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I. INTRODUCTION 

Pediatric appendicitis, a leading cause of hospital admissions for abdominal pain in children, presents substantial 

diagnostic and therapeutic management challenges in pediatric healthcare [1]. With a lifetime risk estimated 

between 6 to 9% and a peak incidence between the interval of 10 to 19-year age group, appendicitis not only 

constitutes a common health concern but also poses a higher risk of perforation in preschool children compared to 

older age groups [2]. This amplifies the need for accurate diagnosis and effective treatment to prevent severe 

complications. Traditionally, the diagnosis of appendicitis has relied heavily on clinical assessment supported by 

laboratory data and imaging techniques such as abdominal ultrasonography [3]. However, despite its routine use, 

the lack of a specific biomarker for appendicitis in clinical practice leaves room for diagnostic uncertainty. This is 

further complicated by the variability in the effectiveness of commonly used diagnostic tools and scoring systems, 

such as the Alvarado and Pediatric Appendicitis Scores (AS and PAS, respectively), which are not consistently 

applied across clinical settings [4]. The management of acute appendicitis in children lacks standardized 

international guidelines, oscillating between surgical intervention and conservative therapy with antibiotics [5, 6]. 

This variability in treatment approaches underscores the necessity for a more precise diagnostic and management 

strategy. Moreover, despite well-established prediction models in determining and assessing the diagnosis and 

severity of acute appendicitis in children, applying traditional statistical modeling techniques [7–9], these models 

have yet to achieve widespread clinical acceptability and applicability [10]. 
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management due to the variability in its presentation and the absence of a specific biomarker for both diagnosis 
and outcome prediction. Leveraging Machine Learning (ML) algorithms, this study aims to improve 
diagnostic accuracy and treatment strategies utilizing a robust dataset from the Children’s Hospital St. Hedwig 
in Regensburg, Germany, containing extensive clinical data and a broad spectrum of patient demographics. 
We evaluated the efficiency of three ML techniques, including Multilayer Neural Networks (MLNN), Support 
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the diagnosis, management, and severity of pediatric appendicitis. The findings reveal SVM’s consistently 
strong performance across all metrics, achieving highly accurate classification results, followed by the 
competitive performance of MLNN. Conversely, LDA demonstrated limitations due to its linear nature, 
proving insufficient for handling the intricate and nonlinear relationships present in the complex dataset. The 
study highlights the potential of using ML-powered clinical decision support systems, providing a holistic 
approach to the treatment management of pediatric appendicitis. 
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The recent advancements in machine learning (ML) algorithms, a subset of Artificial Intelligence (AI), are being 

increasingly applied for effective clinical prediction [2] and decision-making processes [11] to enhance the early 

detection, treatment management, and severity assessment of pediatric appendicitis. As a data-driven approach, 

ML delves into the discovery and application of advanced algorithms that analyze data to forecast outcomes and 

inform decision-making processes [12], preventing unnecessary operations and decreasing the burden of 

appendicitis for patients and health systems [2, 10, 11, 13]. With that in mind, the aim is to advance the 

development of an ML-powered virtual assistant that provides real-time information and feedback to physicians 

for diagnosing appendicitis upon presentation, assessing its severity, and determining optimal treatment strategies. 

So, we evaluated three ML methods on a robust dataset obtained from the Children’s Hospital St. Hedwig in 

Regensburg, Germany [14]. These ML methods utilized are MLNN, SVM, and LDA. We analyzed three critical 

measures from the dataset, including diagnosis, guiding management (conservative vs. operative), and risk 

stratifying severity, to enhance the clinical decision-making processes.  

To this end, we described each ML method based on how each differentiates from the others, then explained the 

obtained data and its post-processing, specifically applied missing data analysis. This paper details our 

methodology and findings, highlighting the potential of SVM in enhancing diagnosis, management, and severity 

assessment of pediatric appendicitis through ML and paving the way for future advancements in pediatric 

healthcare technology. 

