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Abstract

This paper establishes the necessary conditions for the existence of ω-periodic solutions in
the sequence space n(φ) for an infinite system of third-order differential equations. The
analysis utilizes the system’s Green’s function, the Meir-Keeler condensing operator, and
measures of non-compactness. To illustrate our results, we provide relevant examples.

1. Introduction and Preliminaries

Measures of non-compactness refers to a function that determines to what extent a set is non-compact. This concept was pioneered by
Kuratowski [1] in 1930, who introduced the function α . Other researchers used it as a base to come up with more measures of non
compactness (see, [2–4]). Measures of non-compactness in combination with some fixed point theorem has been widely used to show the
existence of solutions to various infinite system of equations. Banaś and Lecko [5] presented the existence theorems for infinite systems of
first order differential equations by using the concept of measures of non compactness on Banach sequence spaces c0, c and `1 . On extension
of this result, Mursaleen and Mohiuddine [6] gave conditions for existence of solutions to a similar system in a sequence space `p using
techniques related with measures of non-compactness. Mursaleen [7] introduced the Hausdorff measure of non-compactness on the sequence
space n(φ) and proved the theorem that validates there exist solutions to infinite systems of first order differential equations in this space. A
theorem to support the existence of solutions to an infinite system of second order differential equations in the sequence spaces c0 and `1 was
developed by Mursaleen and Rizvi [8] . The authors established the existence theorems for an infinite system of second order differential
equations [9] and [10] in n(φ). Green’s function for third-order differential equations with constant coefficients was established by Chen et
al. [11]. This result motivated Saadat et al. [12] to investigate wheather infinite system of third order differential equations are solvable.
Using the obtained Green’s function, measures of non-compactness, and Meir-Keeler condensing operators, they demonstrated that an
infinite system of third-order differential equations can have ω-periodic solutions in the Banach sequence space c0. This conclusion was
expanded to another sequence space `p, by Pourhadi et al. [13]. Inspired by these results, the focal point of this study is to examine the
necessary conditions for the ω-periodic solutions to exist in an infinite system of third order differential equations within a sequence space
n(φ). Recently in [14–18], the solvability of infinite systems of fractional differential equations has been studied in tempered sequence
spaces. One can see more results in [19–23] and the references therein.
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We consider a Banach space E with the norm ‖.‖ . We assume that B(x,r) is the closed ball centred at x with a radius r and Br represents the
ball B(θ ,r) where as θ is the zero element of the Banach space E. Let M be a non-empty subset of a set E. In this context, the closure of M
is represented by M̄, while the convex closure is denoted as ConvM. Further, we define ME as the collection of all non-empty and bounded
subsets of E, and NE as its subset consisting of sets that are relatively compact. The set of real numbers is denoted by R, the interval [0,+∞)
is represented by R+ and N stands for the set of natural numbers. The axiomatic measures of non-compactness proposed by Banas and
Goebel [24] is defined as follows:

Definition 1.1. [24] If a mapping γ : ME → R+ satisfies the following conditions is reffered to be a measure of non-compactness in E

i. The family ker γ = {M ∈ME : γ(M) = 0} is non-empty and ker γ ⊂ NE .
ii. M1 ⊂M2⇒ γ(M1)⊂ γ(M2.

iii. γ(M̄) = γ(M).
iv. γ (Conv M) = γ(M).
v. For all λ ∈ [0,1]

γ(λM1 +(1−λ )M2)≤ λγ(M1)+(1−λ )γ(M2).
vi. Suppose Mn is a sequence of closed sets taken from ME such that Mn+1 ⊂Mn ∀n ∈ N. If the limit as n approaches infinity of the

measure of non-compactness, denoted by γ(Mn), equals zero, then the intersection set M∞ =
⋂

∞
n=1Mn is guaranteed to be non-empty.

A measure of non-compactness is classified as a regular measure if it satisfies the following additional conditions.
vii. γ(M1∪M2) = max{γ(M1),γ(M2)}

viii. γ(M1 +M2)≤ γ(M1)+ γ(M2)
ix. γ(λM) = |λ |γ(M)
x. ker γ = NE .

The Haursdoff measure of non-compactness developed by Goldenstian et al. [2] and further researched by Goldenstian and Markus [3] is the
most beneficial and convenient in terms of application among all measures of non-compactness.

Definition 1.2. [25] Consider (X ,d) be a metric space and let M be a bounded subset of X . The Hausdorff measure of non-compactness
of M, denoted as (χ(M)), is the infimum of all real numbers ε > 0 such that M can be covered by a finite number of balls with radii < ε . In
other words,
χ(M) = inf {ε > 0 : M has a finite ε−net in X }.

Definition 1.3. [25] Let F1 and F2 be Banach spaces and γ1 and γ2 be arbitrary measures of non-compactness on F1 and F2 respectively.
An operator T mapping from F1 to F2 is referred to as (γ1-γ2) condensing operator if it satisfies two conditions

i. continuity and
ii. for every bounded non-compact set M in F1, the measure of non-compactness of the image set T(M) under T, denoted as γ2(T(M)),

is strictly smaller than the measure of non-compactness of M, denoted as γ1(M).

Remark: If F1 = F2 and γ1 = γ2 = γ , then T is known as γ-condensing operator.

