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Abstract – Oral malignancies pose significant global health challenges, with oral squamous cell carcinoma (OSCC) being the 

most prevalent form. Early detection of potentially malignant oral disorders (OPMDs) such as leukoplakia and oral submucous 

fibrosis is crucial for improving patient prognosis. Traditional diagnostic approaches often face limitations like subjective 

interpretation and potential delays. This study aimed to develop and evaluate a deep learning-based model for the classification 

of oral lesions as benign or malignant using publicly available image datasets. Utilizing a modified VGG16 architecture and 

optimized preprocessing techniques, the model was trained on 330 annotated intraoral images and achieved an overall accuracy 

of 94.79%. Key performance metrics included a precision of 95.11%, sensitivity and specificity of 94.58%, and an F1 score of 

94.74%. The model’s performance was comparable to or exceeded existing models with larger datasets, demonstrating its 

capability for effective feature extraction and reliable classification. The high area under the curve (AUC) value of 0.96 

reinforced its potential for clinical application. While the model showed strong diagnostic capability, expanding the dataset size 

and incorporating a broader range of cases could further enhance generalizability. Future work should also consider integrating 

real-time image acquisition and optimizing computational processes for practical deployment. The findings underscore the 

promise of AI-driven diagnostic tools in supporting healthcare professionals by enabling timely, accurate, and scalable detection 

of oral malignancies, thereby contributing to improved patient care and outcomes. This study represents a significant step toward 

the practical application of AI in oral health diagnostics.  
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I. INTRODUCTION 

Oral malignancies represent a significant health concern 

worldwide, encompassing a diverse range of neoplastic 

conditions that arise within the oral cavity. Among these, oral 

squamous cell carcinoma (OSCC) is the most prevalent, 

accounting for a substantial proportion of oral cancers. The 

World Health Organization has categorized various lesions as 

oral potentially malignant disorders (OPMDs), which include 

conditions such as leukoplakia, erythroplakia, and oral 

submucous fibrosis (OSMF) [1], [2]. These disorders are 

characterized by an increased risk of malignant 

transformation, with OSMF alone exhibiting a transformation 

rate of 3-13% into OSCC [3]. The recognition and 

management of these lesions are critical, as early detection can 

significantly improve patient outcomes and survival rates [4]. 

The clinical presentation of oral malignancies can be 

insidious, often leading to delayed diagnosis. For instance, oral 

malignant melanoma, although rare, is associated with a poor 

prognosis, with a 5-year survival rate ranging from 10% to 

25% [5]. Symptoms may not manifest until the disease has 

progressed significantly, underscoring the importance of 

regular oral examinations and awareness of potential signs of 

malignancy [6]. Furthermore, the presence of oral lesions can 

severely impact patients' quality of life, affecting their ability 

to eat, speak, and maintain social interactions [7]. 

The etiology of oral malignancies is multifactorial, with risk 

factors including tobacco use, alcohol consumption, and 

chronic irritation from ill-fitting dentures or dental appliances 

[8].Additionally, systemic conditions such as hematological 

malignancies can present with oral manifestations, 

complicating the clinical picture [9]. The interplay between 

local and systemic factors necessitates a comprehensive 

approach to diagnosis and treatment, emphasizing the need for 

interdisciplinary collaboration among healthcare providers 

[10]. 

The application of artificial intelligence (AI) in the detection 

of oral malignancies has emerged as a pivotal advancement in 

modern dentistry and oncology. Traditional diagnostic 

methods, while valuable, often suffer from limitations such as 

reliance on subjective interpretation and the potential for 

human error, which can delay diagnosis and treatment 

[11].Recent studies have demonstrated that AI can 

significantly reduce the time required for diagnosis, thereby 

addressing critical delays that often occur in traditional 

diagnostic processes [12], [13]. Such AI-driven solutions 

could transform the current diagnostic landscape by enabling 

early detection in both clinical and community settings, 

thereby improving treatment outcomes and reducing mortality 

rates.  

https://dergipark.org.tr/en/pub/ijmsit
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Warin et al. [14] evaluated deep convolutional neural 

network (CNN) algorithms for classifying and detecting 

OPMDs and OSCC using a dataset of 980 oral images. Various 

CNN architectures were used for image classification, with 

DenseNet-169 achieving the best performance. The model 

achieved high diagnostic accuracy metrics for detecting OSCC 

and OPMD in oral images. For OSCC, precision, sensitivity, 

and specificity were each 99%, with an F1 score of 98% and 

an area under the curve (AUC) of 1.0. For OPMD detection, 

the model recorded 95% precision, sensitivity, and F1 score, 

with 97% specificity and an AUC of 0.98. These results 

indicate that CNN models, particularly DenseNet-169, can 

perform at expert levels, making them promising tools for 

assisting general practitioners in early oral cancer detection. 