 

II. EXPERIMENTAL METHOD / TEORETICAL METHOD 

2.1 Linear Discriminant Analysis  

LDA is a projection technique classifier designed to minimize the dimensionality of the data. It is based on Kernel 

Fisher Discriminant Analysis [15]. The main goal of LDA is to find the ideal balance between maximizing the 

variation between classes and reducing the variance within classes [12]. This property is particularly useful when 

dealing with datasets with different frequencies within classes and when assessing accuracy on randomly generated 

test data [12]. In cases where classes are labeled C1 and C2, LDA undertakes the task of identifying a projection 

direction (w) that ensures maximum separability in the spatial model [16]. The chosen direction is strategically 

oriented to enhance discrimination between classes [17]. The formulation of LDA’s mathematical underpinnings 

is encapsulated in Eqs. 1-3 [12, 16]: 

 

𝑧𝑧 = 𝑤𝑤𝑇𝑇𝑥𝑥 (1) 
 

where 𝑥𝑥 samples are projected onto 𝑤𝑤. If the training sample is 𝑋𝑋 = {𝑥𝑥𝑡𝑡 , 𝑟𝑟𝑡𝑡}, then 

 

𝑋𝑋{𝑡𝑡} = �𝑟𝑟
𝑡𝑡 = 1, 𝑥𝑥𝑡𝑡 ∈ 𝐶𝐶1
𝑟𝑟𝑡𝑡 = 0, 𝑥𝑥𝑡𝑡 ∈ 𝐶𝐶2

  (2) 
 

 

𝐽𝐽(𝑤𝑤) =
𝑤𝑤𝑇𝑇𝑆𝑆𝐵𝐵𝑤𝑤
𝑤𝑤𝑇𝑇𝑆𝑆𝑤𝑤𝑤𝑤

=
|𝑤𝑤𝑇𝑇(𝑚𝑚1−𝑚𝑚2)|2

𝑤𝑤𝑇𝑇𝑆𝑆𝑤𝑤𝑤𝑤
 (3) 
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where 𝑥𝑥 represents the input, 𝑟𝑟 represents the output in the training sample pairs, 𝑆𝑆𝑤𝑤 is the total within-class scatter, 

and 𝑆𝑆𝐵𝐵 indicates the between-class scatter matrix. Figure 1 depicts the LDA projection technique [16]. 

 

 
Figure 1. The projection method of LDA [16] 

 
where, 𝒎𝒎𝟏𝟏 ∈ 𝕽𝕽𝒅𝒅 and 𝑚𝑚1 ∈ ℜ are the means of 𝐶𝐶1 samples before and after projection, respectively. The same 

holds true for 𝒎𝒎𝟐𝟐 and 𝑚𝑚2. 𝑆𝑆12 and 𝑆𝑆22 are the scatter of samples from 𝐶𝐶1 and 𝐶𝐶2 [12,18]. 

2.2 Support Vector Machine 

Corinna Cortes and Vladimir Vapnik [19] introduced the SVM as a machine learning algorithm with considerable 

impact. Widely acknowledged in the literature, SVM stands out as an effective tool in the realm of ML, 

emphasizing the statistical learning principle for both classification and regression analysis [12]. Specifically 

designed as a kernel-based classification algorithm, SVM finds frequent applications in the classification of bio-

signal patterns. 

In the SVM framework, the weight vector is calculated after training, and the support vectors are the instances 

from the training data that are closest to the decision boundary (hyperplane) [20]. These support vectors play a 

crucial role as they provide critical insight into ambiguous and erroneous states. As a result, the hyperplane 

becomes a central entity that delineates the decision space in the classification process. The margin, the distance 

from the hyperplane to the closest support vector on either side, is a critical measure in this context. For optimal 

determination of hyperplanes, the focus is on maximizing the margins, represented by dashed lines defining class 

boundaries in Figure 2 [21]. This approach enhances the discriminative power of the SVM and ensures robust 

decision-making in the classification process. 

The circled instances in Figure 2 show support vectors for a two-class problem, with examples of classes 

represented by a square pattern and a dot pattern. For generalization, SVM only works with examples close to the 

boundary, neglecting those in the center. SVM is calculated using the following formulas, as defined by Eqs. (4-

6) [21]: 
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𝑋𝑋{𝑡𝑡} = �𝑟𝑟
𝑡𝑡 = +1, 𝑥𝑥𝑡𝑡 ∈ 𝐶𝐶1
𝑟𝑟𝑡𝑡 = −1, 𝑥𝑥𝑡𝑡 ∈ 𝐶𝐶2

  (4) 

 

𝑔𝑔{𝑥𝑥} = �𝑤𝑤
𝑇𝑇𝑥𝑥𝑡𝑡 + 𝑤𝑤0 ≥ +1, 𝑥𝑥𝑡𝑡 ∈ 𝐶𝐶1

𝑤𝑤𝑇𝑇𝑥𝑥𝑡𝑡 + 𝑤𝑤0 ≤ −1, 𝑥𝑥𝑡𝑡 ∈ 𝐶𝐶2
 (5) 