Darbo [26] developed fixed point theorem based on the idea of measures of non-compactness. The existence of solutions to numerous types
of differential equations and integral equations has been proven using this theorem.

Theorem 1.4. [26] Let H be a non-empty, closed, bounded, and convex subset of a Banach space F. Suppose T : H→ H is a continuous
mapping such that for any set E ⊂ H, γ(T(H))≤ kγ(H), where k is a constant in the range [0,1). Then, the mapping T has a fixed point in
H.

Meir and Keeler in 1969 [27], developed another contraction known as Meir-Keeler contraction with it’s corresponding fixed point theorem .

Definition 1.5. [27] Let (X ,d) be a complete metric space. A mapping T : X →X is said to be Meir-Keeler contraction if for any ε > 0
there exists δ > 0 such that the following conditions holds,
ε ≤ d(u,v)< ε +δ ⇒ d(Tu,Tv)< ε , ∀u,v ∈X .

Theorem 1.6. [27] Let (X ,d) be a complete metric space. If T : X →X is a Meir-Keeler contraction, then T has a unique fixed point.

Aghajan et al. [28] generalized Darbo’s fixed point theorems unto Meir-Keeler condensing operators fixed point theorem. This attracted
numerous researchers as they turned their mathematical interest on this topic, due to the fact that the imposed conditions are significantly
weakened. Aghajan et al. [28] extended Darbo’s fixed point theorem to fixed point theorems for Meir-Keeler condensing operators.

Definition 1.7. [28] Let H be a non empty subset of a Banach space F, and let γ be an arbitrary measure of non-compactness of F. An
operator T : H→ H is called a Meir Keeler condensing operator if for any ε > 0, there exists δ > 0 such that the following condition is
satisfied,
ε ≤ γ(Y )< ε +δ implies γ(T(Y ))< ε for any bounded subset Y of H.

This theorem will be helpful in demonstrating our key finding.

Theorem 1.8. [28] Let H be a non empty, bounded, closed and convex subset of a Banach space F and let γ be an arbitrary measure of
non-compactness on F. If T : H→ H is a continuous and Meir-Keeler condensing operator, then T has at least one fixed point. Furthermore,
the set of all fixed points of T in H is compact.

Definition 1.9. [29] Let β stands for the space of finite sets of distinct positive integers. For any ν ∈ β , we define the sequence b(ν) with

bn(ν) =

{
1 if n ∈ ν ,

0 if n /∈ ν ,
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and

βr =

{
ν ∈ β :

∞

∑
n=1

bn(ν)≤ r
}
,

such that βr is the set of ν whose support has cardinality at most r. The set Φ contains all sequences (φi)
∞
i=1 such that;

φ1 > 0, ∆φi ≥ 0 and ∆( φi
i )≤ 0, for i = (1,2, ...).

For φ ∈Φ , we have the following sequences

m(φ) =

{
x = xi : ‖x‖m(φ) = sup

r≥1
sup
ν∈βr

(
1
φr

∑
i∈ν

|xi|
)

< ∞

}
,

n(φ) =

{
x = xi : ‖x‖n(φ) = sup

u∈Sx

(
∞

∑
i=1
|ui|∆φi

)
< ∞

}
,

where ∆φi = φi−φi−1, φ0 = 0 and S(x) denotes the set of all sequences that are rearrangements of x.
Remark: For all n ∈ N, if φn = 1 then m(φ) = `1 and n(φ) = `∞;
and if φn = n then m(φ) = `∞ and n(φ) = `1.

Mursaleen [7] introduced the Hausdorff measure of non-compactness on the sequence space n(φ). But this formula does not define a measure
of non-compactness in n(φ) for the case φn = 1. We redefine it as follows:

Theorem 1.10. For any bounded subset M of n(φ), the Hausdorff measure of non-compactness of the set M is given by

χ(M) = lim
k→∞

sup
x∈M

(
sup

u∈S(x)

(
∞

∑
n=k
|un|∆φn

))
, for φn 6= 1;

= lim
k→∞

{
sup
x∈M
{sup[| xn− xm |: n,m≥ k]}

}
, for φn = 1.

Throughout this paper, we study the following infinite system of third order differential equations:

y′′′i + py′′i +qy′i + ryi = hi(ψ,y1(ψ),y2(ψ), ...) (1.1)

where hi ∈C(R×R∞,R) with regard to the first coordinate ψ is ω- periodic and p,q,r ∈ R are constants.

Based on the theory of ordinary differential equations, the corresponding homogeneous equation of (1.1) is

y′′′i + py′′i +qy′i + ryi = 0, i ∈ N

as well as the corresponding characteristic equation is

ξ
3 + pξ

2 +qξ + r = 0. (1.2)

The roots of the polynomial Equation of (1.2) take one of the following cases:

1. ξ1 6= ξ2 6= ξ3
2. ξ1 = ξ2 6= ξ3
3. ξ1 = ξ2 = ξ3
4. ξ1 = a+ ib,ξ2 = a− ib,ξ3 = ξ , where a, b, and ξ are real numbers.

