are only meaningful when the global length scale of the problem is much 
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larger than l. If this is not so, then, rigorously speaking, there is no representative control volume over which the 
averaging can take place  and the approach of local volume averaging cannot be pursued. However, it is not 
necessary to actually determine an explicit volume V in order to derive the governing set of equations based on 
local volume averages. In practice, one frequently asks the question of whether or not a proper averaging volume 
exists. 
 
In contrast, one must explicitly determine an averaging volume to make micromechanical representations of the 
properties of the porous medium, such as permeability. When the porous solid mat has a regular structure, like a 
woven fabric, then a unit cell like the one shown in Figure 2 (a) can be used as the representative volume. If the 
medium has a random structure then, the representative volume will contain many particles in an averaged sense 
(Figure 2 (b)). 
 
2.3 The averaging theorem 
When deriving balance equations, one often takes the average of the gradient of some variable, say  pf� . 

Although  one can replace this with the gradient of the average pf� , but this is incorrect. Instead, the average 
of the gradient is 
 

,����
S

Sp
V

pp
fs

d1
fsfff n      (11) 

 
In the above, Sfs is the interfacial area between fluid and solid phases within the averaging volume V and nfs is 
the unit normal to that surface directed from the fluid towards the solid. Because this theorem is central to the 
development of the conservation equations, its derivation is given in Appendix 3.B of Ref.[10]. 
 
2.4 Principals for deriving conservation equations 
There are two bases for deriving conservation equations for porous media: postulation and averaging [10]. In the 
postulation technique, one obtains conservation equations for each phase by stating the conservation laws 
directly in terms of the averaged quantities. Constitutive relations, including the transport coefficients of the 
phases and the interactions between them are then determined from experiments. The final form of the 
mathematical model in this approach is an implicit set of equations in which the dependent variables are the 
averages of the microscopic field variables such as velocity, pressure, stress, etc. 
 
In the averaging technique, we begin by stating the microscopic conservation equations for each phase in 
differential form. These are the well-known familiar equations of fluid mechanics. We then take the phase 
average of each equation to produce an averaged conservation equation. This process is mathematically rigorous, 
and, at this first stage, the averaged equation is exact.  
 
2.5 Main assumptions 
The derivations that follow assumes: 
. The solid phase is not moving (i.e. stationary solid phase) 
. There is mass transfer between the solid and the fluid 
. The densities of the solid and fluid are constant 
Other assumptions will be introduced as needed. All assumptions will be indicated with bullets. (.) 
 
3.3 The conservation of mass: Continuity equation 
 
The continuity equation or conservation of mass equation states that matter is conserved. Since the solid phase 
does not move, it automatically satisfies the continuity, and we need to develop an equation for the fluid only. 
To show the process for developing average conservation equations, we describe several versions of the 
continuity equation for the fluid. The starting point is to write down the microscopic fluid continuity equation. If 
we make additional assumptions about compressibility, that is we have 
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Now take the phase average of this equation, to obtain 
 

0ff
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-
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v22
t

     (13) 

 
In the first term the order of integration (averaging) and differentiation with respect to time can be exchanged, 
while the averaging theorem 11 is applied to the second term. The resulting equation is 
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The integral will equal zero when the solid is stationary, i.e. when the porous medium does not move with 
flowing fluid. Then, the averaged continuity equation becomes 
 

0fff ����
-
-

v22
t

      (15) 

This equation is still not a useful equation, since it includes the average of the product 2fvf. One common 
assumption [10] is to presume that variations in 2f are small compared to variations in vf, which simplifies Eq. 15 
to 

" # " # 0ffff ����
-
-

v242
t

      (16) 

This is a useful form of the continuity equation for the analysis of flow problems in porous media. It has a 
similar form for a homogenous material except for the presence of 4f in the time derivative. 
If we now further assume that 2f is not constant, then the time derivative of 2f equals zero and 2f can be factored 
out of the remaining terms. Some manipulation of the integral term in Eqn. 14 (details are given in Appendix 3.C 
of Ref. [10] shows it as the partial time derivative of the fluid volume fraction 4f. The continuity equation for a 
constant density fluid flowing through a porous media: 

0f
f ����

-
-

vt
4       (17) 

If the solid is stationary then 4f is constant and Eqn. 17 reduces to a familiar form for an incompressible fluid,  
0f ��� v       (18) 

This is the continuity equation used for calculations of fluid flow through porous medium. 
 