 

𝑟𝑟𝑡𝑡(𝑤𝑤𝑇𝑇𝑥𝑥𝑡𝑡 + 𝑤𝑤0) ≥ +1 (6) 
 

The input space is represented as 𝑋𝑋 = {𝑥𝑥𝑡𝑡 , 𝑟𝑟𝑡𝑡}, with 𝐶𝐶1 and 𝐶𝐶2 as different classes and +1/-1 as labels, the 

hyperplane is defined by 𝑔𝑔{𝑥𝑥}, and 𝑤𝑤0 specifies the localized hyperplane. The SVM operates without heuristic 

parameters such as learning rate, initialization, or convergence control. However, this doesn’t negate the 

importance of the hyperparameters. The kernel, a crucial SVM hyperparameter, significantly influences the 

performance of the algorithm. Common choices include the linear kernel, radial kernel, or polynomial kernel; each 

serves a different purpose [12]. 

 

 

Figure 2. The basic concepts of the SVM structure [21] 

 

2.3 Multilayer Neural Network 

A MLNN is an artificial neural network (ANN) that consists of many layers of interconnected nodes or neurons. 

Unlike simpler models such as the perceptron, which consists of a single layer of neurons, MLNNs are designed 

to capture complex patterns and correlations within data [22]. The MLNN is capable of learning and generalizing 

the pattern. These algorithms can adapt their mathematical model to new problems because of their trainable 

structure [23, 24]. MLNN training is defined as the act of updating the weights to achieve better convergence to 

the desired results. The structure of the MLNN consists of an input layer that receives the initial input data, hidden 

layers where complex calculations are performed between input and output, and an output layer that produces the 

prediction or classification of the network [25]. Figure 3 depicts an example of an MLNN structure consisting of 

two hidden layers [22].  
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Figure 3. MLNN structure with input-hidden-and-output layers [22] 

 
A neuron’s output is expressed as the sum of the weighted inputs and the biased value. Next, an activation function 

is applied to this weighted summation to produce an output. Activation functions play a crucial role in MLNNs by 

introducing non-linearities into the model. These non-linearities are essential for the network to learn and represent 

complex patterns in the data. ReLU, a computationally efficient and easy-to-implement activation function, is used 

explicitly in the hidden layers of MLNNs. The function allows positive values to pass through unchanged. Negative 

values are set to zero. Although ReLU is a linear function for positive inputs, its overall behavior is nonlinear. This 

non-linearity is crucial for the network to learn complex patterns. Softmax, widely used in the output layer of 

MLNNs for multi-class classification problems, was used in the output layer. Softmax assigns probabilities to each 

class, and the class with the highest probability is selected as the predicted class. The formulae for the ReLU and 

the Softmax are given in Eq. 7 and Eq. 8, respectively [26–28]. 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥(0, 𝑥𝑥) (7) 
 

Softmax(𝑥𝑥𝑖𝑖) =
𝑅𝑅𝑥𝑥𝑖𝑖

∑ 𝑅𝑅𝑥𝑥𝑗𝑗𝐾𝐾
𝑗𝑗−1

 (8) 

 

where 𝑥𝑥 represents the input to the activation function, and 𝐾𝐾 is the number of classes. In MLNN architecture, a 

critical challenge is to define the optimal configuration of hidden layers and neurons. This process lacks strict 

rules, and determining the correct structure involves finding a balance. The goal is to identify the minimum number 

of hidden layers necessary to perform the task effectively while maximizing the network’s generalizability [23]. 

 

III. ANALYTICAL PERSPECTIVE  

3.1 Regensburg Pediatric Appendicitis Dataset 

The dataset from the retrospective study at Children’s Hospital St. Hedwig in Regensburg, Germany [14] 

encapsulates a diverse and comprehensive collection of clinical data from a cohort of pediatric patients admitted 
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with abdominal pain. This dataset is particularly distinguished by its inclusion of a multitude of abdominal B-

mode ultrasound images for most patients. These images, ranging from 1 to 15 views per patient, encompass 

various abdominal regions such as the right lower quadrant, appendix, intestines, lymph nodes, and reproductive 

organs. The variability in ultrasound views underscores the depth of the imaging approach, offering a rich visual 

insight into the patient’s abdominal conditions. 