The case r = 0 is not considered since the results can be easily extended to cover this special case. Therefore, the roots are assumed to be
non-zero.
The main novelty of this work is to establish the necessary conditions for the existence of ω-periodic solutions in the sequence space n(φ)
for an infinite system of third-order differential equations. The advantage of our results are that the space inhand n(φ) is more general than
the classical seuence spaces c0, c and `p.
This paper is organized into four sections. Section 1 provides an introduction and covers the necessary preliminaries and background for
establishing the main results. Section 2 is divided into five subsections, presents four distinct cases for the theorem proved as the main result.
Section 3 discusses two examples that validate the results of Section 2. Finally, Section 4 concludes the study with the suggestion for future
study.

2. Main Results

2.1. Solvability in a Banach sequence space n(φ)

In this section we provide the required conditions for existence of ω- periodic solution to the system (1.1).
Firstly, we recall the Fréchet space R∞ which is the linear space of all real sequences equipped with the distance

dR∞(x,y) = sup
{

1
2i
|xi− yi|

1+ |xi− yi|
: i ∈ N

}
,

for x = (xi),y = (yi) ∈ R∞.
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The space of all continuous real functions on R is represented by C(R,R∞), and C3(R,R∞) stands for the group of functions on R that have
a third continuous derivative. A function y ∈C3(R,R∞) is known to be a solution of Equation (1.1) if and only if y ∈C(R,R∞) is a solution
of the following infinite system:

yi(ψ) =
∫

ψ+ω

ψ

G(ψ,ς)hi(ς ,y(ς))d(ς),(i ∈ N),

where the Green’s function will be specified in corresponding to different cases.

i. The functions hi : R×R∞→ R are supposed to be ω-periodic with regard to the first coordinate. The operator hi : R×n(φ)→ n(φ)
is defined below

(ψ,y)→ (hy)(ψ) = (h1(ψ,y),h2(ψ,y), ...)

is such that the class of all functions {(hy)(ψ)}
ψ∈R is equicontinuous at each point of the space n(φ).

ii. The following inequality is true for any i ∈ N

|hn(ψ,y1,y2, ...)| ≤ un(ψ)+ vn(ψ) |yi(ψ)| ,

for ψ ∈ R and y = yi in n(φ). It is assumed that the functions un(ψ) and vn(ψ) are continuous on R, such that the mapping series

∑
k≥1
|uk|∆φk

converges uniformly on R, while the sequence vn(ψ) is equibounded on R.

Suppose,

U = sup
ψ∈R

{
∑
k≥1

uk∆φk

}
,

V = sup
n∈N
{ vn(ψ)} ,

and assume L is given as seen in [12] i.e

L =
e(ω|ξ1|)∣∣(ξ1−ξ2)(ξ1−ξ3)(1− e(ξ1ω))

∣∣ + e(ω|ξ2|)∣∣(ξ2−ξ1)(ξ2−ξ3)(1− e(ξ2ω))
∣∣ + e(ω|ξ3|)∣∣(ξ3−ξ2)(ξ3−ξ1)(1− e(ξ3ω))

∣∣ .

2.2. Solvability for case 1

In this part, we demonstrate the system’s (1.1) solvability by assuming that the roots of Equation (1.2) are ξ1 6= ξ2 6= ξ3. According to Chen
et al. [11], the appropriate Green’s function in this instance is as follows:

G1(ψ,ς) =
e(ξ1(ψ+ω−ς))

(ξ1−ξ2)(ξ1−ξ3)(1− e(ξ1ω))
+

e(ξ2(ψ+ω−ς))

(ξ2−ξ1)(ξ2−ξ3)(1− e(ξ2ω))
+

e(ξ3(ψ+ω−ς))

(ξ3−ξ2)(ξ3−ξ1)(1− e(ξ3ω))
. (2.1)

Theorem 2.1. If the assumptions (i) and (ii) are true, the system (1.1) has at least one ω-periodic solution, y(ψ) = yi(ψ) whenever 0 ¡
ωLV ¡ 1, such that y(ψ) ∈ n(φ),ψ ∈ R. The set of all solutions is also compact.

Proof. Assume that S(y(ψ)) is the collection of all sequences that are rearrangements of y(ψ), and let assumption (ii) hold. Using relation
(2.1) for any ψ ∈ R,

‖y(ψ)‖n(φ) = sup
p∈S(y(ψ))

(
∞

∑
k=1

∣∣∣∣∫ ψ+ω

ψ

G1(ψ,ς)hk(ς , p(ς))d(ς)
∣∣∣∣∆φk

)

≤ sup
p∈S(y(ψ))

(
∞

∑
k=1

∫
ψ+ω

ψ

|G1(ψ,ς)hk(ς , p(ς))|d(ς)∆φk

)

≤ sup
p∈S(y(ψ))

(
∞

∑
k=1

∫
ψ+ω

ψ

|G1(ψ,ς)|(uk(ψ)+ vk(ψ) |pk(ψ)|)d(ς)∆φk

)

= sup
p∈S(y(ψ))

(
∞

∑
k=1

∫
ψ+ω

ψ

G1(ψ,ς)uk(ψ)∆φkd(ς)+
∞

∑
k=1

∫
ψ+ω

ψ

G1(ψ,ς)vk(ψ) |pk(ψ)|∆φkd(ς)

)
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≤ sup
p∈S(y(ψ))

(∫
ψ+ω

ψ

G1(ψ,ς)
∞

∑
k=1

uk(ψ)∆φkd(ς)+V
∫

ψ+ω

ψ

G1(ψ,ς)
∞

∑
k=1
|pk(ψ)|∆φkd(ς)

)

≤ sup
p∈S(y(ψ))

U
∫

ψ+ω

ψ

G1(ψ,ς)d(ς)+V sup
p∈S(y(ψ))

∫
ψ+ω

ψ

G1(ψ,ς)
∞

∑
k=1
|pk(ψ)|∆φkd(ς)

≤ ωLU +V ωL‖y(ψ)‖n(φ)

‖y(ψ)‖n(φ) ≤
ωLU

1−ωLV
,= r.