Jubair et al. [15] aimed to develop a lightweight CNN for 

binary classification of oral lesions into benign or 

malignant/potentially malignant using real-time clinical 

images. The model utilized EfficientNet-B0, which is known 

for achieving state-of-the-art accuracy on large datasets while 

being smaller and faster than traditional CNNs, for transfer 

learning and was trained on 716 clinical images. The 

performance metrics included an accuracy of 85%, specificity 

of 84.50%, sensitivity of 86.70%, and an AUC of 0.93. These 

results suggest that CNN models can be effectively used to 

build cost-efficient, embedded AI devices with limited 

computational power for oral cancer screening and early 

detection, potentially expanding screening capabilities. 

Huang et al. [16] presented a deep-learning model based on 

a metaheuristic approach for the accurate diagnosis of oral 

cancer, focusing on early detection to save lives. It used three 

preprocessing techniques—Gamma correction, noise 

reduction, and data augmentation—to enhance image quality 

and boost dataset size. Weights of the CNN were optimized 

using an improved version of the Squirrel Search Algorithm 

(ISSA) to increase accuracy. The model was tested on the 

“Oral Cancer (Lips and Tongue) Images” dataset from Kaggle, 

containing 131 images classified by ENT specialists. The 

dataset was split into 70% for training and 30% for testing. The 

proposed model achieved an accuracy of 97%, precision of 

92.66%, sensitivity of 87.34%, and F1-score of 89.37%, 

demonstrating superior results compared to existing methods. 

However, the complex nature of both the CNN and the 

metaheuristic increases time complexity. Despite this, the 

model shows promise for adapting to different types of cancer 

diagnosis. 

Fu et al. [17] aimed to develop a rapid, non-invasive, and 

cost-effective deep learning approach to identify oral cavity 

squamous cell carcinoma (OCSCC) using photographic 

images. The researchers employed cascaded convolutional 

neural networks, training them on 44,409 biopsy-proven 

OCSCC and normal control images from 11 hospitals in China 

collected over 13 years. The dataset was divided into 

development and internal validation sets, with an additional 

external validation set sourced from dental and oral surgery 

journals. It achieved an AUC of 0.98, a sensitivity of 94.90%, 

and a specificity of 88.70% on the internal validation dataset. 

The results suggest that this automated deep-learning approach 

is a viable clinical tool for fast screening, early detection, and 

assessment of therapeutic efficacy, demonstrating 

performance comparable to human specialists. 

Bansal et al. [18] aimed to develop a new CNN model, 

termed “Oral_Cancer_Detection,” to classify oral cancer 

images of lips and tongue into cancerous and non-cancerous 

categories. The model was trained using a small Kaggle 

dataset with 131 images (87 cancerous, 44 non-cancerous), 

incorporating data augmentation, feature extraction, and 

classification techniques. Implemented in MATLAB, the 

model achieved a 94% validation accuracy after 132 iterations. 

Key performance metrics showed a precision and specificity 

of 100%, sensitivity of 91%, and F1 score of 94%, indicating 

strong performance despite the dataset’s limited size. The 

model is characterized by low computational requirements, 

making it effective for rapid cancer classification. While 

results are promising, the study suggests that increasing 

dataset size and training parameters could further improve 

accuracy, albeit with longer processing times. 

Lin et al. [19] aimed to enhance the accuracy of smartphone-

based deep learning methods for detecting oral diseases, 

focusing on improving diagnosis through systematic data 

collection and algorithm optimization. A centered image-

capturing approach was developed to collect clear oral cavity 

images, leading to the creation of a medium-sized dataset with 

five disease categories: normal, ulcer, low-risk, high-risk, and 

cancer. A resampling method was also introduced to reduce 

variability from handheld smartphone cameras. The study 

employed the HRNet model, achieving a sensitivity of 83%, 

specificity of 96.60%, precision of 84.30%, and F1 score of 

83.60% on 455 test images. The “center positioning” method 

improved the F1 score by about 8% over a simulated “random 

positioning” approach, while resampling added a further 6% 

performance boost. HRNet outperformed models like VGG16, 

ResNet50, and DenseNet169. The results highlight that 

smartphone-based imaging, when combined with targeted 

image capture, resampling, and HRNet, holds promise for 

primary oral cancer diagnosis.  