Beyond these detailed ultrasonographic images, the dataset includes an extensive range of clinical data, 

encompassing laboratory test results, physical examination outcomes, and scores from clinical assessment tools, 

notably the AS and PAS. This blend of data provides a multifaceted perspective on each patient’s health, enriching 

the dataset’s analytical depth. The dataset utilized in this study encompasses a total of 782 entries. For this research, 

we excluded three records due to issues with label information, resulting in 779 records being used for 

classification. It is important to note that for this study, the classification was performed based on the non-imaging 

data. 

A key feature of this dataset is the classification of subjects concerning three critical target variables: diagnosis, 

management, and severity. The diagnosis category differentiates between cases of appendicitis and those without. 

Management is categorized as either primary surgical, secondary surgical, or conservative, while severity is 

classified into complicated, uncomplicated, or no appendicitis. This tripartite classification not only elucidates the 

immediate clinical decisions and outcomes but also serves as an invaluable resource for broader medical research. 

It enables the analysis of patterns and correlations between the clinical, laboratory, and imaging data against health 

outcomes, thus offering insights into effective diagnostic and treatment strategies for pediatric abdominal pain. 

In terms of management, the dataset categorizes subjects into three classes: conservative, primary surgical, and 

secondary surgical, with 483, 270, and 26 records in each class, respectively. The categories of severity and 

diagnosis are both binary. Under severity, there are two subclasses: uncomplicated and complicated, containing 

660 and 119 records, respectively. In the diagnosis category, the dataset includes 463 records labeled as 

appendicitis and 316 records labeled as no appendicitis. The comprehensive nature of the dataset, melding detailed 

imaging data with a broad spectrum of clinical information, renders it an asset in medical research. It offers a 

unique platform to study the interplay of various diagnostic tools and develop models to enhance the accuracy and 

efficiency of medical diagnoses and interventions in pediatric care. 

The summary statistics shed light on patient demographics, clinical characteristics, and treatment outcomes. The 

average age of subjects is around 11.35 years, indicating a moderate age range among the patients. The Body Mass 

Index (BMI) average suggests a normal weight range for this age group, with a standard deviation signifying some 

variability. The length of hospital stays, averaging about 4.28 days, shows a range of hospitalization durations. 

The Alvarado Score (AS), a key metric in appendicitis assessment, displays a wide range of severity in appendicitis 

symptoms among the patients. The appendix diameter, averaging around 7.76 mm, highlights the variability in 

appendicitis cases. Other clinical parameters like body temperature and blood parameters exhibit average values 

with notable variations, reflecting the diverse health statuses of the patient cohort. 

Visual analyses, including histograms (see Figure 4) and count plots (see Figure 5), further elucidate these findings. 

Histograms for continuous variables such as age, BMI, length of stay, and AS illustrate their respective 

distributions. In contrast, count plots for categorical variables like management, severity, and diagnosis visually 
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represent their frequency distribution within the dataset. These plots are instrumental in revealing the prevalence 

of different management strategies, the levels of severity encountered, and the types of diagnoses made. 

 

 

Figure 5.  Number of class information across the three measures 

 
The histogram analysis of the dataset reveals different distribution patterns for BMI, Alvarado Score, and Length 

of Stay. The BMI histogram appears roughly symmetric and centers around a moderate range, suggesting that most 

patients have a BMI within a normal or slightly overweight category, with fewer instances at the extreme ends of 

underweight and obese categories. This distribution approximates a normal distribution, indicating that BMI values 

among the patient population do not vary widely. 

In contrast, the Alvarado Score histogram shows a distribution that, while not perfectly symmetric, is spread across 

a range of scores from low to high. This distribution isn’t strictly normal as it exhibits multiple peaks, reflecting 

varied likelihoods of appendicitis among the patients. This suggests a diverse patient group in terms of symptoms 

and signs associated with appendicitis. 

Lastly, the histogram for Length of Stay is right-skewed, with a majority of the data clustered at shorter stay 

durations and fewer instances extending toward longer stays. This indicates that while most patients experience 

shorter hospital stays, a minority have prolonged stays, possibly due to complications or more severe 

manifestations of their conditions. This positive skew highlights the presence of outliers or exceptional cases 

within the dataset. 