This implies that y is a member of Br where Br denotes the closed ball with radius r centred at zero. So Br is non empty, bounded, closed
and convex subset of n(φ).
Here, we define the operator J = Ji on C(R,Br) as:

(J y)(ψ) = (Jiy)(ψ) =

{∫
ψ+ω

ψ

G1(ψ,ς)hi(ς ,y(ς))d(ς)
}
,ψ ∈ R, (2.2)

where y(ψ) = yi(ψ) ∈ Br and yi(ψ) ∈C(R,R),ψ ∈ R. It is plainly known from the presumption (i) that J is continuous on C((R,n(φ)).
Obviously since y(ψ) = yi(ψ) ∈ n(φ), also (J y)(ψ) ∈ n(φ) and J y is continuous function. Moreover, the function (Jiy)(ψ) is ω-
periodic function whenever yi(ψ) is ω-periodic function.
Since ‖J y(ψ)‖n(φ) ≤ r, thus J is a self mapping on Br. We will now demonstrate that J is a Meir-Keeler condensing operator. Finding
δ ¿ 0 such that for any given ε ¿ 0, ε ≤ χ(Br)< ε +δ implies χ(J (Br))< ε. Assumption (ii) and Theorem 1.10 allow us to arrive at,

χ(J Br) = lim
k→∞

{
sup

y(ψ)∈B

(
sup

p∈S(y(ψ))

(
∞

∑
i=k

∣∣∣∣∫ ψ+ω

ψ

G1(ψ,ς)hi(ς , p(ς))d(ς)
∣∣∣∣∆φi

))}

≤ lim
k→∞

{
sup

y(ψ)∈B

(
sup

p∈S(y(ψ))

(
∞

∑
i=k

∫
ψ+ω

ψ

|G1(ψ,ς)hi(ς , p(ς))|d(ς)∆φi

))}

≤ lim
k→∞

{
sup

y(ψ)∈B

(
sup

p∈S(y(ψ))

(
∞

∑
i=k

∫
ψ+ω

ψ

|G1(ψ,ς)|(ui(ψ)+ vi(ψ) |pi(ψ)|)d(ς)∆φi

))}

= lim
k→∞

{
sup

y(ψ)∈B

(
sup

p∈S(y(ψ))

(
∞

∑
k=1

∫
ψ+ω

ψ

G1(ψ,ς)ui(ψ)∆φid(ς) +
∞

∑
k=1

∫
ψ+ω

ψ

G1(ψ,ς)vi(ψ) |pi(ψ)|∆φid(ς)

))}

≤ lim
k→∞

{
sup

y(ψ)∈B

(
sup

p∈S(y(ψ))

(∫
ψ+ω

ψ

G1(ψ,ς)
∞

∑
k=1

ui(ψ)∆φid(ς) + V
∫

ψ+ω

ψ

G1(ψ,ς)
∞

∑
k=1
|pi(ψ)|∆φid(ς)

))}

≤V lim
k→∞

{
sup

y(ψ)∈B

(
sup

p∈S(y(ψ))

∫
ψ+ω

ψ

G1(ψ,ς)
∞

∑
k=1
|pi(ψ)|∆φid(ς)

)}
≤V ωLχ(Br).

Therefore, for a given ε > 0, if we take 0 < δ ≤ (1−ωLV )ε
ωLV we get the following ε ≤ χ(Br) < ε + δ =⇒ χ(J (Br)) < ε. Thus, J is a

Meir-Keeler condensing operator on the set Br ⊂ n(φ). As a result, according to Theorem 1.8, J has a fixed point in Br that is a part ker χ .
This is the needed solution for the system (1.1).

Chen et al. ( [11]) on their work introduced some bounds for Green’s function G1(ψ,ς) which may be used to restate the Theorem 2.1 by
exchanging L by obtained upper bounds.
For more simplicity of notations let us consider,

f1 := (ξ2−ξ3)e(ξ3ω)+2(ξ1−ξ3)e(ξ2ω)+(ξ1−ξ2)e(ξ1ω)+(ξ1−ξ3)e((ξ1+ξ2+ξ3)ω),

g1 := (ξ1−ξ3)+(ξ1 +ξ2−2ξ3)e((ξ2+ξ3)ω)+(2ξ1−ξ2−ξ3)e((ξ1+ξ2)ω),

f2 := (ξ1 +ξ2−2ξ3)e(ξ1ω)+(2ξ1−ξ2−ξ3)e(ξ3ω)+(ξ1−ξ3)e((ξ1+ξ2+ξ3)ω),

g2 := (ξ1−ξ3)+(ξ1−ξ2)e((ξ2+ξ3)ω)+(ξ2−ξ3)e((ξ1+ξ2)ω)+2(ξ1−ξ3)e((ξ1+ξ3)ω)