3.4 The Conservation of momentum equations 
 
3.4.1 Basic forms 
The equation of motion (conservation of momentum) balances the forces applied to each material particle against 
the particle’s acceleration. For each point in a homogenous material the equation of motion (microscopic 
conservation of momentum equation) is 

" # " # g�vvv 222
�������

-
-

t
     (19) 

 
where 3 is the total fluid stress tensor which is comprised of the pressure and viscous and polymeric stresses,  
and g is the gravitational body force per unit mass. We take the phase average of this equation for the fluid phase 
together with the assumptions that the solid does not move and there is no interchange of matter between the 
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fluid and the solid. Based on these two assumptions, the term vv fff2��  will be equal to vv fff2�� , 
then, Eqn. 19  becomes  
 

, ���������
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dfsffffff
ff n
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v
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   (20) 

 
The left-hand side of this equation includes the bulk inertial terms, namely vv fff2�� , while the right hand 
side represents the surface terms due to the fluid stress tensor and the gravitational forces. 
 
We now additionally  assume that 
. The fluid  has a constant density, and 
. The body force is due to gravity only 
As a result of the first assumption, 2f can  be factored from the terms on the left-hand side while the second 
assumption allows g to be expressed as the gradient of a potential function: 
 

" #gh	��g       (21) 
 
where g is the acceleration of gravity and h  is the height above the reference level. By making use of the 
assumption of constant density and the averaging theorem given by Eqn. (3.B.9) of Ref. [10], we can obtain the 
following equation: 
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As the next step, we decompose the total fluid stress tensor 3f  into an extra-stress tensor �f which will be given 
by a constitutive model (i.e. Newtonian or non-Newtonian model) and an isotropic contribution due to the 
pressure pf: 
 

��� pfff 	�        (23) 
For illustration, in two-dimensional Cartesian representation, Eqn. 23  is given by 
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In Eqn. 23, +  is the unit tensor. Now we can define a modified pressure Pf since nabla ,�, operates on the similar 
scalars for both the pressure and gravity:  

ghpP 2 fff ��       (25) 
Then, the averaged conservation of momentum equation can be written as 
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The fluid pressure obtained in most experiments is the intrinsic phase average pf
f

, (i.e. the pore pressure). If 

one introduces pf
f

in place of pf , the gradient of the average pressure expands to 
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By relating the phase average to the intrinsic average, one can also say that 
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so that the gradient of the modified pressure can be expressed as 
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As given in Appendix 3.D, Eqn.(3.D.2) of Ref. [10],  the gradient of the porosity (i.e. volume fraction) �4f can 
be expressed as an integral over the solid fluid interface Sfs: 
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Now, the volume-averaged conservation of momentum equation can be written as 
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3.4.1.1 Solid-fluid interactions 
 
We now focus on the integral terms on the right hand side of the Eqn. 31. All three integrals are taken over the 
fluid-solid interface Sfs. Hence, these integrals represent fluid-solid interactions that take place within the 
representative control volume V. As a result, they are different than the surface forces present in the �� � f  

term, and instead can be regarded as distributed force terms. We note that – (3f �nfs ) is the traction exerted by the 
fluid on the solid. Next,  fT is defined as the total fluid-solid interaction force per-unit volume: 
 

, �	�
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where the negative sign means the force is acting against the flow direction. 
The second integral on the right-hand side of Eqn.31 is to represent the force per-unit volume exerted on the 
solid as a result of a gravity-induced pressure gradient in the fluid. This integral term will be denoted by fgf and 
given by, 
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This force exists only when the gravity is not ignored, and is not dependent on the ambient pressure. Physically, 
it may be regarded as the fluid contribution to the buoyancy of the solid. The third integral on the right-hand side 
of Eqn. 31 is to represent the force exerted on the solid due to the average fluid pressure, and will be denoted by 
fp: 
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We recall that the effective pressure Pf is written by definition as the fluid pressure pf minus the hydrostatic 
contribution of the gravity, which means the fluid can create a force on the solid due to a uniform pressurization. 
At first, this term may seem unrealistic, but its physical meaning  from a fluid flow point of view is clear. 
Because of the gradient of the volume fraction in the porous medium, a uniform pressure in the fluid flowing 
over the internal surface creates a net force on the solid surface. Its direction is anti-parallel to the vector �4f and 

its magnitude is proportional to the intrinsic averaged pressure Pf

f
. In a homogenous porous medium, fp will 

be zero, because �4f is equal to zero. 
We now introduce the fluid-solid drag force fd and it is defined as the difference between the total interaction 
force and the gravitational and average-pressure contributions: 
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so that the total interaction force per unit volume is 
 

ffff PgfdT ���       (36) 
 
We expect that fd will be associated with motion of fluid as it flows through the solid. When both the fluid and 
solid move, fT still represents the relevant fluid solid interaction force. However, because the fluid is assumed to 
flow through a stationary medium in the current research, we focus our attention on the drag force fd. 
 