In conclusion, this dataset offers a holistic view of patient demographics, clinical characteristics, and outcomes, 

essential for identifying underlying patterns and informing decision-making in healthcare and research. The 

Figure 4. Statistical distribution of some features across the three measures 
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combination of statistical and visual analyses enhances our understanding of patient profiles and is pivotal in 

advancing patient care and medical research. In the realm of data science and ML, data preprocessing is a critical 

phase where raw data is transformed into a format more conducive to modeling. This phase involves a series of 

pivotal steps, each tailored to enhance the overall quality of the data and ensure its compatibility with the chosen 

analytical model. 

3.2 Preprocessing Pipeline 

In the realm of data science and ML, the preprocessing of data is a critical phase, where raw data is transformed 

into a format that is more conducive to modeling. This phase involves a series of pivotal steps, each tailored to 

enhance the overall quality of the data and ensure its compatibility with the chosen analytical model. 

The preprocessing pipeline initiates with the identification and segregation of the data based on its type. The dataset 

is first analyzed to differentiate between numerical and categorical data. This distinction is crucial as it dictates 

the subsequent preprocessing techniques that will be applied to each data type. Numerical columns are identified, 

typically encompassing data types such as ‘float64’ and ‘int64’, while categorical columns are recognized as those 

containing non-numeric data, typically of the ‘object’ type. 

Following the identification of data types, the first substantive step in the preprocessing pipeline is the imputation 

of missing values. The presence of missing data can significantly impair the integrity of statistical analyses and 

the effectiveness of predictive modeling. For numerical data, missing values are commonly replaced with the 

median of the respective column. This approach, known as ‘median imputation’, is chosen for its robustness, 

particularly in datasets where outliers may skew the mean. This technique ensures a more accurate representation 

of the central tendency of the data. 

After addressing missing numerical values, the pipeline normalizes the numerical data. This normalization, often 

achieved through techniques such as Standard Scaling, ensures that each numerical feature contributes equally to 

the model. It involves adjusting the scale of the data so that its distribution has a mean of zero and a standard 

deviation of one, thereby mitigating the potential bias that can arise from features with larger scales. 

Simultaneously, the pipeline deals with missing values in categorical data by employing the ‘most frequent 

imputation’ method, where missing values are substituted with the mode of the respective feature. This technique 

preserves the dataset’s underlying distribution and minimizes the introduction of bias. 

After the imputation of missing values, categorical variables within the dataset undergo transformation through 

label encoding. Categorical data, which often presents in a non-numeric form, must be converted into a numerical 

format to be processed effectively by ML algorithms. Label encoding assigns a unique integer to each category 

within the feature, differing from one-hot encoding, which uses binary vectors. 

A custom transformer, the Multi Column Label Encoder, has been implemented to handle the challenges of 

processing multiple categorical columns. This transformer extends the standard functionality of label encoders, 

enabling them to process either multiple columns in a Pandas Data Frame or feature indices in a NumPy array. 

This versatility ensures seamless integration into a wide range of data processing pipelines. 

The steps of imputing missing values, normalizing numerical data, and encoding categorical data are then 

integrated into a cohesive pipeline using Scikit-Learn’s Pipeline tool. This approach encapsulates the sequential 
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application of data transformation processes, promoting modularity and ease of replication. It streamlines the 

preprocessing workflow and enhances the reproducibility and scalability of the model development process. Figure 

6 illustrates a block diagram representing the preprocessing steps, as outlined in the preceding sections. Initially, 

records containing problematic label information are excluded. Subsequently, any missing values in the 

Neutrophils feature are replaced with 0. This step is followed by the implementation of the preprocessing 

procedures described earlier. 

 

Figure 6. Block diagram of the proposed model 

 
In conclusion, the preprocessing pipeline, encompassing the identification of data types, imputation of missing 

values, normalization of numerical data, and encoding of categorical data, plays a vital role in preparing raw data 

for sophisticated analyses in ML. By meticulously designing these steps, the input data is rendered into a format 

compatible with algorithmic requirements and reflective of the dataset’s inherent structure. The systematic and 

efficient data preparation exemplified in this pipeline is fundamental in the broader context of data-driven research 

and analysis. 