A3 =
e(ωξ1)

(ξ1−ξ2)(ξ1−ξ3)(1− e(ξ1ω))
+

1
(ξ2−ξ1)(ξ2−ξ3)(1− e(ξ2ω))

+
e(ωξ3)

(ξ3−ξ2)(ξ3−ξ1)(1− e(ξ3ω))

B3 =
1

(ξ 1−ξ2)(ξ1−ξ3)(1− e(ξ1ω))
+

e(ξ2ω)

(ξ2−ξ1)(ξ2−ξ3)(1− e(ξ2ω))
+

1
(ξ3−ξ2)(ξ3−ξ1)(1− e(ξ3ω))

. (2.3)
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Then
(C1) If f1 ≤ g1, and one of the following conditions holds:

i. 0 < ξ3 < ξ2 < ξ1
ii. ξ1 > 0 > ξ2 > ξ3

then A3 ≤ G1(ψ,ς)≤B3 < 0.
(C2) If f2 > g2, and one of the following conditions holds:

i. ξ3 < ξ2 < ξ1 < 0
ii. ξ3 < 0 < ξ2 < ξ1

then 0 < A3 ≤ G1(ψ,ς)≤B3.
Thus, one can quickly infer the following direct implication of Theorem 2.1 replacing L by the new boundaries by utilizing the recent
findings made by Chen et al. [11] by using the above bounds, Theorem 2.1 may be changed to Theorem 2.1 and stated as follows:

Theorem 2.2. Suppose that hypothesis C1 and the assumptions (i) - (ii) are true and ωV |A3|< 1. Additionally, assume that C2 and the
assumptions (i) - (ii) are true and ωVB3 < 1. Then the infinite system (1.1) has at least one ω-periodic solution y(ψ) = yk(ψ) such that
y(ψ) ∈ n(φ),ψ ∈ R. The set of all solutions is compact.

Proof. On replacing L by |A3| or B3 which are upper bounds of the Green’s function G1(ψ,ς) in the proof of Theorem 2.1, yields the
intended outcome.

2.3. Solvability for case 2

We shall present the solvability for the system (1.1), considering the roots corresponding to the homogenous part of the equation to be
ξ1 = ξ2 6= ξ3
in this section. The following is the Green’s function for this instance:

G2(ψ,ς) =
e(ξ1(ψ+ω−ς))

[
(1− e(ξ1ω))((ψ− ς)(ξ3−ξ1)−1)− (ξ3−ξ1)ω

]
(ξ1−ξ3)2(1− e(ξ1ω))2

+
e(ξ3(ψ+ω−ς))

(ξ1−ξ3)2(1− e(ξ3ω))
,ς ∈ {ψ,ψ +ω} .

We shall use the bounds concluded by Chen et al. [11] on proving the existence of solution for this case. Consider the following:

A4 :=
e(ξ1ω)−1+(ξ1−ξ3)ω

(ξ1−ξ3)2(1− e(ξ1ω))2
+

e(ξ3ω)

(ξ1−ξ3)2(1− e(ξ3ω))
,

A5 :=
e(2ξ1ω)− e(ξ1ω)+(ξ1−ξ3)ωe(2ξ1ω)

(ξ1−ξ3)2(1− e(ξ1ω))2
+

e(ξ3ω)

(ξ1−ξ3)2(1− e(ξ3ω))
,

A6 :=
e(ξ1ω)−1+(ξ1−ξ3)ωe(ξ1ω)

(ξ1−ξ3)2(1− e(ξ1ω))2
+

e(ξ3ω)

(ξ1−ξ3)2(1− e(ξ3ω))
,

B4 :=
e(2ξ1ω)− e(ξ1ω)+(ξ1−ξ3)ωe(2ξ1ω)

(ξ1−ξ3)2(1− e(ξ1ω))2
+

1
(ξ1−ξ3)2(1− e(ξ3ω))

,

B5 :=
e(ξ1ω)−1+(ξ1−ξ3)ω

(ξ1−ξ3)2(1− e(ξ1ω))2
+

1
(ξ1−ξ3)2(1− e(ξ3ω))

,

B6 :=
e(2ξ1ω)− e(ξ1ω)+(ξ1−ξ3)ωe(ξ1ω)

(ξ1−ξ3)2(1− e(ξ1ω))2
+

1
(ξ1−ξ3)2(1− exp(ξ3ω))

,

g3 = e(ξ1ω)+(ξ1−ξ3)ω +(e(ξ1ω)−3)e((ξ1+ξ3)ω)+(2+(ξ3−ξ1)ω)e(ξ3ω),

g4 = (3− (ξ1−ξ3)ω)e(ξ1ω)+((ξ1−ξ3)ω−1)e((ξ1+ξ3)ω)+(e(ξ3ω)−2)e(2ξ1ω).