3.4.1.2 Volume-averaged conservation of momentum equations 
 
Substitution of Eqn.(35) into Eqn.(26) gives a general form of the phase-averaged conservation equation of 
motion for fluid with constant density as: 
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The minus signs indicate the resistance that the fluid is experiencing as it flows through the fiber network.  
 
3.4.1.3 Equilibrium equations for the solid phase 
 
In this section, we consider the momentum equation for the solid. If the solid fiber network does not move with 
fluid, then the microscopic momentum balance equation becomes 
 

0ss ���� g� 2       (38) 
 
which is the equilibrium equation for the solid phase. Taking the volume average of this equation over the solid 
phase on the assumption that gravity is the body force yields 
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If it is further assumed that: 
. Surface tension between the fluid and the solid may be ignored 



 
 
 
DPÜ Fen Bilimleri Enstitüsü Dergisi                            Governing Equations for Isothermal Flow Through Woven Fiber Mats 
Say� 24, Nisan 2011                                                                                     By Employing Local Volume Averaging Technique 
                                                                                                                                                                                          B.Alaku� 

100 
 

Then the normal components of the fluid and solid stress tensor should be the same at the solid-fluid interface: 
 

0fsfsfs ���� n�n�  on Sfs     (40) 
 
(nsf = - nfs). The second term in Eqn.(39) is the total fluid-solid interaction force fT . The fourth integral denoted  
by fgs is 
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sfsgs nf 2      (41) 

This term may be regarded as the solid contribution to buoyancy. The volume averaged solid equilibrium 
equation over the solid phase now becomes 
 

0gsss T
�	��	�� ff� gh2     (42) 

 
The remaining body force term simplifies if it is assumed that  
. The solid has a constant density over the scale of V, and 
. The solid volume fraction 4s is uniform inside the porous media. 
Then making use of h  = 4s h , we can obtain 
 

g242 sss ��	 gh       (43) 
 
which is simply the averaged gravity effect on the solid fibers. In the field of flow through porous media, 
Eqn.(43) can be used to calculate and report the stresses in the solid induced by the fluid motion. Also, a 
constitutive equation for the solid stress � s  (i.e. Hook’s law) will be used, together with an experimental 
description of the friction forces between the solid and the mold surface. 
 
3.4.2 Fluid equations without inertia 
 
In this section, in order to obtain a relationship for the drag term,  fd , we ignore the inertial terms included in the 
averaged momentum equations so that scaling arguments can be seen. In the following sections, we will revisit fd 
when the inertia is included in the flow field. If is assumed that 
. Inertia is negligible 
Then, this assumption sets the left-hand side of Eqn.(3.4.18) to be zero so that we can now focus on the 
divergence of the averaged viscous stress and the solid fluid drag term fd. Inertial effects will be discussed later. 
 
3.4.2.1 Divergence of the average fluid stress tensor 
 
The extra stress can be decomposed as a Newtonian part and a polymeric part in order to derive a relationship for 
fd  : 
 

" # Tvv� ff
T

ff ���
�

��
� �����       (44) 

where the superscript ( )T indicates a tensor transpose, and Tf is the polymeric contribution to the extra stress and 
is given by an appropriate constitutive model. The averaging theorem yields 
 

,����
S

S
V

fs

d1
fsfff nvvv       (45) 
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The integral on the right hand side will be zero based upon the assumption of a motionless solid. If we make an 
additional assumption that the fluid has no slip at the pore walls, then the average extra-stress depends only on 
the averaged rate-of-strain and averaged polymeric stress contribution to the extra-stress. Taking the phase 
average of Eqn. (44) yields: 

" # Tvv� ff

T
ff ���

�
��
� �����      (46) 