Figure 7 presents the correlation matrix derived from the data following preprocessing. Examination of the matrix 

reveals a pronounced negative correlation between the “peritonitis” variable and the “management” label, more so 

than with other variables. In contrast, a stronger positive correlation is evident among “weight,” “length of stay,” 

“pediatric appendicitis score,” “appendix diameter,” and “body temperature” variables with the “management” 

label, surpassing correlations with other variables. Furthermore, “weight,” “appendix diameter,” and “body 

temperature” exhibit a notable negative correlation with the “severity” label, distinct from other characteristics. A 

positive correlation is also observed between the “peritonitis” feature and the “severity” label. Conversely, 

“weight,” “length of stay,” “Alvarado score,” “pediatric appendicitis score,” “appendix diameter,” and “neutrophil 

percentage” demonstrate a negative correlation with the “diagnosis” label. Meanwhile, a positive correlation 

between the “diagnosis” label and “peritonitis” is also noted. It seems that the weight feature has a relationship 
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with all label titles. For this reason, the relationship of the weight feature with these labels was also evaluated using 

a violin plot (Figure 8). 

 

Figure 7. Correlation matrix of transformed data 

 
According to the evaluation, Figure 8 comprises three violin plots, each illustrating the distribution of the 

standardized “Weight” variable across various stratifications of “Management,” “Severity,” and “Diagnosis.” 

These plots integrate features of box plots with kernel density estimations, thus providing a nuanced view of the 

data distribution. 

The violin plot delineating “Weight” by “Management” reveals three distinct categories labeled conservative, 

primary surgical, and secondary surgical. Conservative exhibits a highly concentrated distribution, with negligible 

variability indicated by the slim profile of the violin. This suggests homogeneity in the weight measurements 

within this management group. Primary and secondary surgical, in contrast, display broader distributions, 

indicative of higher variability in patient weight. Notably, primary surgical shows a pronounced bulge around the 

median, suggesting a higher density of observations in that region compared to conservative and secondary 

surgical. 

When observing the “Weight” distribution by “Severity,” two categories are evident. Complicated distribution 

closely mirrors that observed in conservative management, which is characterized by limited variability. 

Uncomplicated contrasts starkly, showcasing a flattened, extended distribution that spans a wider range of weight 

values, thus indicating considerable heterogeneity in patient weight within this severity level. 
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Finally, the “Weight” distribution by “Diagnosis” presents a similar bimodal distribution to “Severity.” 

Appendicitis presents a constrained distribution, suggesting a clustering of weight measurements around the 

median. Conversely, no appendicitis exhibits a more dispersed distribution, albeit less pronounced than observed 

in the severity uncomplicated. 

 

 

Figure 8. Violin plot representation for weight feature (Management: 0- Conservative, 1-Primary Surgical, 2-Secondary Surgical, Severity: 0-

Complicate, 1-Uncomplicated, Diagnosis: 0- Appendicitis, 1- No appendicitis) 

 
The variability in weight differs markedly across the categorical stratifications, possibly reflecting the diversity in 

patient characteristics or disease manifestations within each category. The plots do not convey the actual count of 

observations; instead, the width correlates with the density of data at scores. These visual patterns could imply 

potential associations between the standardized weight of patients and their respective management strategies, the 

severity of the condition, or diagnostic categories. Figure 9 shows the scatter plot of the weight and appendix 

diameter features. It is seen that the distributions for each label and class information differ in these two features. 
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Figure 9. Scatter plot representation for weight and appendix diameter feature (Management: 0- Conservative, 1-Primary Surgical, 2-

Secondary Surgical, Severity: 0-Complicate, 1-Uncomplicated, Diagnosis: 0- Appendicitis, 1- No appendicitis) 
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IV. RESULTS AND DISCUSSION 

This study’s classification results for the ‘Management’ category, derived from a 10-fold cross-validation 

approach, are profoundly illustrative of the comparative performance of three distinct ML algorithms: MLNN, 

SVM, and LDA. 

The classification result of management is depicted in Table 1. Accordingly, the SVM algorithm demonstrated 

remarkable performance, achieving a perfect score across all metrics, which include Accuracy (Acc), Sensitivity 

(Sens), Specificity (Spec), Precision (Prec), and the F1 Score (F1). These results suggest that the SVM model is 

highly effective in this context, perfectly classifying the management strategies as conservative, primary surgical, 

or secondary surgical. The SVM’s inherent ability to construct an optimal hyperplane in a high-dimensional space 

may contribute to this exemplary outcome, as it effectively maximizes the margin between different classes. 

The classification result of management is depicted in Table 1. Accordingly, the SVM algorithm demonstrated 

exceptional performance, achieving an accuracy of 99.87%, sensitivity of 98.72%, specificity of 99.93%, precision 

of 99.88%, and an F1 score of 99.28%. These results suggest that the SVM model is highly effective in this context, 

nearly perfectly classifying the management strategies as conservative, primary surgical, or secondary surgical. 