Then from the results obtained by Chen et al. [11] we have that
(C3) 0 < A4 ≤ G2(ψ,ς)≤B4 whenever ξ3 < 0 < ξ1 = ξ2,
(C4) A4 ≤ G2(ψ,ς)≤B4 < 0 whenever ξ1 = ξ2 < 0 < ξ3,
(C5) A5 ≤ G2(ψ,ς)≤B5 < 0 whenever 0 < ξ1 = ξ2 < ξ3, and e(ξ1ω) < 1+(ξ3−ξ1)ω,
(C6) 0 < A4 ≤ G2(ψ,ς)≤B4 whenever ξ1 = ξ2 < ξ3 < 0 and g3 > 1,
(C7) A6 ≤ G2(ψ,ς)≤B6 < 0 whenever 0 < ξ3 < ξ2 = ξ1, and g4 < 1.

Theorem 2.3. Assume that (i)-(ii) and hypothesis C3 (respcively C4,C5,C6, and C7) hold. Consider the case when ωVB4 < 1 (respecively
ωV |A4|< 1,ωV |A5|< 1,ωVB4 < 1,ωV |A6|< 1). The infinite system (1.1) then has at least one ω-periodic solution y(ψ) = yk(ψ) such
that y(ψ) ∈ n(φ),ψ ∈ R . Also, the set of all solutions is compact.

Proof. We get desired results by changing the Green’s function from G1(ψ,ς) to G2(ψ,ς) from Theorem 2.1, since we are in case 2
where the associated Green’s function is G2(ψ,ς). And also replacing LωV < 1 from Theorem 2.1 by ωVB4 < 1,ωV |A4|< 1,ωV |A5|<
1,ωVB4 < 1,ωV |A6|< 1 respectively, which are upper bounds of the Green’s function G2(ψ,ς).
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2.4. Solvability for case 3

In this section, we present the theorem for existence of ω-periodic solution to the system (1.1) considering the roots of (1.2) to be
ξ1 = ξ2 = ξ3. From [11] the associated Green’s function for this case is shown to be:

G3(ψ,ς) =

[
(ς −ψ)e(ξ ω)+ω− ς +ψ

]2
+ω2e(ξ ω)

2(1− e(ξ ω))3
e(ξ (ψ+ω−ς)),ς ∈ {ψ,ψ +ω} .

In this case,we establish the existence theorem based on the upper bounds given by Chen et al. [11]
For more simplicity denote

A7 =
ω2e(2ξ ω)(1+ e(ξ ω))

2(1− e(ξ ω))3
,B7 =

ω2(1+ e(ξ ω))

2(1− e(ξ ω))3
.

(C8) A7 ≤ G3(ψ,ς)≤B7 < 0 whenever ξ > 0,
(C9) 0 < A7 ≤ G3(ψ,ς)≤B7 whenever ξ < 0.

Theorem 2.4. Suppose that the presumptions (i)-(ii) and C8 (C9 respectively) are true. Consider ωV |A7|< 1 (ωVB7 < 1 respectively).
Then the infinite system (1.1) has at least one ω-periodic solution y(ψ) = yk(ψ) such that y(ψ) ∈ n(φ),ψ ∈ R. Moreover, the set of all
solutions is compact.

Proof. Considering G3(ψ,ς) as the Green’s function and exchanging L from the proof of Theorem 2.1 by |A7| and B7 which are the upper
bounds of the Green’s function G3(ψ,ς), we are able to achieve the required result.

2.5. Solvability for case 4

In this section, we present the solvability of system (1.1) by considering the roots of equation (1.2) as ξ1 = a+ ib,ξ2 = a− ib,ξ3 = ξ .
From [11], for this case the Green’s function is as follows:

G4(ψ,ς) =
e(a(ψ+ω−ς)) [(a−ξ )B2(ψ)−bA2(ψ)]

b
[
(a−ξ )2 +b2

]
(1+ e(2aω)−2cos(bω)e(aω))

+
e(ξ (ψ+ω−ς))

(1− e(ξ ω))
[
(a−ξ )2 +b2

] ,ς ∈ {ψ,ψ +ω} .

where,

A2(ψ) := cosb(ψ +ω− ς)− e(aω) cosb(ψ− ς),

B2(ψ) := sinb(ψ +ω− ς)− e(aω) sinb(ψ− ς).

We simplify the notations to

A8 =
−e(aω)

b
√[

(a−ξ )2 +b2
]
(1+ e(2aω)−2cos(bω)e(aω))

+
e(ξ ω)

(1− e(ξ ω))
[
(a−ξ )2 +b2

] ,

B8 =
e(aω)

b
√[

(a−ξ )2 +b2
]
(1+ e(2aω)−2cos(bω)e(aω))

+
1

(1− e(ξ ω))
[
(a−ξ )2 +b2

] ,

A9 =
−1

b
√[

(a−ξ )2 +b2
]
(1+ e(2aω)−2cos(bω)e(aω))

+
e(ξ ω)

(1− e(ξ ω))
[
(a−ξ )2 +b2

] ,

B9 =
1

b
√[

(a−ξ )2 +b2
]
(1+ e(2aω)−2cos(bω)e(aω))