 
3.4.2.2 Viscous drag force for isotropic porous media 
 
The drag term variable fd must be expressed by some correlation that includes only the averaged field variables 
and the other material parameters. In derivations of porous media theory, the selection of a function for fd is 
considered as a problem in constitutive modeling. The procedure is to assume a vector valued function for fd, to 
use representative theorems to form this function, and finally impose dimensional analysis to indicate how the 
various material parameters may appear in the function for fd. For instance, we assume that: 
 
. Any function for fd will be independent of frame (since fd is independent of frame) 
. The function for fd should include the difference between the intrinsic phase average velocities of the fluid 
and solid 
. fd should be independent of density of fluid (consistent with the assumption that inertia is negligible); and 
. the dependence of fd on other flow parameters must be obtained by performing dimensional analysis 
Symbolically,  these assumptions can be expressed as 
 

�
�

�
�
�

�
��
�

��
� 	� lofs

s

f

f

d ,,, 4�vvf F     (47) 

 
where lo is a local length scale of the porous medium and F is a vector valued function. 
Now we additionally assume that 
. the porous medium is isotropic 
Imposing a representation theorem for a vector valued isotropic function implies that Eqn.(47) must produce 

��
�

��
� 	� vvf s

s

f

f

d R     (48) 

where R is a scalar resistance coefficient and may depend on flow and solid parameters such as �, 4f, lo and on 

the scalar magnitude vv s

s

f

f
	 . Performing dimensional analysis gives the desired result as 

��
�

��
� 	� vvf s

s

f

f

*2
o

f
d kl

�4      (49) 

where k* is a dimensionless constant. When the solid does not move, Eqn.(3.4.31) can be written as 
 

vf f
f

d S
�4�       (50) 

 
In Eqn. (50), the quantity S ( � 4f lo

2 k* ) is called the permeability. A number of experimental investigation 
implies that permeability is determined primarily by the geometry and dimensions of the solid, and not by any 
fluid properties, if assumptions made are valid and reasonable. 
Comparing Eqn.(49) and Eqn.(50) shows that the local length scale of the volume lo has the same order of 
magnitude as the square root of permeability. (e.i. Sl ~o )  
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3.4.3 Flow Inertia Effects 
 
We now return to the volume averaged conservation of momentum equations and include the inertia. The 
assumption of constant fluid density will be retained. 
 
3.4.3.1 Bulk Inertia and inertial dispersion of the flow 
 
The time derivative on the left hand side of momentum equation does not have to be simplified any further. 
Therefore, we need to provide an interpretation of the term 2f� � vv ff . In Appendix 3.E of Ref. [10],  the 
procedure of how to expand the averages of products is explained as 
 

vvvvvv ˆˆ
1

ffff
f

ff ��
4

     (51) 

 
where v̂f is the point-wise deviation from vf from its intrinsic averaged value, 
 

vvv ˆff

f

f ��      (52) 

 
The inertia term then becomes 

vvvvvv ˆˆ
1

fffff
f

ffff ����
�

�
�
�

�
����� 2

4
22    (53) 

 
The convection of momentum by the average velocity is represented by the first term on the right hand side of 
Eqn.(53); and is called the bulk inertia term. Local differences between point-wise and averaged velocity are 
represented by the second term on the right hand side of Eqn.(53), and is called the inertial dispersion term. The 
inertial dispersion term is similar to the Reynolds stress terms in turbulence theory; it represents the transport of 
momentum by velocity fluctuations. We note that a fluid in a porous medium experiences velocity fluctuations 
even if the flow is laminar, due to the heterogeneous character of the porous medium. 
 
Since v̂f  is not among the flow variables, we must use some constitutive equation or closure approximation for 

the dispersion term. As an example, one might assume that the average vv ˆˆ ff is related to the gradient in 
averaged velocity and make the approximation 
 

�  vMvv fDffff :ˆˆ ������ 22     (54) 
 
where MD is a fourth-order “dispersive viscosity” tensor and its value would depend on the average velocity 

v f  and other flow parameters such as viscosity, porosity, particle shape and size, etc. 
 