The SVM’s inherent ability to construct an optimal hyperplane in a high-dimensional space may contribute to this 

outstanding outcome, as it effectively maximizes the margin between different classes. 

In comparison, the MLNN exhibited robust performance with an accuracy of 98.07%, sensitivity of 85.51%, 

specificity of 98.92%, precision of 98.32%, and an F1 score of 90.01%, see Table 1. While slightly less than 

perfect, these results are commendable and indicate that MLNNs can capture complex nonlinear relationships 

within the data. However, the discrepancy in sensitivity suggests that MLNN may be less adept at identifying true 

positives across all classes when compared to SVM.  

The LDA algorithm, on the other hand, showed a marked divergence in performance, with Accuracy at 89.22%, 

Sensitivity at 63.80%, Specificity at 93.41%, Precision at 64.65%, and F1 Score at 64.18%, see Table 1. These 

findings indicate a substantial reduction in the LDA model’s ability to correctly identify and classify management 

strategies. The lower Sensitivity and Precision suggest that the LDA model struggles with class imbalance and 

may incorrectly classify more cases into the dominant class. 

 
Table 1. Classification result of management 

 Acc Sens Spec Prec F1 
MLNN 98.07 85.51 98.92 98.32 90.01 
SVM 99.87 98.72 99.93 99.88 99.28 
LDA 89.22 63.80 93.41 64.65 64.18 

 
 
The stark contrast in the performance of SVM and LDA, especially, opens a dialogue on the suitability of linear 

methods versus those capable of capturing higher-order interactions in datasets with complex class boundaries. 

Furthermore, the perfect scores achieved by SVM raise questions regarding the potential overfitting of the model. 

While overfitting is typically identified during the validation phase, the 10-fold cross-validation used in this study 

is generally robust against this issue. Nonetheless, further investigation into the SVM model’s performance on an 

independent test set would be prudent to confirm its generalizability. 
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Considering these findings, the selection of an appropriate ML model for the classification of management 

strategies in pediatric appendicitis appears to be a decisive factor in predictive performance. The choice between 

MLNN and SVM may be guided by considerations of dataset size, feature space complexity, and the computational 

resources at hand. Meanwhile, the results suggest that LDA may not be suitable for datasets where the classes are 

not linearly separable or when the prediction task requires a nuanced distinction between classes.  

The 10-fold cross-validation classification results for the ‘Severity’ and ‘Diagnosis’ categories further elucidate 

the relative performances of the ML algorithms under consideration: MLNN, SVM, and LDA. For the ‘Severity’ 

classification, the SVM algorithm demonstrates exceptional proficiency, attaining an accuracy of 98.85%, 

sensitivity of 95.83%, specificity of 99.39%, precision of 96.64%, and an F1 score of 96.23%, depicted in Table 

2. This strong performance indicates that SVM is exceptionally adept at distinguishing between uncomplicated 

and complicated cases of appendicitis, a distinction that is critical in clinical decision-making. 

According to the results, shown in Table 2, MLNN also performed admirably in the ‘Severity’ classification, 

achieving 98.59% Accuracy, 95.80% Sensitivity, and a 95.40% F1 Score. These results indicate a high degree of 

model reliability, although slightly inferior to SVM, perhaps due to MLNN’s sensitivity to the distribution of data 

and its inherent complexity in capturing the intricate patterns within. On the other hand, LDA showed a decrease 

in performance, with 92.17% Accuracy and notably lower Sensitivity and F1 Score of 64.71% and 71.63%, 

respectively. This suggests that LDA may not be as effective in handling the nuances of the severity classification, 

which can be crucial in assessing the degree of intervention required for pediatric appendicitis. 

 
Table 2. Classification result of severity 

  Acc Sens Spec Prec F1 
MLNN 98.59 95.80 99.09 95.00 95.40 
SVM 98.85 95.83 99.39 96.64 96.23 
LDA 92.17 64.71 97.12 80.21 71.63 

 

Turning to the ‘Diagnosis’ category, the results mirror the trend observed in ‘Management’ and ‘Severity’, with 

SVM achieving perfect scores in all metrics, underscoring its potential as a highly reliable classifier for diagnosing 

pediatric appendicitis (see Table 3). The MLNN model also exhibits stellar performance, with 99.61% Accuracy 

and an F1 Score of 99.68%. These results suggest that MLNN is almost as effective as SVM in diagnosing 

appendicitis, making it a valuable alternative when considering the trade-offs between computational complexity 

and predictive performance.  