Tanriver et al. [20] explored the potential of computer vision 

and deep learning for the automated detection of OPMDs using 

photographic images. With a two-stage pipeline, the model 

first detected lesions and then classified them as benign, 

OPMD, or carcinoma. Using EfficientNet-B4, the model 

achieved precision, sensitivity, specificity, and F1-score of 

87%, 86%, 86%, and 86%, respectively, on the test set. The 

findings underscore the feasibility of this deep-learning 

approach as a low-cost, non-invasive tool that can support 

early screening processes and enhance OPMD detection, 

contributing to improved oral cancer outcomes. The model’s 

real-time capabilities show potential for broader clinical use, 

aiding timely diagnosis and treatment. 

In summary, oral malignancies encompass a spectrum of 

conditions that pose significant challenges in terms of 

diagnosis, treatment, and patient management. The 

incorporation of AI in the detection of oral malignancies 

represents a significant leap forward in the field of oral health. 

By improving diagnostic accuracy, facilitating early detection, 

and enabling personalized treatment approaches, AI 

technologies are poised to transform the landscape of oral 

cancer management. 

This study aims to develop and evaluate a deep learning-

based approach for the accurate classification of oral lesions as 

benign or malignant using publicly available image datasets. 

By employing a modified VGG16 architecture and optimized 

preprocessing techniques, the research seeks to improve 

diagnostic accuracy, sensitivity, and specificity compared to 

existing models. The overarching goal is to provide a reliable, 

efficient, and scalable tool that can assist healthcare 

professionals in early detection and diagnosis of oral 
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malignancies, thereby enhancing patient outcomes and 

facilitating timely treatment interventions. 

II. MATERIALS AND METHOD 

A. Dataset Used and Programming Environment 

In this study, the publicly available "Oral Images Dataset," 

published by Chandrashekar et al., was utilized 

(Chandrashekar et al., 2021). This dataset contains color 

images of oral lesions captured using mobile cameras and 

intraoral cameras. Lesion areas within the dataset were 

subsequently labeled as benign or malignant by experts using 

the VGG Image Annotator (VIA) tool. VGG is an open-source, 

JavaScript-based application commonly used for image 

annotation (Dutta & Zisserman, 2019). The labeled image 

regions were cropped from the original images and resized to 

a resolution of 224x224 pixels. This process resulted in a 

dataset comprising a total of 330 images, with 162 labeled as 

benign and 168 as malignant, to be used in the study. A train-

test split with a ratio of 0.3 was applied to the dataset, which 

comprises a total of 330 images (162 labeled as benign and 168 

as malignant). Following the split, 234 images were allocated 

for training, while 96 images were set aside for testing Sample 

images from the resulting dataset are presented in Figure 1. 

 

 

Fig. 1. Sample images from dataset.  

The dataset was created, and preprocessing tasks on the 

images were carried out using a computer with an Intel i7 

processor and 16 GB of RAM, alongside the Python 

programming language. 

B. Convolutional Neural Network (CNN) 

CNNs have emerged as a cornerstone of modern deep 

learning, particularly in the realm of image processing and 

computer vision. Their architecture is inspired by the human 

visual system, allowing them to effectively recognize patterns 

and features in visual data. CNNs utilize a hierarchical 

structure that includes convolutional layers, pooling layers, 

and fully connected layers, enabling them to learn increasingly 

abstract representations of input data as it progresses through 

the network (Bai & Li, 2023; O’Shea & Nash, 2015; Zakaria, 

2023). This architecture is particularly adept at handling the 

spatial hierarchies inherent in images, making CNNs a 

preferred choice for tasks such as image classification, object 

detection, and medical image analysis (Kwiatkowska et al., 

2021; Tian, 2020). 

CNNs have emerged as a cornerstone of modern deep 

learning, particularly in the realm of image processing and 

computer vision. Their architecture is inspired by the human 

visual system, allowing them to effectively recognize patterns 

and features in visual data. CNNs utilize a hierarchical 

structure that includes convolutional layers, pooling layers, 

and fully connected layers, enabling them to learn increasingly 

abstract representations of input data as it progresses through 

the network [21], [22], [23]. This architecture is particularly 

adept at handling the spatial hierarchies inherent in images, 

making CNNs a preferred choice for tasks such as image 

classification, object detection, and medical image analysis 

[24], [25]. 