There are no explicit expressions of inertial dispersion tensor MD in the literature. Some researchers claim that 
inertial dispersion can be ignored when compared to bulk inertia term because inertial dispersion is of higher 
order than bulk inertia. However, an order of magnitude analysis can prove that dispersion and bulk inertia term 
can have the same magnitude. In this work, because the inertial effects are less significant compared to viscous 
and elastic effects, this term will be ignored. 
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3.4.3.2 Inertial drag for isotropic media 
 
As a result of phase averaging of the inertial terms, in addition to the bulk inertia and inertial dispersion terms 
appearing in the averaged momentum equations, inertial effects become important on the micro scale, where 
they become a contributor to the drag force fd in addition to the stress terms. 
Forchheimer was the first to propose a modification to Darcy’s Law to account for inertial effects. Forchheimer’s 
equation for steady state one-dimensional flow in the x direction in a sand bed with a very large cross section is 
written as 
 

vv xx
S
b

SPx

2
f

f

f 2�
��

-
-

	     (55) 

 
where vx is the x component of vf and b is a dimensionless material parameter.  
Forchheimer’s equation can be generalized by rewriting it as an expression for the solid-fluid drag force fd as 
 

vvvf ff
ff

f
f

d S
b

S
24�4 ��     (56) 

 
In the literature, researchers used arguments based on capillary flow to produce a one-dimensional drag law as: 
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	           (57)                       

where dp is the particle diameter, while k1 and k2 are constants. When Eqn.(57) is compared to Eqn.(55), we 
deduce that the permeability is 

" #2
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1 4

4

	
�

k
d

S       (58) 

while the inertial term contains a dependence on porosity, 

3/2-
f

1

2 4
k

kb �          (59) 

where  k1 =150 and k2 =1.75 to fit a variety of experimental data.  
 In our research, we used the generalized Forchheimer’s equation to incorporate the drag into the 
momentum equations. Also, the permeability given by Eqn. (58) together with Eqn. (59) is used in modeling.   
 
3.4.3.3 Equation of motion with inertia 
 
The purpose of neglecting inertia previously was solely to be able to obtain an expression for the drag term, fd. 
We can now write down the equation of motion for flow thorough porous media when inertia and elastic effects 
of the fluid are important. The desired result is given as 
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This equation assumes a general non-Newtonian fluid with constant viscosity and density flowing in an isotropic 
porous medium. It reduces to the isotropic version of the Brinkman equation for slow Newtonian flows. To use 
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Eqn.(60), one must either have an expression for the inertial dispersion tensor MD or else ignore dispersion 
entirely. In this work, the inertial dispersion tensor MD is neglected. 
 
In summary, the final form of the two-dimensional governing conservation equations of mass and momentum 
after applying the local volume averaging theorems for the flow through an isotropic porous medium are given 
below: 
 
3.4.4.1 Continuity Equation 
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3.4.4.2 Momentum Equations 
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3.4.4.2.1 x- Momentum Equation 
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3.4.4.2.2 y- Momentum Equation 
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4. Conclusion 
 
We have adapted the volume averaging technique to derive the mass and momentum balance equations for the 
flow of resin through the woven fiber mats in LCM which are modeled as dual-scale porous media and where the 
gaps and fiber tows are treated as two different phases.  
 
The general form of the momentum balance equation is given in Eqn. (60). This equation is a general  equation 
where one can incorporate non-Newtonian flow effects which is the case for generalized Newtonian or 
viscoelastic polymeric fluid flows. 
 
These general averaged equations contain more than just the averaged variables. Various constitutive equations 
representing the physics of resin flow are then substituted to replace those terms with functions of the averaged 
variables using some assumptions and guidance from experiments. These constitutive equations are substituted 
back into the general averaged equations to obtain a useful set of equations in terms of the averaged variables. 
The averaging approach has two important advantages. Firstly, it ensures that all of the terms are accounted for. 
Therefore, averaging reveals those effects that might not have been predicted. Second, averaging puts useable 
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physical insight into the relationship between microscopic and macroscopic behavior, and provides a basis for 
micromechanical calculations of the transport coefficients such as permeability. The averaging approach is used 
here to obtain the model. 
 
REFERENCES 
 
[1]  C.D. Rudd, A.C. Long, K.N. Kendall and C.G.E. Mangin, Liquid molding technologies, Woodhead 

Publishing Ltd (1997). 

[2]  M.V. Bruschke and S.G. Advani, RTM filling simulation of complex three dimensional shell-like 
structures, SAMPE Q 23 (1) (1991), pp. 2–11.  

[3]  C.A. Fracchia, J. Castro and C.L. Tucker III, A finite element/control volume simulation of resin transfer 
molding, Proceedings of the American Society for Composites Fourth Technical Conference, Technomic, 
Lancaster, PA (1989), pp. 157–166. 