Conversely, LDA demonstrates a starkly contrasting performance in the ‘Diagnosis’ category, with a mere 17.18% 

Accuracy and an F1 Score of 29.33% (see Table 3). The 100% Sensitivity accompanied by 0% Specificity indicates 

a significant classification imbalance, where LDA may be over-predicting the majority class. This severe 

underperformance indicates that LDA is unsuitable for the diagnosis task within this dataset, likely due to its 

inability to manage the complex and nonlinear decision boundaries that the data presents. 

 
Table 3. Classification result of diagnosis 

  Acc Sens Spec Prec F1 
MLNN 99.61 100.00 99.05 99.36 99.68 
SVM 100.00 100.00 100.00 100.00 100.00 
LDA 17.18 100.00 0.00 17.18 29.33 
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The consistency of SVM’s perfect scores across all categories and metrics raises a critical discussion about the 

model’s capacity for overfitting despite the robustness of 10-fold cross-validation against such risks. The results 

advocate for additional validation using external datasets to verify SVM’s generalizability. 

In MLNN’s case, the slight discrepancies in performance across categories suggest a need for further fine-tuning 

of the model’s architecture or parameters, particularly to improve its sensitivity in the ‘Management’ category. 

The discussion must also address the feasibility of deploying these models in real-world clinical settings. While 

SVM shows superior performance, the interpretability of ML models is essential in clinical applications. 

Therefore, the trade-off between performance and interpretability must be carefully considered. 

The article used the same dataset [14] and employed ML classifiers to predict pediatric appendicitis’s diagnosis, 

management, and severity. The study utilized logistic regression, random forests, and gradient boosting machines, 

achieving areas under the precision-recall curve of 0.94, 0.92, and 0.70, respectively, for these three targets. These 

models outperformed conventional scores like Alvarado and Pediatric Appendicitis Score. 

In comparison, the results of our study, using MLNN, SVM, and LDA, indicate that SVM outperforms the other 

models across all metrics in both the ‘Management’ and ‘Severity’ categories, achieving perfect scores. MLNN 

also shows excellent performance, but with slightly lower sensitivity in ‘Management’ and slightly lower metrics 

in ‘Severity’ compared to SVM. LDA displays significantly lower performance across all metrics. 

When comparing the two sets of results, it is notable that SVM in our study demonstrates strong performance, 

surpassing the models used in the other study in most metrics for the 'Management' and 'Severity' categories. 

However, it is important to remain cautious about the potential risk of overfitting, as indicated by the consistently 

high performance of SVM, which might not generalize as effectively to unseen data. The results of the referenced 

article and your study suggest that while traditional scores are valuable, ML models, particularly SVM in this case, 

offer a substantial improvement in predictive accuracy for pediatric appendicitis. 

In conclusion, the SVM’s remarkable performance across the board suggests it is a frontrunner for classification 

tasks in pediatric appendicitis. However, MLNN’s near-competitive results are a compelling alternative, especially 

in scenarios where model transparency and interpretability are important. The underperformance of LDA 

underscores the necessity of selecting models congruent with the data’s complexity, emphasizing that the choice 

of model in medical diagnostics should be based on a combination of performance metrics and practical 

considerations such as explainability, computational demands and ease of integration into clinical workflows. 

 

V. CONCLUSION 

The utilization of MLNN and SVM in the prediction of pediatric appendicitis has demonstrated a strong ability to 

discern complex patterns in clinical data, thereby aiding in diagnosis, management, and severity assessment. 

SVM’s robust performance, with near-perfect scores, positions it as a promising tool for clinical decision support, 

while the competitive results from MLNN provide a viable alternative. The underperformance of LDA underscores 

the importance of careful model selection that aligns with data complexity and task requirements. Although the 

consistently high performance of SVM raises some concerns about potential overfitting, the study’s findings 

highlight the effectiveness of advanced ML algorithms in outperforming traditional diagnostic scores and 
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supporting clinical decision-making. Further external validation is encouraged to ensure the generalizability of the 

SVM model. Overall, this research represents a meaningful step toward integrating ML into pediatric healthcare, 

offering opportunities to improve patient outcomes and enhance healthcare efficiency. 
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