+
1

(1− e(ξ ω))
[
(a−ξ )2 +b2

] .
From [11] we have,

(C10) 0 < A8 ≤ G4(ψ,ς)≤B8 whenever ξ < 0 < a,b and[
(a−ξ )2 +b2](1− e(ξ ω))2

b2e(2aω)
<

1+ e(2aω)−2cos(bω)e(aω)

e(2aω)
,

(C11) 0 < A9 ≤ G4(ψ,ς)≤B9 whenever a,ξ < 0 < b and[
(a−ξ )2 +b2](1− e(ξ ω))2

b2e(2aω)
< 1+ e(2aω)−2cos(bω)e(aω),
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(C12) 0 < A8 ≤ G4(ψ,ς)≤B8 whenever a,b,ξ > 0 and[
(a−ξ )2 +b2](1− e(ξ ω))2

b2 <
1+ e(2aω)−2cos(bω)e(aω)

e(2aω)
,

(C13) 0 < A9 ≤ G4(ψ,ς)≤B9 whenever a < 0 < b,ξ and[
(a−ξ )2 +b2](1− e(ξ ω))2

b2 < 1+ e(2aω)−2cos(bω)e(aω).

Theorem 2.5. Suppose that the assumptions (i)-(ii) and hypothesis C10 (C11,C12 and C13 respectively) hold. Let ωVB8 < 1 (ωVB9 < 1,
ωV |A8| < 1 and ωV |A9| < 1 respectively). Then the infinite system has at least one ω-periodic solution y(ψ) = yk(ψ) such that
y(ψ) ∈ n(φ),ψ ∈ R. Besides, the set of all solutions is compact.

Proof. In order to achieve the desired conclusion, we replace the Green’s function from G1(ψ,ς) to G4(ψ,ς) from Theorem 2.1 and
LωV < 1 by ωVB8 < 1 (ωVB9 < 1, ωV |A8|< 1 and ωV |A9|< 1 respectively).

3. Examples

We present two examples in this section for cases 1 and 3 to validate the aforementioned theorems.

3.1. Example 1

Take into account of the following infinite system of differential equation of third order:

y′′′n (ψ)+2.9y′′n(ψ)+1.7y′n(ψ)+0.2yn(ψ) =
1
n4 +

∞

∑
k=n

yk(ψ)cosψ

100n2(k+1)6 . (3.1)

Consider:

hn(ψ,yk(ψ)) =
1
n4 +

∞

∑
k=n

yk(ψ)cosψ

100n2(k+1)6 .

For n ∈ N, the function hn(ψ,yk(ψ)) is seen to be continuous at every point on R and is 2π - periodic. Additionally, whenever
y(ψ) = yn(ψ) ∈ n(φ), hn(ψ,yk(ψ)) ∈ n(φ).

∞

∑
n=1
|hn(ψ,yk(ψ))|=

∞

∑
n=1

∣∣∣∣∣ 1
n4 +

∞

∑
k=n

%yk(ψ)cosψ

100n2(k+1)6

∣∣∣∣∣
≤

∞

∑
n=1

1
n4 +

∞

∑
n=1

∞

∑
k=n

∣∣∣∣∣ yk(ψ)cosψ

%100n2(k+1)6

∣∣∣∣∣
≤ π4

90
+

∞

∑
n=1

∞

∑
k=n

1

%100n2(k+1)6 |yk(ψ)|

≤ π4

90
+

1
100

∞

∑
n=1

%∞

∑
k=n

1

n2(1+ k)6 |yk(ψ)|

≤ π4

90
+

π6

95400
‖yk(ψ)‖n(φ) < ∞.

Now let us prove that the assumption (i) holds. Choose an arbitrary ε ¿ 0 and y(ψ) = yn(ψ),z(ψ) = zn(ψ) ∈ n(φ) such that,

‖y(ψ)− z(ψ)‖n(φ) < δ (ε) :=
95400ε

π6 .

Then,

|hn(ψ,y(ψ))−hn(ψ,z(ψ))|=
∞

∑
k=n

∣∣∣∣ (yk(ψ)− zk(ψ))cosψ

100n2(k+1)6

∣∣∣∣
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≤
∞

∑
k=n

|yk(ψ)− zk(ψ)|
100n2(k+1)6

≤ π6

95400
‖y(ψ)− z(ψ)‖n(φ)

≤ π6

95400
δ < ε.

This guarantee that, the function is continuous as assumed in (i). We now show the assumption (ii) hold

|hn(ψ,yk(ψ))|=

∣∣∣∣∣ 1
n4 +

∞

∑
k=n

yk(ψ)cosψ

100n2(k+1)6

∣∣∣∣∣
≤ 1

n4 +
∞

∑
k=n

∣∣∣∣ yk(ψ)cosψ

100n2(k+1)6

∣∣∣∣
≤ 1

n4 +
∞

∑
k=n

1
100n2(k+1)6 |yk(ψ)|

:= un(ψ)+ vn(ψ) |yk(ψ)| .