[4]  C.L. Tucker III and R.B. Dessenberger, Governing equations for flow and heat transfer in stationary fiber 
beds. In: S.G. Advani, Editor, Flow and rheology in polymer composites manufacturing, Elsevier, 
Amsterdam (1994), pp. 257–323. 

[5]   J. Bear and Y. Bachmat, Introduction to modeling of transport phenomena in porous media, Kluwer, 
Dordrecht (1990). 

[6]  S. Whitaker, The method of volume averaging, Kluwer, Dordrecht (1999). 

[7]  L. Trevino, K. Rupel, W.B. Young, M.J. Liou and L.J. Lee, Analysis of resin injection molding in molds 
with preplaced fiber mats. I. Permeability and compressibility measurements, Polym Compos 12 (1) 
(1991). 

[8]  C. Lekakou, M.A.K.B. Johari and M.G. Bader, Compressibility and flow permeability of two-
dimensional woven reinforcements in the processing of composites, Polym Compos 17 (1996), pp. 666–
672.  

[9]  Y.D. Parseval, K.M. Pillai and S.G. Advani, A simple model for the variation of permeability due to 
partial saturation in dual scale porous media, Transport Porous Media 27 (1997), pp. 243–264.  

[10]  Alakus B. Finite elemet fluid flow computations through porous media employing quasi-linear and non-
linear viscoelastic models. PhD Thesis. University of Minnesota; 2001. 

[11]  Pillai KM, Advani SG. Modeling of void migration in resin transfer molding process. Proceedings of 
ASME Winter Meet, Atlanta, GA; September 1996. 

[12] K.M. Pillai and S.G. Advani, A model for unsaturated flow in woven or stitched fiber mats during mold 
filling in resin transfer molding, J Compos Mater 32 (19) (1998), pp. 1753–1783.  

[13]  K.M. Pillai and S.G. Advani, Wicking across a fiber-bank, J Colloid Interface Sci 183 (1) (1996), pp. 
100–110 

[14]  K.M. Pillai and S.G. Advani, Numerical simulation of unsaturated flow in woven or stitched fiber mats in 
resin transfer molding, Polym Compos 19 (1) (1998), pp. 71–80 

[15] R.S. Parnas and F.R. Phelan, The effect of heterogeneous porous media on mold filling in resin transfer 
molding, SAMPE Q (1990). 

[16]  C. Binetruy, B. Hilaire and J. Pabiot, Tow impregnation model and void formation mechanisms during 
RTM, J Compos Mater 32 (3) (1998), pp. 223–245.  

[17]   J.C. Slattery, Single-phase flow through porous media, AIChE J 15 (6) (1969), pp. 866–872.  

[18]  W.G. Gray and P.C.Y. Lee, On the theorems for local volume averaging of multiphase systems, Int J 
Multiphase Flow 3 (1977), pp. 333–340.  



 
 
 
DPÜ Fen Bilimleri Enstitüsü Dergisi                            Governing Equations for Isothermal Flow Through Woven Fiber Mats 
Say� 24, Nisan 2011                                                                                     By Employing Local Volume Averaging Technique 
                                                                                                                                                                                          B.Alaku� 

106 
 

[19]  S. Whitaker, Flow in porous media. I. A theoretical derivation of Darcy's law, Transport Porous Media 1 
(1986), pp. 3–25.  

[20]  M. Kaviany, Principles of heat transfer in porous media (2nd ed), Springer, New York (1995). 

[21]  K. O'Neill and G.F. Pinder, A derivation of equations for transport of liquid and heat in three dimensions 
in a fractured porous medium, Adv Water Resour 4 (1981), pp. 150–164.  

[22]  S.M. Hassanizadeh, Modeling species transport by concentrated brine in aggregated porous media, 
Transport Porous Media 3 (1988), pp. 299–318.  

 
 
Figures 

 
 

Figure 1 Microscopic View of a Porous Medium, 
showing the averaging volume V and its surface S associated with a point 

 
 

 
 

 
 

                         
 
 
 
 
 
 

 
 
 
 
 

 
Figure 2 (a) A unit cell (heavy line)                                         Figure 2 (b) A unit cell (heavy line) 
 in a 2 : 2 twill weave fabric                                                         for many particles in an averaged sense 