Among the various architectures developed for CNNs, the 

Visual Geometry Group (VGG) model, specifically VGG16, 

has garnered significant attention due to its depth and 

performance. The VGG16 architecture is a prominent model 

in the field of deep learning, particularly known for its 

application in image classification tasks. Developed by the 

Visual Geometry Group at the University of Oxford, VGG16 

is characterized by its deep architecture, consisting of 16 layers 

with learnable parameters, which include 13 convolutional 

layers and 3 fully connected layers [23], [26]. The 

convolutional layers utilize small receptive fields of 3x3 

pixels, which allows the network to capture fine-grained 

features in images while maintaining a manageable number of 

parameters [27]. This design choice is crucial as it enables the 

model to learn hierarchical representations of the input data, 

progressively extracting more complex features as the data 

passes through the layers [23]. VGG16's performance has been 

validated across numerous benchmarks, making it a popular 

choice for transfer learning in various applications, including 

medical imaging, where it has been employed for tasks. The 

application of VGG16 and similar CNN architectures has 

revolutionized fields, where automated systems can assist in 

the early detection, significantly improving diagnostic 

accuracy [24], [28]. 

C. Metrics Used 

In the evaluation of machine learning models, several key 

performance metrics are commonly utilized to assess their 

effectiveness in classification tasks. These metrics include 

precision, accuracy, sensitivity (often referred to as recall), 

specificity, F1 score, confusion matrix, and the Receiver 

Operating Characteristic (ROC) curve. Each of these metrics 

provides unique insights into the model's performance [29]. 

Precision is defined as the ratio of true positive predictions 

to the total number of positive predictions made by the model. 

It indicates how many of the predicted positive cases were 

actually positive, thereby reflecting the model's ability to avoid 

false positives [30]. Accuracy, on the other hand, measures the 

overall correctness of the model by calculating the ratio of 

correctly predicted instances (both true positives and true 

negatives) to the total instances evaluated. While accuracy is a 

straightforward metric, it can be misleading in cases of 

imbalanced datasets where one class significantly outnumbers 

the other [31]. Sensitivity, or recall, quantifies the model's 

ability to correctly identify positive instances. It is calculated 

as the ratio of true positives to the sum of true positives and 

false negatives. High sensitivity is crucial in scenarios where 

missing a positive case (e.g., a disease diagnosis) could have 

severe consequences [32]. Conversely, specificity measures 

the proportion of true negatives correctly identified, providing 

insight into the model's ability to avoid false negatives. It is 

calculated as the ratio of true negatives to the sum of true 

negatives and false positives [33]. The F1 score is a harmonic 

mean of precision and recall, offering a single metric that 

balances the two. It is particularly useful in situations where 

there is a need to find an optimal balance between precision 

and recall, especially in imbalanced datasets [34]. The 

confusion matrix is a comprehensive tool that summarizes the 
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performance of a classification model by displaying the counts 

of true positives, true negatives, false positives, and false 

negatives. This matrix allows for a detailed analysis of the 

model's performance and helps identify areas for improvement 

[35]. Lastly, the ROC curve is a graphical representation that 

illustrates the trade-off between sensitivity (true positive rate) 

and specificity (false positive rate) at various threshold 

settings. The area under the ROC curve (AUC) serves as a 

single scalar value to summarize the model's performance 

across all thresholds, with higher AUC values indicating better 

model performance [36]. Together, these metrics provide a 

robust framework for evaluating the effectiveness of machine 

learning models in classification tasks, enabling practitioners 

to make informed decisions based on the specific requirements 

of their applications. 

The formulas for calculating accuracy, precision, sensitivity 

(recall), specificity, and the F1 score are presented in 

Equations 1, 2, 3, 4, and 5, respectively. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
    

     (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
     

     (2) 

Sensitivity =
𝑇𝑃

𝑇𝑃+𝐹𝑁
     

     (3) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
     

     (4) 

F1𝑆𝑐𝑜𝑟𝑒 =
2∗𝑇𝑃

2∗ 𝑇𝑃+𝐹𝑃+𝐹𝑁
     

                 (5) 

III. RESULTS 

A. Network Design and Training Information 

In this study, modifications were made to the final two layers 

of the VGG16 model to incorporate specific parameters. A 

dense layer with 256 neurons and a ReLU activation function 

was added, followed by an output layer with a sigmoid 

activation function. The “Adam” optimizer was selected, and 

the model was configured to run for 200 epochs; however, 

early stopping was triggered after the 138th epoch, concluding 

the training. The batch size was set to 32. Initially, the loss 

value was 3.32, which decreased to 0.15 by the end of training. 