The function un(ψ) is continuous on R with n∈N and ∑n≥1 un(ψ) converges uniformly to π4

90 . More also, the sequence vn(ψ) is equibonded
on R . Thus the assumption (ii) is fulfilled.
The roots of homogeneous equations which correspond to (3.1) are ξ1 = 2,ξ2 = 1,ξ3 = −0.1. This demonstrates that the Green’s
function associated with (3.1) is a form of G1(ψ,ς) and f2 = 1.7295× 18 > g2 = 1.6955× 108. Applying the formula (2.3) ,we have
0 < A3 = 0.0206 ≤ G1(ψ,ς) ≤B3 = 1.8387. Thus, the condition in C2 is satisfied. The value ωVB3 ≈ 0.1164 < 1, for ω = 2π . This
indicates that the infinite system (3.1) has atleast one 2π-periodic solution y(ψ) = (yn(ψ)) ∈ n(φ) as all criteria of Theorem 2.1 are met.

3.2. Example 2

We now provide a further illustrative example to further elucidate our conclusion for the case 3.
Consider the infinite system of differential equation of third order below:

y′′′n (ψ)−3y′′n(ψ)− y′n(ψ)−1 =
cos(ψ)

n2 +
∞

∑
k=n

yk(ψ)sinψ

512(1+n2)(k+1)2 . (3.2)

Consider:

hn(ψ,yk(ψ)) =
cos(ψ)

n2 +
∞

∑
k=n

yk(ψ)sinψ

512(1+n2)(k+1)2 .

We observe that, the function hn(ψ,yk(ψ)) is continuous at every points on R and is 2π - periodic for n ∈ N.
The system (3.2) is a particular case of the considered system (1.1). Moreover, hn(ψ,yk(ψ)) ∈ n(φ) whenever y(ψ) = yn(ψ) ∈ n(φ) as we
have

∞

∑
n=1
|hn(ψ,yk(ψ))|=

∞

∑
n=1

∣∣∣∣∣cos(ψ)

n2 +
∞

∑
k=n

yk(ψ)sinψ

512(1+n2)(k+1)2

∣∣∣∣∣
≤

∞

∑
n=1

1
n2 +

∞

∑
n=1

∞

∑
k=n

∣∣∣∣ yk(ψ)sinψ

512(1+n2)(k+1)2

∣∣∣∣
≤ π2

6
+

∞

∑
n=1

∞

∑
k=n

1
512(1+n2)(k+1)2 |yk(ψ)|

≤ π2

6
+

1
512

∞

∑
n=1

∞

∑
k=n

1
(1+n2)(k+1)2 |yk(ψ)|

≤ π2

6
+

1
512
× π2

6
‖yk(ψ)‖n(φ) < ∞.

Now let us prove that the assumption (i) is satisfied. Consider any ε ¿ 0 and y(ψ) = yn(ψ),z(ψ) = zn(ψ) ∈ n(φ) such that,

‖y(ψ)− z(ψ)‖n(φ) < δ (ε) :=
3072ε

π2 .
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We have that

|h(ψ,y(ψ))−h(ψ,z(ψ))|=
∞

∑
k=n

∣∣∣∣ (yk(ψ)− zk(ψ))sinψ

512(1+n2)(k+1)2

∣∣∣∣
≤

∞

∑
k=n

|yk(ψ)− zk(ψ)|
512(1+n2)(k+1)2

≤ π2

6
1

512
‖y(ψ)− z(ψ)‖n(φ)

≤ π2

3072
δ < ε,

which ensures the desired continuity as assumed in (i). We now show the assumption (ii) hold

|hn(ψ,yk(ψ))|=

∣∣∣∣∣cos(ψ)

n2 +
∞

∑
k=n

yk(ψ)sinψ

512(1+n2)(k+1)2

∣∣∣∣∣
≤ 1

n2 +
∞

∑
k=n

∣∣∣∣ yk(ψ)sinψ

512(1+n2)(k+1)2

∣∣∣∣
≤ 1

n2 +
1

512

∞

∑
k=n

1
(1+n2)(k+1)2 |yk(ψ)|

:= un(ψ)+ vn(ψ) |yk(ψ)| .

The function un(ψ) is continuous on R with n ∈ N and ∑n≥1 un(ψ) converges uniformly to π2

6 . Furthermore, the sequence vn(ψ) is
equibonded on R . Thus the assumption (ii) is satisfied.
Using the notations from the preceding section, we can observe that the roots of the related homogeneous equation of (3.2) are
ξ1 = ξ2 = ξ3 = 1. Using the concept of C8 and the aforementioned roots, we find, A7 =−19.8873≤G3(ψ,ς)≤B7 =−6.9354×10−5 < 0,
for ω = 2π and ωV |A7| ≈ 0.40145 < 1.
All the hypothesis of Theorem 2.3 are satisfied, because for n ∈ N, the function hn(ψ) is 2π- periodic with regard to first coordinate. The
infinite system (3.2) therefore has a 2π-periodic, y(ψ) = (yn(ψ)) ∈ n(φ).

4. Conclusion

In our work, we have presented the conditions for existence of ω-periodic solution to an infinite system of third order differential equations
in a sequence space n(φ) are given. Our conclusion was supported by the Meir-Keeler condensing operator and the notion of measures
of non-compactness. To help illustrate the outcome, we have also included examples. More investigations is still needed to determine the
required conditions for the existence of solutions to an infinite system of similar type in different Banach spaces.
For some related future work, we suggest that such type of differential equations of order higher than three can be studied in different
sequence spaces, like c0, c, `p, mβ (φ) , mβ (φ , p), etc..
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