Similarly, the accuracy began at 0.43 and gradually increased, 

reaching 0.95. Graphs illustrating the changes in loss and 

accuracy are shown in Figure 2. 

 

Fig. 2. Training information.  

B. Evaluation of Training 

In this study, a deep learning model was developed to 

classify intraoral lesion images captured by cameras as benign 

or malignant. Following the model evaluation, key 

performance metrics—including accuracy, precision, 

sensitivity, specificity, and F1 score—were calculated for each 

class. The findings are summarized below. 

For benign lesions, the model achieved an accuracy of 

94.79%, a precision of 97.62%, a sensitivity of 91.11%, and a 

specificity of 98.04%. The F1 score for the benign class was 

94.25%. For malignant lesions, the model demonstrated 

similar robustness, with an accuracy of 94.79%, a precision of 

92.59%, a sensitivity of 98.04%, and a specificity of 91.11%. 

The F1 score for the malignant class reached 95.23%. 

These results indicate that the model performs well in 

distinguishing between benign and malignant lesions, 

showcasing strong precision and sensitivity across both 

classes. The obtained metrics are presented in Table 1.  

Following the model evaluation, a confusion matrix was 

generated to capture the classification performance for each 

class. This matrix enabled a detailed analysis of Type I and 

Type II errors across both classes, facilitating insights into the 

model’s misclassification tendencies. Figure 3 presents the 

confusion matrix, which provides a comprehensive view of the 

model's ability to correctly identify benign and malignant 

cases and highlights areas for potential improvement in 

accuracy.

 

Table 1. Evaluation metrics of results. 

Class Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1 Score (%) 

Benign 94.79 97.62 91.11 98.04 94.25 

Malign 94.79 92.59 98.04 91.11 95.23 

Average 94.79 95.11 94.58 94.58 94.74 
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Fig. 3. Confusion matrix of results. 

The True Positive Rate (TPR) matrix illustrates the 

proportion of actual positive cases accurately identified by 

the model in each class, providing insight into the model's 

effectiveness in detecting specific conditions. High TPR 

values across classes suggest that the model performs well 

in recognizing positive instances, thereby reducing the 

occurrence of false negatives and enhancing diagnostic 

reliability for each condition. The TPR matrix of the results 

is presented in Figure 4. 

 

Fig. 4. TPR matrix of results. 

Finally, the Area Under the Curve (AUC) value was 

calculated, and the Receiver Operating Characteristic 

(ROC) curve was generated to further evaluate the model’s 

performance. This ROC curve, presented in Figure 5, 

visually represents the trade-off between sensitivity and 

specificity, providing an additional measure of the model’s 

classification effectiveness. 

 

Figure 1. ROC curve and AUC value of results. 

IV. DISCUSSION 

The results from this study reveal a strong performance of 

the proposed deep learning model in classifying benign and 

malignant oral conditions from images. The model achieved 

an impressive accuracy of 94.79% on a dataset of 330 

images, highlighting its capacity for reliable classification 

even with a relatively small dataset size. The relevant 

studies are given in Table 2 along with their performance 

metrics. 

The precision of 95.11% signifies that the model 

maintains a low false positive rate, correctly identifying 

benign and malignant cases with high confidence. In terms 

of sensitivity, the model achieved 94.58%, indicating its 

effectiveness in detecting true positive cases of malignancy. 

This sensitivity is notable, especially when compared to 

models like EfficientNet-B4, which reached 86% sensitivity 

on a dataset of 684 images, suggesting that the proposed 

model better identifies malignant cases. 

Moreover, the model’s specificity was also 94.58%, 

reflecting a balanced capability to avoid false alarms by 

correctly identifying non-malignant cases. This level of 

specificity is comparable to the cascaded CNN’s 88.7%, 

confirming that the model offers a significant reduction in 

false positives, making it suitable for clinical use where 

overdiagnosis can be problematic. 

The F1 Score of 94.74% illustrates the model’s balanced 

handling of precision and recall, showcasing its suitability 

for real-world application where both measures are critical. 

This score also suggests that the model performs well in 

maintaining a strong balance between false positives and 

false negatives, which is crucial in clinical diagnostics. 

The AUC of 0.96 further reinforces the model’s excellent 

discrimination capability between benign and malignant 

classes, approaching the maximum AUC value of 1.0. 

Compared to the AUC scores of other models, such as 0.983 

for the cascaded CNN and 0.928 for EfficientNet-B0, the 

proposed model demonstrates highly competitive 

performance, despite the smaller dataset. 
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Table 2. Performance metrics of studies in the literature. 

Study 

Classifi

cation 

Type 

CNN Model 

Number 

of Images 

in Dataset 

Accuracy 

(%) 

Precision 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

F1 

Score 

(%) 

AUC 

Warin et 

al. (2022) 

[14]  

Two-

class 

DenseNet-

169 
980  

98% 

(OSCC) 

95% 

(OPMD) 

99% 

(OSCC) 

95% 

(OPMD) 

99% 

(OSCC) 

97% 

(OPMD) 

98% 

(OSCC) 

95% 

(OPMD) 

1.0 

(OSCC) 

0.98 

(OPMD) 

Jubair et 

al. (2020) 

[15] 

Two-

class 

EfficientNet

-B0 
716 85.00%  86.70% 84.50%  0.93 

Huang et 

al. (2023) 

[16] 

Two-

class 

Unique 

Model 
131 97.00% 92.66% 87.34%%  89.37%  

Fu et al. 

(2020) 

[17] 

Two-

class 

Cascaded 

CNN Model 
44409 92.40%  94.90% 88.70%  0.98 

Bansal et 

al. (2023) 

[18] 

Two-

class 

Unique 

Model 
131 92.00% 100.00% 88.90% 100.00% 94.12%  

Tanriver 

et al. 

(2021) 

[20] 

Multi-

class 

EfficientNet

-b4 
684  87.00% 86.00%  86.00%  

Lin et al. 

(2021) 

[19] 

Multi-

class 
HRNet-W18 455  84.30% 83.00% 96.60% 83.60%  

Our study 
Two-

class 

VGG16 

based model 330 94.79% 95.11% 94.58% 94.58% 94.74% 0.96 

 

While the model’s performance metrics are promising, 

the relatively limited dataset size of 330 images may restrict 

generalizability. Expanding the dataset size, possibly 

incorporating a wider range of cases and image variations, 

could enhance the model’s robustness and ensure its 

applicability across diverse populations.  

Overall, the study confirms that AI-based image 

classification for oral diseases can achieve high accuracy 

and balance across key metrics, even with smaller datasets. 

The model’s potential for clinical application is significant, 

as it provides accurate, efficient, and balanced diagnostic 

support, which could enhance early detection and patient 

outcomes. 

V. CONCLUSION 

In conclusion, this study demonstrates that deep learning 

models, particularly CNN architectures such as the 

modified VGG16, hold substantial potential for the 

classification of oral lesion images as benign or malignant. 

The proposed model, with a robust performance accuracy of 

94.79%, precision of 95.11%, and sensitivity and specificity 

both at 94.58%, showcases its capability to effectively 

distinguish between different types of oral conditions. 

These results indicate that even with a dataset of moderate 

size, it is possible to develop a highly accurate model that 

can contribute significantly to early detection efforts in oral 

health diagnostics. 

This study aimed to develop and evaluate a deep learning-

based approach for the accurate classification of oral lesions 

using publicly available image datasets. By employing a 

modified VGG16 architecture and optimized preprocessing 

techniques, the research sought to improve diagnostic 

accuracy, sensitivity, and specificity compared to existing 

models. The overarching goal was to provide a reliable, 

efficient, and scalable tool that can assist healthcare 

professionals in early detection and diagnosis of oral 

malignancies, enhancing patient outcomes and facilitating 

timely treatment interventions. 

The findings align well with existing literature, 

supporting the notion that AI-driven diagnostic tools can 

augment traditional methods and assist healthcare 

professionals by providing consistent, rapid, and reliable 

results. The high F1 score and AUC further underscore the 

model’s balanced performance, indicating its readiness for 

potential integration into clinical workflows to support 

decision-making processes and improve patient care 

outcomes. 

However, the study also recognizes that to achieve wider 

applicability and enhanced reliability, future research 

should focus on expanding dataset sizes and including more 

diverse and complex cases. This would aid in addressing 
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limitations related to generalizability and ensure that the 

model can be effectively employed in various clinical 

settings. In addition, incorporating real-time image 

acquisition techniques and optimizing computational 

efficiency could further enhance the practical deployment 

of the model. 

In summary, this research provides a promising step 

forward in leveraging deep learning for the early detection 

and classification of oral malignancies. By bridging the gap 

between traditional diagnostic methods and modern AI 

capabilities, this study contributes to the broader effort of 

enhancing oral health management and ultimately 

improving patient outcomes. 
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